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Abstract—Large-scale electric power system analysis depends
upon representation of vast numbers of components whose indi-
vidual models must be populated with parameters. The challenge
of populating such component models is particularly apparent in
optimal power flow applications, in which incorrect parameters
and/or constraint limits can yield overall system representations
with either unrealistically large feasible regions or an empty
feasible set. Unfortunately, many data sets, particularly those
of publicly available test cases, were originally developed to il-
lustrate simpler “power flow only” applications, and may contain
unrealistic values or wholly omit important constraint limits. This
paper describes engineering-based approaches to obtain credible
estimates for parameters and limits associated with line-flow
constraints and generator capability curves, as may be employed
in a number of steady state analyses such as the optimal power
flow. These can substitute for missing or unrealistic data in test
systems for which more fully detailed, “real-world” component
specifications and limits are not available, and thereby make such
test systems more valuable as research tools.

Index Terms—Power system modeling, Optimal power flow

I. INTRODUCTION

Models are essential to the design and operation of electric

power systems. The validity of power system analyses depend

on the accuracy of the model parameters. Missing or unreal-

istic parameters may yield inaccurate or nonsensical results.

In industry settings for which accurate results within a

specific system are of the utmost importance, significant engi-

neering efforts are devoted to identification of appropriate val-

ues in models of individual components, often drawing upon

“as-built” specifications for specific elements. Conversely,

research efforts often focus on characterizing the performance

of computational tools across families of test systems, rather

than on an outcome for a single system of interest. In such

a research context, the “conventional wisdom” traditionally

held that highly accurate model parameters, matched to a

specific physical system, were not of great concern. (While

some common test cases used by researchers [1] are based on

real power systems, these test cases are generally not intended

to model presently existing system facilities. Indeed, economic

and security concerns often prohibit release of confidential

power system models.) However, as the computational power

of research tools has expanded to allow studies of large-scale

test cases, this conventional wisdom has begun to shift. There

has emerged growing recognition that specifics of network

properties and parameter values can have significant qualitative
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impact on the challenge (or lack thereof) associated with a test

system, and on how well these test systems reflect properties

likely to be observed when applying algorithms to industry

problems.

Clearly, populating test system models with parameters of at

least plausible realism is necessary if these test systems are to

be used in assessments of algorithm performance. The missing

or unrealistic model parameters and constraint limits in many

power system models used for research purposes introduce

concerns regarding the value of numerical experiments using

these models. These concerns clearly exist for dynamic models

in applications such as transient stability assessment and

control system design. However, this data problem becomes

apparent even in the quasi-steady state context of optimal

power flow (OPF) problems. In an effort to derive non-

confidential, physically realistic models that are relevant to

confidential optimization and power market models, previous

work by some of the authors has investigated a confidentiality-

preserving transformation between OPF problems [2], [3].

While such transformations may have a number of objectives,

one benefit is their potential to produce test cases that may

safely be publicly distributed, while preserving important

qualitative properties of real-world data sets for which con-

fidentiality must be maintained.

Complementing that work on power system model transfor-

mations, this paper addresses methods to identify and replace

missing or unrealistic model parameters with the goal of

improving confidence in numerical experiments conducted

with publicly available data sets. This paper specifically

addresses engineering-based computation of parameters for

line-flow limits and generator capability curve constraints.

These constraint models and parameters are used in many

quasi-steady state optimization problems of current interest,

including OPF studies, unit commitment problems, cascading

failure simulations, and voltage stability analyses. Data sets

for many existing test cases omit or provide unrealistic values

for these parameters. For example, line-flow limits are missing

in the commonly used data sets for the IEEE 14-, 57-, 118-,

and 300-bus test systems [1].

In regard to representation of generator active and reactive

power limits, the standard IEEE test systems’ data sets provide

information only for “box” constraints that independently limit

active and reactive power generation. Further, lower limits on

active power generation are set to unrealistic values of zero

for the IEEE test cases. Standard textbook presentations on

synchronous generator modeling confirm that the actual phys-



ical phenomena that constrain active and reactive power output

are far more accurately represented as capability curves (some-

times referred to informally as “D-curves”) which capture the

impacts of armature winding limits, field current limits, and

end-region heating limits. Importantly in the context of market

optimization, these more accurate limit models impose trade-

offs between production of reactive power and active power,

and therefore capture opportunity costs associated with a

generator’s reactive power production. The work here provides

methods to identify good estimates of the more accurate

capability curve limits from a data set that provides only “box-

type” active and reactive limits.

