
ECE 4320 Fall 2022 Course Project:
Power System Pandemic

Course Instructor: Dan Molzahn, Georgia Tech ECE

1 Introduction

This project places you in charge of operating, maintaining, and repairing a simulated model
of the Georgia power system during a pandemic. Your goal is to provide a low-cost supply of
power to the loads by carefully choosing the generator outputs and allocating crews to perform
maintenance and repairs of the transmission lines. Sending crews out to maintain and repair
transmission lines may result in them being quarantined after exposure to the pandemic disease,
precluding their use from the remainder of the simulation. You must therefore balance the need
to maintain low-cost and reliable power system operation against the health risk imposed on the
repair and maintenance crews. The remainder of this document describes the simulation and your
task for the project.

2 Simulation

2.1 Dependencies and Installation

Matlab: The simulation code and all data files are given in Matlab format in
ece4320project pandemic.zip. The simulation code is developed for Matlab 2019a. To avoid
potential incompatibilities with Matlab, you should install version 2019a or later.

Matlab Toolboxes: You will need to install two Matlab toolboxes: the Mapping toolbox and
the Optimization toolbox, both of which are available with the Georgia Tech Matlab license. To
install these toolboxes, click on the “Apps” tab in the Matlab command window, then click “Get
More Apps”. In the new window that appears, click on “Toolboxes and Products” on the “Filter
by Type” list on the left side of the window. Then search for “Optimization Toolbox” and follow
the instructions to install this toolbox. Repeat this process for the “Mapping Toolbox”.

Matpower: The simulation also relies on Matpower (https://matpower.org), an open-source
Matlab package that is included in the ece4320project pandemic.zip file. Matpower solves
power flow and optimal power flow problems. While we will discuss Matpower and its associated
data format in more detail during lecture, you are encouraged to install and play with this tool
on your own. The Matpower manual provides an extensive description of the functionality of
this package: https://matpower.org/docs/MATPOWER-manual.pdf

Yalmip: The simulation additionally uses another open-source Matlab package called YALMIP,

1

https://matpower.org
https://matpower.org/docs/MATPOWER-manual.pdf

which is also included in the ece4320project pandemic.zip file. YALMIP is a so-called “model-
ing” package that simplifies the formulation and solution of optimization problems. This project
uses YALMIP to formulate power flow and security-constrained unit commitment problems that
you can use as tools for determining generator setpoints and load shedding amounts during the
simulation.

After installing the Optimization Toolbox and the Mapping Toolbox, you can install rest of the
entire simulation (including both Matpower and YALMIP) by unzipping ece4320project pandemic.zip

and adding the associated files and folders to your Matlab path. You can do this either by using
the “Set Path” button on the Matlab toolbar or by using the following command:

addpath(genpath(’c:\path\to\unzipped\files’));
The simulation has a number of associated parameters that are stored in the file setParameters.m.

These parameters can be directly edited by changing the values of the variables stored in this file.

2.2 Dataset

This project makes use of a fictitious dataset representing the Georgia power system with 20 buses,
6 generators, and 30 transmission lines. This dataset is available in Matpower format in the
file case20ga.m. Matpower datasets are structured according to the format given in Section 3
and Appendix B of the Matpower manual. You can also use Matpower’s define constants

command to define indexing variables that allow straightforward access to various quantities in
the Matpower data format.

While the power system dataset is geographically placed in Georgia and the load demands are
roughly proportional to the actual load demands, this system is completely fictitious and does not
match the actual power grid model. Nevertheless, the behavior of this system is fairly typical.

Using the dataset provided in the file case20ga.m, the simulation considers various snapshots
in time, with the number of time periods determined by the parameter lastTurn. For the sake of
simplicity, each period of the simulation is assumed to correspond to the same amount of elapsed
time. At the start of the simulation, the dataset for each time period is stored into the Matlab
structure mpcs, where mpcs{i} holds the Matpower dataset associated with time period i.1

2.3 Power System Model

2.3.1 Power Flow Model

The power system behavior is modeled using the DC power flow approximation. Hence, only
active power (generation, load demands, and line flows) and voltage angles are considered in the
formulation. Reactive power (generation, load demands, and line flows) and voltage magnitudes
are neglected. The relevant parameters for the lines are the reactances, given in the dataset (in per
unit) by mpcs{i}.branch(:,BR X),2 and the flow limits (in MW) by mpcs{i}.branch(:,RATE A).

1The variable name mpcs corresponds to Matpower cases.
2Note that the variable BR X is obtained by calling define constants. Other indexing variables for the quan-

tities stored in mpcs are also obtained by calling define constants.

2

2.3.2 Time-Varying Load Demands

Each time period has different load demands. For time period i, the load demands for each bus
are stored in mpcs{i}.bus(:,PD).

The time periods cycle between representing night, day, and evening time periods. The selected
time periods are specified via the parameter opts.TimesOfDay. The evening periods generally have
the highest load demands, while the night periods have the lowest load demands. The simulation
starts on Monday of the week indicated by the parameter opts.StartWeek (numeric index with
week 1 representing the first week in January and 52 indicating the last week in December).

In addition to the daily and weekly cycles, the load demands at each bus are multiplicatively
modulated by Gaussian random variables characterized by the parameters opts.Pmu (mean value)
and opts.Psigma (standard deviation). Larger values of opts.Pmu increase the load demands.
Larger values of opts.Psigma increase the amount of variation in the load demands.

The load demands stored in mpcs{i}.bus(:,PD) indicate the maximum load that can be
supplied at each bus. In some instances, you may want to shed load (i.e., deliver less than the
load demands specified in mpcs{i}.bus(:,PD)) in order to prevent line overloads. Each MWh of
load shed incurs the cost specified in mpcs{i}.loadcost, given in dollars per MWh. Note that
the cost of load shedding is the same for each load and each time period.

2.3.3 Generator Model

The bus number of each generator is given in mpcs{i}.gen(:,GEN BUS). The generation cost is
modeled as an affine function of the active power output (c1PG+c0), with linear coefficients c1 given
in mpcs{i}.gencost(:,COST+1) and constant terms c0 given in mpcs{i}.gencost(:,COST+2).
The cost cofficients stored in the dataset are given in dollars per MWh of power generated. The
order of the rows for the generation costs in mpcs{i}.gencost matches the order of the rows for
the generators in mpcs{i}.gen.

As implied by the affine cost function, the no-load cost for each generator (the cost for
having the generator turned on during this time period) is given by the constant term c0 in
mpcs{i}.gencost(:,COST+2). If the generator is turned on, the power output PG must be be-
tween the upper and lower active power generation limits mpcs{i}.gen(:,PMAX) and mpcs{i}.gen(:,PMIN)
(in MW) and the associated cost is c1PG + c0. Generators that are turned off, as indicated by an
active power output equal to zero, do not incur any generation cost.

Note that there is no coupling between the time periods for the generator quantities. In other
words, the simulation does not consider issues such as generator ramp rates, startup and shutdown
time requirements, etc. The generator cost coefficients are the same for each time period.

2.3.4 Line Failure Model

At the start of the simulation, all lines are in-service (not failed) and thus have a line status equal
to 1 (mpcs{i}.branch(:,BR STATUS) = 1). Throughout the simulation, lines may fail either
exogenously or due to cascading failures when line flows are greater than the corresponding line
flow limits, resulting in the line status becoming less than 1. All lines with status less than 1 are
unavailable until repaired. The simulation does not consider the possibility of generator failures.

3

Exogenous Line Failures At time period i, each line has a exogenous probability of failure
given in mpcs{i}.failure probability. This failure probability models events outside the sim-
ulation, such as severe storms. The exogenous failure probabilities can be reduced by assigning
crews to perform preventative maintenance, which will be discussed later in this section.