The methods described in this paper are based on existing

literature; indeed, much of the underlying engineering anal-

ysis is classic power systems textbook material. However,

the authors hope that this paper will nonetheless provide

value in reviewing and adapting these results to the needs of

optimization problems of current interest. The methodology

here for replacing omitted or unrealistic data is tailored to

employ information that is available in typical data sets (e.g.,

resistances, reactances, and shunt susceptances of transmission

lines, maximum active power generation capacities, rated

voltage magnitudes, etc.).

This paper is organized as follows. Section II describes a

method for estimating line-flow limits as multiples of the surge

impedance loading values. Section III details a method for

estimating generator capability curves from the box constraints

on active and reactive power generation given in typical data

sets. Section IV concludes the paper.

II. ESTIMATING LINE-FLOW LIMITS

Many power system data sets commonly used for research

purposes lack realistic line-flow limits. This section estimates

values for missing or unrealistic line-flow limits using two

underlying quantities: the surge impedance loading (SIL)

associated with the transmission line and an estimate of its

length. We estimate these quantities from parameters com-

monly appearing in basic power flow data sets and assumptions

on typically employed line geometries and material properties.

Note that analysis in this section is applicable only to

transmission lines, and can not be extended to transformers.

While transformers may be the limiting facilities in some

operating conditions for some systems, the widely variable

construction of transformers precludes general methods for

estimating flow-limits from standard power flow data.

A. Surge Impedance Loading

The surge impedance loading of a transmission line is

a function of its characteristic impedance Zc and its rated

voltage. A line connected to an impedance of Zc has a

uniform voltage profile along the line and neither absorbs

nor supplies reactive power (see, e.g., [4] for further details).

The characteristic impedance is defined by the square root

of the ratio of per-unit-length impedance to per-unit-length

admittance; in terms of commonly available parameters:

Zc =

√

R+ j2πfL

j2πfC
(1)

where R is the resistance of the line, L is the inductance, C is

the shunt capacitance, and f is the system frequency. Normal-

ized “per unit” values for line parameters are part of typical

power flow data sets, as are the base/rated voltages Vbase,

and system-wide power base Sbase from which the per unit

normalization is defined. To obtain Zc in Ohms, convert R,

X , and C to Ohms, Henrys, and Farads, respectively, from per

unit representation using the base impedance Zbase =
V 2

base

Sbase

.

The SIL is computed from rated voltage Vrated and char-

acteristic impedance Zc as

SIL =
V 2

rated

|Zc|
(2)

SIL values for typical transmission lines are shown in

Tables I and II (reproduced from Table 5.2 of [4] and Figure 7

of [5], respectively). There are several possibilities for trans-

mission lines whose parameters yield SIL values significantly

different from the values in these tables:

• The line is an underground cable, which typically have

low values of Zc and correspondingly high values of SIL.

The proposed method is not appropriate for underground

cables, for which thermal limits are set by concerns other

than conductor expansion and sag.

• The line is part of an equivalenced system. An equiva-

lenced line does not physically exist in the system (i.e.,

the line parameters are chosen to match the behavior of

some larger system), and thus line-flow limits cannot be

estimated from a physical transmission line model.

• The electrical characteristics of other transmission facil-

ities are combined with the line model. For instance, the

impedance of a transformer at an end of the line may be

combined with the line impedance, with the transformer

itself not explicitly modeled.

TABLE I
TYPICAL Zc AND SIL VALUES (TABLE 5.2 IN [4])

Vrated (kV) Zc (Ω) SIL (MW)

69 366–400 12–13
138 366–405 47–52
230 365–395 134–145
345 280–366 325–425
500 233–294 850–1075
765 254–266 2200–2300

TABLE II
TYPICAL Zc AND SIL VALUES (FIG. 7 IN [5])

Vrated (kV) # Conductors Conductor Size (kcmil) SIL (MW)

138 1 795 50.5
230 1 954 132
345 2 954 390
500 3 954 910
765 4 954 2210



• The transmission element represents a multi-circuit line

(i.e., multiple lines on the same transmission towers). The

surge impedance loading calculations in this paper do not

consider the effects of multi-circuit lines.

• The line parameters are in error or are inconsistent.

For lines with shunt susceptance set to zero (i.e., the “short

line” model), one cannot determine the value of SIL directly

from the line parameter data. Instead one should employ the

representative SIL values appropriate to the line’s voltage

level, as given in Tables I and II.