The exogenous failure probabilities for most lines are randomly initialized between the val-
ues given in the parameters opts.minFailureProbability and opts.failProb. A fraction
opts.outlierFraction of lines are initialized with a larger exogenous failure probability that
is approximately opts.outlierFailProb. This is used to model lines which are due for preventa-
tive maintenance. Starting from these initializations, the exogenous failure probabilities for each
line increase during each time period by a multiplicative factor of opts.FailureRateIncrease.

At the beginning of each time period, the simulation randomly determines which lines fail ac-
cording to the lines’ exogenous failure probabilities in that time period. The statuses for these lines
are changed to 0 (mpcs{i}.branch(:,BR STATUS) = 0) and these lines thus become unavailable
until they are fully repaired.

Cascading Failures After determining the exogeneous failures, the simulation then evalu-
ates a cascading failure model based on the power flowing on each line after these failures oc-
cur. Lines which are overloaded (have power flows greater than the flow limits specified in
mpcs{i}.branch(:,RATE A)) may fail. Overloaded lines fail with a probability that varies linearly
with the amount of overload. The failure probability for an overloaded line is 0% when the line flow
is at its limit and 100% when the line is over the limit by more than a factor of opts.instaFail.

When a line fails due to overloading, the line’s status is set to opts.cascadeFailureStatus.
While this can be modified, the default value for this parameter in setParameters.m is set so that
the line can be repaired by one crew in a single turn. This is due to the fact that line overloads
generally result in the operation of the protection system (opening a breaker), which is relatively
straightforward to correct compared to the physical damage that is modeled by exogenous failures.

The cascading failure model considers the possibility of multiple rounds of failures. Each round
introduces random failures among the overloaded lines, recomputes the line flows with the newly
failed lines removed, and then determines whether any additional lines fail due to overloads from
the new line flows. This process repeats until there are no further line failures during this turn.

2.3.5 Maintenance Model

During each turn, you can allocate crews that either perform maintenance on lines which have not
yet failed or repair failed lines. Crews that are allocated to in-service (non-failed) lines will perform
maintenance on those lines. Each crew assigned to a line reduces the line’s exogeneous failure
probability by a multiplicative factor of opts.maintenanceEffectiveness for all subsequent
turns in the simulation. Note that the exogeneous failure probability can never become less than
opts.minFailureProbability regardless of the amount of maintenance performed on the line.

Note that reductions in the exogeneous failure probabilities occur after computing the line
failures for the turn. In other words, maintenance improves the failure probabilities for subsequent
time periods but not the current time period. If a line fails during a turn (either exogeneously
or after the cascading failure analysis), any crews assigned to this line will perform repairs rather
than maintenance.

4

2.3.6 Repair Model

Crews that are allocated to failed lines perform repairs on that line. Each crew assigned to a failed
line increases the line’s status by an amount specified by opts.repairEffectiveness. Once a
failed line’s status would become greater than or equal to 1, the line’s status is set to 1 and the
line returns to service. All lines whose statuses are less than 1 are considered to be failed and
cannot carry any power flow (i.e., they are entirely removed from the power flow model).

Note that repairs occur after computing the line failures for the turn. In other words, repairs
are applied to subsequent time periods but not the current time period. If a line fails during a
turn (either exogeneously or after the cascading failure analysis), any crews assigned to this line
will perform repairs rather than maintenance.

2.4 Quarantine Model

At the start of the simulation, you are allocated a number of repair crews equal to ncrew for
performing maintenance and repair activities. Crews sent into the field for these activities may
be exposed to the pandemic disease and thus quarantined. Quarantined crews are unavailable for
repair and maintenance activities for the remainder of the simulation.

Each crew that is allocated during a turn is randomly exposed to the disease and quarantined
with a probability given in opts.proximitySicknessLikelihood. Crews that are not sent into
the field (unallocated) have no risk of being quarantined during that turn. If multiple crews are
performing maintenance or repairs on a single line, any crew becoming exposed results in the
quarantining of all crews allocated to that line. You will therefore need to balance the value in
rapidly performing maintenance or repairing a failed line via allocating multiple crews to that line
against the likelihood of quarantining multiple crews.

In addition to losing the crews’ capabilities for the remainder of the simulation, quarantining
crews also significantly impacts the crews’ quality of life. To model these impacts, the final score as-
sociated with a simulation is penalized by a multiplicative factor of opts.crewQuarantinePenalty
for each quarantined crew at the end of the simulation.

2.5 Scoring Methodology

The final score for the simulation is determined by three components:

1. Load shedding costs as determined by the cost coefficient mpcs{i}.loadcost (Section 2.3.2).

2. Generation costs as determined by the cost coefficients in mpcs{i}.gencost(:,COST+1) and
mpcs{i}.gencost(:,COST+2) (Section 2.3.3).

3. A multiplicative penalty based on the number of crews quarantined at the end of the simu-
lation and the parameter opts.crewQuarantinePenalty (Section 2.4.)

The generation and load shedding costs are summed over the time periods and then multiplied
by the quarantine penalty factor at the end of the simulation.

5

2.6 Computational Tools

In order to manage the generator setpoints and the load shedding, you are given two computational
tools in the file ece4320project pandemic.zip that are similar to those available to actual power
system operators. Specifically, you are given solvers for DC power flow problems and DC security-
constrained unit commitment problems. As part of your work on the project, you are welcome to
use, adapt, and build on these functions to determine better operating points and crew allocations.

2.6.1 DC Power Flow

The first function is [sol]=rundcpf with islands(mpc,Pd,Pg) (“Run DC Power Flow With
Islands”). This function solves a DC power flow problem, i.e., given the loads and generator
outputs, this function computes the power flows on the lines.

The input mpc is a single period of the power system model in Matpower format. Failed lines
(status values that are less than 1, mpc.branch(:,BR STATUS) < 1) are automatically removed
from the model prior to solving the problem.

The inputs Pd and Pg are vectors of the load demands and the generator outputs (both in
MW). Note that these may differ from the values for these quantities stored in the input mpc.
Differences between the load demands in mpc.bus(:,PD) and Pd indicate the amount of load
shedding.

The function rundcpf with islands builds on the Matpower function rundcpf, which also
solves DC power flow problems. However, the Matpower function rundcpf does not handle
power systems with islands (cases where the transmission network has multiple disconnected
components), whereas the function rundcpf with islands does handle islands.3

Example function call:

1 % Run a DC power flow with 50% load shedding at each bus

2 % and equal output from each generator.

3
4 define_constants;

5 ngen = size(mpcs{currentTurn }.gen ,1); % number of generators

6
7 Pd = mpcs{currentTurn }.bus(:,PD) * 0.5;

8 Pg = sum(Pd) / ngen;

9 [sol]= rundcpf_with_islands(mpcs{currentTurn},Pd ,Pg);

10 printpf(sol); % Show the solution

2.6.2 DC Security-Constrained Unit Commitment

The second function is [sol]=rundcscuc(mpc,contingencies) (“Run DC Security-Constrained
Unit Commitment”). This function solves DC security-constrained unit commitment problems

3If the power system data in the input mpc has islands, the function rundcpf with islands uniformly sheds
load or reduces generation within each island in order to achieve power balance (total load equal to total generation
within the island) and then runs a DC power flow in each island.

6

specified via two inputs: mpc, a power system dataset in Matpower format, and contingencies,
a matrix indicating a set of contingencies.

The input mpc must correspond to a single time period. Failed lines (status values that are
less than 1, mpc.branch(:,BR STATUS) < 1) are automatically removed from the model prior to
solving the problem.