B. Line Length

After determining the SIL, one needs to estimate the

line length. Typical data sets do not specify line lengths or

convenient proxies (e.g., the latitudes and longitudes of bus

locations). We therefore use some reasonable assumptions.1

The inductance of a line can be calculated if one knows

the line length l, line geometry (i.e., physical spacing of the

conductors) and the line material properties. With knowledge

of the line reactance, we next approximate the line length using

estimates of typical line geometries and material properties.

The inductance of a transmission line in Henrys is

L = 2× 10−7 ln

(

Deq

DSL

)

l (3)

where Deq is the geometric mean distance (GMD) for the line

conductors, which is dependent on the line geometry, and DSL

is the geometric mean radius (GMR) for the line conductors,

which is dependent on the conductor characteristics (e.g.,

stranding and conductor bundling). Note that quantities in (3)

must be converted to SI units (meters and Henrys).

The value of l can be directly calculated with knowledge

of L, Deq and DSL. We next describe how to obtain these

values. Table III (reproduced from Table A.4 of [4]) provides

properties for typical conductor materials. Using the conductor

sizes given in Table II and the material properties from

Table III, relevant GMR values for a single conductor, denoted

as DS , are shown in Table III.

TABLE III
CONDUCTOR MATERIAL PROPERTIES (TABLE A.4 IN [4])

Conductor Name Conductor Size (kcmil) DS (feet)

Drake 795 0.0375
Cardinal 954 0.0403

Accounting for the effects of conductor bundling, the value

of DSL is computed from the per-conductor GMR values DS .

Assuming a symmetric arrangement of conductors within each

bundle with a distance d between conductors that is much

greater than the conductor radii (i.e., d ≫ DS) and the number

of conductors per bundle given in Table II, DSL is calculated

as shown in Table IV. A typical distance d is 18 inches [6].

The remaining quantity necessary for determination of the

line length l is the geometric mean distance Deq for the line.

1Note that while the methods developed in this section can be generally
applied, assumptions used for the conductor properties are specific to typical
transmission line construction in the United States.

TABLE IV
CALCULATIONS FOR GMR (DSL) WITH CONDUCTOR BUNDLING [4]

Two-Conductor Bundle
√

DSd

Three-Conductor Bundle 3
√

DSd
2

Four-Conductor Bundle 1.091
4
√

DSd
3

TABLE V
INTERCONDUCTOR DISTANCE D FOR VARIOUS VOLTAGES

Voltage Interconductor Reference
(kV) Distance D (feet)

115 3 [7]
345 25 [8]
500 40 [8]
735 50 [8]

Fig. 1. Loadability Characteristic (Figure 7 of [5])

This value is a function of the interconductor distance D. For

a completely transposed, horizontal line configuration where

the interconductor distance is much greater than the bundle

distance (i.e., D ≫ d), Deq is calculated as

Deq =
(

3
√
2
)

D (4)

Typical interconductor distances D vary with the voltage

of the transmission line; higher-voltage lines require larger

interconductor distances for insulation purposes. Common

values for D are in Table V. To approximate the intercon-

ductor distance, we use the linear interpolation in (5) (with

a minimum value of 1 foot) to estimate the interconductor

distance D in feet for voltages that do not appear in Table V:

D = 0.077 (Voltage in kV)− 3.11 [Feet] (5)



With these assumptions and the inductance L specified

in the data set, we calculate the line length l using (3).

Reasonable values of l range from tens to hundreds of miles.

C. Line-Flow Limit

An estimate of the line-flow limit can now be calculated

using the SIL and line length l. To account for short lines (less

than 50 miles), enforce a maximum line-flow limit of 3.0 ×
SIL. For longer lines, we use the line loadability characteristic

described in Fig. 1, which reproduces Figure 7 of [5].

A power function interpolation of the loadability character-

istic gives the following relationship between loadability in

SIL, denoted as Smax, and line length l.

Smax = Loadability in multiples of SIL

= 42.40 (Length in Miles)
−0.6595

(6)

The value for Smax should be between 0.5× (SIL) (long

lines) and 3.0× (SIL) (short lines).

III. ESTIMATING GENERATOR CAPABILITY CURVES

Generators’ capabilities are often modeled using “box” con-

straints for active and reactive output limits (i.e., independent

limits on active and reactive power outputs). Although this

model provides a starting approximation, it has the significant

shortcoming that trade-offs between active and reactive power

outputs are inherently neglected. A more accurate represen-

tation is that of the generator capability curve, also known

as the “D-curve.” This section approximates typical capability

curves using machine rating standards and data from the box

constraint limits typically specified in power flow data sets.