The input contingencies is a matrix with rows corresponding to the transmission lines and
columns corresponding to the contingencies that you want to consider in the security-constrained
unit commitment problem. Each column denotes a contingency scenario, with values of 1 in the
entries of that column indicating the failures of the corresponding transmission lines. For instance,
a column with values equal to 1 in the second and fourth entry corresponds to a contingency
consisting of the failures of the second and fourth transmission lines.

The output sol provides the generator setpoints and load demands that minimize the gen-
eration costs while avoiding constraint violations in the base case as well as remaining secure
against all of the specified contingency scenarios. Note that the function rundcscuc may turn off
generators (power output set to zero) and shed loads (values of sol.bus(:,PD) that are less than
mpc.bus(:,PD)).

Similar to rundcpf with islands, the function rundcscuc automatically handles cases where
the power system is composed of multiple islands.

Example function call:

1 % Run a DC security -constrained unit commitment.

2 % Consider a system with 30 lines and 3 contingencies.

3 % The three contingencies are:

4 % The outage of line 1.

5 % The outages of lines 2 and 4.

6 % The outages of lines 1, 2, and 5.

7
8 define_constants;

9
10 contingencies = zeros (30 ,3); % 30 lines and 3 contingencies

11 contingencies (1,1) = 1; % contingency 1

12 contingencies ([2, 4], 2) = 1; % contingency 2

13 contingencies ([1, 2, 5], 3) = 1; % contingency 3

14
15 [sol]= rundcscuc(mpcs{currentTurn},contingencies);

16 printpf(sol); % Show the solution

2.7 User Interface

You can interface with the simulation using either GUI-based commands (in combination with
the Matlab command line) or by defining a function that provides the crew allocations, generator
setpoints, and load shedding using the information available from each turn of the simulation.
Each of these options are described in detail below.

7

Figure 1: GUI for Controlling the Simulation and Changing the Display.

2.7.1 GUI-Based Interface

The first method for interfacing with the simulation uses GUI-based commands and the Matlab
command line. The GUI in Figure 1 allows you to perform several functions:

• Visualize Next Turn Button: Changes the display to the current turn, reads the values
for active power generation, active power load, and crew allocation in the variables Pg,
Pd, and crewAllocation, respectively, that are stored in the Matlab workspace, and then
displays the results. Note that this is the “specified outcome” that does not simulate line
failures or crew quarantines. This can be therefore be viewed as the best-case scenario based
on your specified values of Pg, Pd, and crewAllocation.

• Take Next Turn Button: Takes the next turn (including simulating line failures and crew
quarantines) based on the values for active power generation, active power load, and crew
allocation in the variables Pg, Pd, and crewAllocation, respectively, that are stored in the
Matlab workspace, and then displays the results. This is the “actual outcome” for this turn.

• Turn to Display Selector: Changes the displayed values to those associated with a par-
ticular turn. Selecting the current turn shows the specified outcome (using the values of Pg,
Pd, and crewAllocation stored in the Matlab workspace). Selecting a future turn shows
the loads and flows assuming zero output from every generator. This is useful for seeing
the loads that will occur during future turns. Selecting a prior turn shows either specified
outcome or the actual outcome from that turn, depending on the Outcome indicator.

• Outcome Indicator: If the turn to display is prior to the current turn, this indicator
selects the display of either the specified outcome (without simulating line failures and crew
quarantines) or the actual outcome (including any line failures and crew quarantines that
occurred).

Thus, you can interact with the simulation by first storing appropriate values for the power
generation, load demands, and crew allocations in the variables Pg, Pd, and crewAllocation via
the Matlab command line and then clicking the Take Next Turn Button. You can visualize the
impacts of prospective setpoints using the Visualize Next Turn Button and see the specified and
actual outcomes of past turns using the Turn to Display Selector and Outcome Indicator.

Each turn, the simulation updates the following variables in the Matlab workspace:

8

1. mpcs: The variable containing the power system model (network topology, impedances,
generator limits, load demands, failed lines, etc. in the Matpower format as well as the
line failure probabilities) for each time period as described in Section 2.3.

2. ncrew: The number of crews available at this turn.

3. currentTurn: The current turn number in the simulation. The expression mpcs{currentTurn}
corresponds to the system model during the current turn in the simulation.

4. lastTurn: The final turn number in the simulation.

The values stored in the variables Pg, Pd, and crewAllocation must conform to the following
formats in order to take the next turn:

1. Pg: A column vector with length equal to the number of generators and values indicating
the power outputs of each generator for the current turn. All generator outputs must be
either zero, indicating that the generator is shut down, or within the corresponding generator
limits (mpcs{currentTurn}.gen(:,PMAX) and mpcs{currentTurn}.gen(:,PMIN)).

2. Pd: A column vector with length equal to the number of buses indicating the load demands
at each bus for the current turn. All load demands must be between zero and the values of
the demands specified in mpcs{currentTurn}.bus(:,PD). Values of Pd that are less than
the power demands in mpcs{currentTurn}.bus(:,PD) correspond to load shedding.

3. crewAllocation: A column vector of length ncrew which indicates how your available crews
are allocated to maintain and repair the lines during the current turn. The entries must be
either zero, indicating that this crew is not allocated, or correspond to a valid line number.

The total power generation must equal the total power demand (sum(Pg) == sum(Pd)). At the
start of each turn, these vectors are initialized with zero values.

The GUI also includes a one-line diagram of the power system, as shown in Figure 2 and the
zoomed display in Figure 3. The one-line diagram indicates the buses via black dots and the
transmission lines via the black lines. Each bus is labeled with the bus name and the bus number
is shown in brackets. Each bus also shows the quantity of fulfilled power demand Pd and the total
power demand at that bus. (These values are equal if there is no load shedding.) If a bus has a
generator, then the power generation Pg is shown along with the upper and lower limits for the
output of that generator. Each line is labeled with a line number corresponding to the row of
this line in mpcs{i}.branch. For instance, the second line corresponds to mpcs{i}.branch(2,:).
Arrows show the direction of power flow on each line, and the quantities of the power flowing on
each line are given both in MW and as a percentage value in terms of the line’s flow limit (i.e., as
a fraction of the values in mpcs{i}.branch(:,RATE A)). Lines that have failed (out of service) are
shown in red along with the line status (i.e., a fractional value indicating how much repair work
is required to restore the line).4 The display also shows the number of crews assigned to each line
to perform maintenance or repair work (as appropriate given the line’s status).

4Recall from Section 2.3.4 that each line has a status value stored in mpcs{i}.branch(:,BR STATUS). Lines
with status less than 1 are failed (out of service). These lines can be repaired by assigning crews to them, with
each crew increasing a line’s status by the amount specified in opts.repairEffectiveness per turn.

9

Figure 2: GUI Visualizing the Simulation.

The typical Matlab figure tools allow you to zoom in, zoom out, and scroll on the one-line
diagram. In recent versions of Matlab, these tools can be accessed by hovering your cursor over
the figure and then clicking the icons that appear in the upper right corner.

2.7.2 Function-Based Interface

As an alternative to the GUI interface, you can interact with the simulation via user-defined
functions. This is useful for automatically performing many simulations to characterize the effec-
tiveness of a particular strategy without having to point and click through the GUI interface.

This function-based interface with the simulation is performed using the function

10

Figure 3: GUI Visualizing the Simulation (Zoomed).

[mpcs,Pd,mpcs specified,Pd specified,crewAllocation,ncrew,score]

= power system pandemic(function name,display results).
The first input to the function power system pandemic, function name, is a string containing

the name of a user-defined function that takes the inputs mpcs, ncrew, currentTurn, lastTurn
and provides the outputs Pg, Pd, crewAllocation, in this order.