When capability curve information is available, many power

flow software packages choose to employ piecewise-linear

curves for its representation. The “piecewise-circular” curves

defined in this section can easily be converted to piecewise-

linear curves using interpolation techniques.

A. Typical Capability Curve

The reactive power output of a synchronous generator is

constrained by armature current, field current, and end-region

heating limits [9]. Each of these limits, which are due to

I2R heating of the corresponding section of the synchronous

generator, are modeled as circles (with centers offset from the

origin) in the space of active and reactive power output. The

generators must operate within the intersection of these circles

and within active power limits imposed by the prime mover.

We develop approximations for each of these circles using

specified box constraints and typical intersection points from

generator rating standards. Limits on active and reactive power

generation are specified using Pmax, Pmin, Qmax, and Qmin.

These approximations rely on the box constraints represent-

ing a single round-rotor synchronous generator. This analysis

is not applicable to box constraints that represent aggregations

of generators and related equipment (e.g., capacitors, loads).

An example capability curve resulting from the method in

this section is shown in Fig. 2, where P and Q denote the

active and reactive power outputs of the generator, respectively.

The upper portion of the curve is the circle from the field

current limit, the right portion of the curve is the circle from

the armature current limit, and the lower portion of the curve

is the circle from the end-region heating limit. Each of these

limits are due to I2R heating of the corresponding section of

the synchronous generator.

P (MW)

Q
 (

M
V

A
R

)

Generator Capability Curve

 

 

P
max

Field Limit

End Region Limit

Armature Limit

P
min

Fig. 2. Typical Generator Capability Curve

B. Armature Current Limit

The armature current limit is described by a circle with

center at the origin:

P 2 +Q2 ≤ (Smax)
2

(7)

where Smax = max (Pmax, Qmax) is the rated MVA of the

generator.

A value of Smax that is less than Pmax is interpreted as

a maximum mechanical input power limit that is below the

maximum electrical power generation limit of the synchronous

generator. For such cases, a maximum active power limit of

Pmax must also be imposed on the capability curve.

C. Field Current Limit

Lacking data associated with detailed generator models [9],

this section proposes a method by which standard machine

ratings may be used to approximate the field current limit.

Recognizing that the feasible set for the field current limit is

a simple circle in the P-Q plane, its specification requires just

the center point
(

P
field
0

, Q
field
0

)

and the radius
(

rfield
)

.

We first use the fact that the field current limit is centered

on the Q-axis; that is, P
field
0

= 0 [9]. We then assume

that the maximum reactive power output Qmax is achieved

at zero active power output, which yields the point (0, Qmax).
Finally, we use the fact that standard machine specifications

use rated power factor as the intersection between the field

current limit and the armature current limit. Assuming a rated

power factor of 0.80 lagging, this gives a second point on the

circle: (0.8Smax, 0.6Smax). Corresponding parameters are



Q
field
0

=
(Qmax)

2 − (Smax)
2

2 (Qmax − 0.6Smax)
(8a)

rfield = Qmax −Q
field
0

(8b)

The resulting field current limit is

P 2 +
(

Q−Q
field
0

)2

≤
(

rfield
)2

(9)

The relative values of Qmax and Pmax result in three cases:

1) If Qmax ≥ Pmax, then Smax = Qmax and Q
field
0

= 0,

resulting in the same armature and field current limits.

2) If Qmax ≤ 0.6Pmax, then Q
field
0

is non-negative. Only

negative values of Q
field
0

are physically meaningful [9].

Accordingly, if Q
field
0

≥ 0, we impose a fixed upper

limit (i.e., Q ≤ Qmax) and disregard the value of Q
field
0

.

3) If Pmax > Qmax > 0.6Pmax, which is expected to be

the case for typical generators, the armature and field

current limits impose distinct constraints.

D. End-Region Heating Limit

Limits on leading power factor operation of a synchronous

generator are due to end-region heating. To approximate the

end-region heating limit, we assume 1) the end-region heating

limit takes the form a circle with center
(

P end
0

, Qend
0

)

on

the Q-axis (i.e., P end
0

= 0) and radius rend, 2) the point
(

0, Qmin
)

is on this circle, and 3) the intersection of this

limit with the armature current limit occurs at 0.95 leading

power factor as in [10]. These assumption lead to

P 2 +
(

Q−Qend
0

)2 ≤
(

rend
)2

(10a)

Qend
0

=

(

Qmin
)2 − (Smax)

2

2 (Qmin + 0.31Smax)
(10b)

rend = Qend
0 −Qmin (10c)

The relative values of Qmin and Smax result in three cases:

1) If
∣

∣Qmin
∣

∣ ≤ 0.31Smax, then Qend
0 is non-positive. Only

positive values of Qend
0

are physically meaningful [9].

Accordingly, if Qend
0

≤ 0, we impose a fixed lower limit

(i.e., Q ≥ Qmin) and disregard the value of Qend
0 .

2) If Smax ≥
∣

∣Qmin
∣

∣ > 0.31Smax, which is expected to

be the case for typical generators, the armature and field

current limits impose distinct circle constraints.

3) The case
∣

∣Qmin
∣

∣ > Smax is atypical for synchronous

generators. For this case, the armature current limit is

binding before the specified Qmin; that is, the syn-

chronous generator cannot actually reach Qmin due to

the armature current limit. If this case does occur, use

the specified lower limit (i.e, Q ≥ Qmin) and ignore the

armature current limit for negative values of Q. In other

words, use the original box constraints for the lower half

of the generator capability curve.

E. Prime Mover Limits

Limits on the mechanical input power from the prime mover

impose simple upper and lower bounds on achievable active

power generation. The maximum and minimum active power

generation Pmax and Pmin are given by the box constraints.

For thermal generators, realistic minimum active power

generation levels are typically significantly greater than zero;

yet many publicly available data sets report this limit to be

zero (i.e., Pmin = 0), suggesting missing or incorrect data.

Reference [11] describes a statistical study of the minimum

economic operating point (“eco-min”) for thermal generators.

To estimate Pmin, this section uses the results from [11] that

correspond to information in many public data sets.

Typical data sets specify generators’ nameplate capacity

(i.e., Pmax) and may provide generators’ prime mover type.

If both of these data fields are available, we use the median

eco-min data specified in Figs. 15, 23, and 25 of [11] to ap-

proximate Pmin. The data from these figures is reproduced in

Table VI, which considers steam turbines and combined-cycle

prime movers, and Table VII, which considers combustion-

turbine prime movers operated both independently and as part

of a combined-cycle plant. Note that [11] suggests that there

may be substantial variance around these median data.

If the data set does not include the prime mover type, we use

the averages among all prime mover types from Table VIII,

which is reproduced from Fig. 10 of [11], to specify Pmin

based on the nameplate capacity data only.

TABLE VI
TYPICAL Pmin FOR STEAM TURBINES AND COMBINED-CYCLE PRIME

MOVERS (FIGS. 15 AND 23 IN [11])

Pmax Steam Turbine Combined Cycle

0-200 MW 38% 80%
200-400 MW 39% 46%
400-600 MW 49% 41%
600-800 MW 60% 48%
> 800 MW 64% 42%

TABLE VII
TYPICAL Pmin FOR COMBUSTION-TURBINE PRIME MOVERS (FIG. 25

IN [11])

Pmax Independently CT in Combined
Operated CT Cycle Plant

0-50 MW 76% 80%
50-100 MW 66% 95%
100-150 MW 59% 63%
150-200 MW 81% 63%
200-250 MW 71% 58%
250-300 MW – 64%

TABLE VIII
TYPICAL Pmin WITHOUT PRIME MOVER DATA (FIG. 10 IN [11])

Pmax Pmin

0-200 MW 69%
200-400 MW 42%
400-600 MW 45%
600-800 MW 48%
> 800 MW 69%



IV. CONCLUSION

It is obvious that use of power system test data sets with

missing or unrealistic parameters may yield inaccurate results.

Perhaps more subtly, use of these test cases may undermine

research efforts seeking to characterize effectiveness of new

algorithms in such problems as optimal power flow. For

industry purposes, significant effort is required to accurately

model the behavior of specific power system facilities and

components, so that simulations based on such models provide

a good match to observed physical behavior in the field.

However, security and privacy concerns often preclude the

dissemination of data sets closely based on real, operating

physical systems to serve as publicly available test cases.

Instead, research on new algorithms and analysis methods

must employ test cases that are either altogether synthetic

or anonymized versions of past configurations of real-world

power systems. Many of these public test cases and data sets

have evolved with a first objective that they provide a “reason-

able” power flow solution, and often provide incomplete data

and/or models to inform more advanced applications such as

optimal power flow. Missing and/or unrealistic parameters in

some of these test cases limits their usefulness. This paper

has described methods for estimating reasonable line-flow

limits and generator capability curve parameters using widely

available data, supplemented by basic engineering assumptions

on the nature of transmission line and synchronous generator

construction. Publicly available data sets augmented with

parameters estimated using the methods described in this paper

are available at [12].
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