These inputs and outputs are defined in Section 2.7.1 and correspond to the information
available to the user and expected by the simulation at each turn. In other words, you provide
a function (with named specified by the input function name to power system pandemic) that
performs whatever computations you want in order to obtain Pg, Pd, and crewAllocation for each
turn. Thus, any strategy that you can encode programmatically can be quickly tested by calling
power system pandemic. By calling power system pandemic multiple times, you can quickly
evaluate the performance of your strategy over many simulations.

The second input to power system pandemic, display results, is a Boolean flag indicating
whether the GUI should be displayed with the result of the simulation after the code terminates.

The outputs of power system pandemic give the final results of the simulation, including all
inputs specified (in mpcs specified, Pd specified, crewAllocation), the outputs produced (in
mpcs, Pd, ncrew) throughout the simulation, and the final score (in score).5

5Note that the power demands in Pd might not always match those specified in Pd specified if load must be
automatically shed to maintain power balance when cascading line failures result in an islanded power system.

11

3 Project Tasks and Deliverables

You are free to choose one of the two following tasks to complete for this project. This choice
will not affect your grade in the sense that high-quality work on the first task will be scored the
same as high-quality work on the second task. The first task asks you to make recommendations
for responding to a range of possible pandemic scenarios, while the second asks for a detailed
algorithm for one particular pandemic scenario.

3.1 Task 1: Parameter Sensitivity Analysis

If you choose this first task, you will take the role of a utility engineer asked to develop an operating
procedure report that will be used during future pandemics. This report will provide instructions
for operating, maintaining, and repairing the system during a range of pandemic scenarios. Your
goal is to provide the reader of this report with the knowledge needed to operate the system
reliably and inexpensively despite the challenges associated with future pandemics.

To develop this report, you will need to run multiple simulations in order to account for the
random aspects of the simulation related to the load demands, line failures, and crew quarantines.
Moreover, future pandemics might have a range of parameters (for instance, different levels of
contagiousness, time of occurrence, and duration) and the lines may have differing levels of failure
probabilities, repair speed, and maintenance effectiveness due to the amount of prior maintenance.
You will therefore need to also perform multiple simulations while varying the simulation param-
eters. (As a reminder, you can edit these parameters by changing the file setParameters.m.) In
other words, your report should provide a parameter sensitivity analysis for all parameters that
you think are relevant.

When developing your recommendations, you may want to consider questions such as:

• Which security constraints should be enforced (no contingencies, all N − 1 contingencies,
some N − k contingencies for k > 1, etc.)?

• Which values should be imposed for the line flow limits (exactly the values specified in
mpcs{currentTurn}.branch(:,RATE A) or some smaller or larger values)?

• How to allocate the crews to repair and maintain the lines?

• Should your approach change as the simulation proceeds?

You have two deliverables for this task:

1. A status update describing your progress on the project, due at the end of the day on
December 1, 2022.

2. A written final project report, due at the end of the final exam period (December 9, 2022
at 5:30 pm eastern time). Note: there is no final exam for this course.

Your status update should be a one-page or less document describing the work you have done
to date on your project. In this status update, you should also discuss the challenges or difficulties
that you have encountered and your plans for addressing these challenges in order to successfully

12

complete the project and final report by the deadline. This status update is worth 5% of your
project grade.

Your final project report should include:

• an appropriate title for the report,

• an executive summary that briefly summarizes the purpose of the report and provides your
key recommendations,

• an introduction discussing the impacts of pandemics on electric power grids,

• a summary of the pandemic simulation model described in Section 2 of this document,

• a description of your experimental setup indicating how you selected the parameters in the
simulation,

• the results of your analysis with recommendations for operating, maintaining, and repairing
the system as the parameters vary,

• any limitations or caveats associated with your analysis,

• a conclusion summarizing your report.

You can assume that the reader of your report has a basic knowledge of power systems oper-
ation and therefore understands terms like “DC power flow”, “security constraints”, and “unit
commitment”, but is not familiar with this simulation tool itself.

You can use any format for this report. You should follow professional writing practices, e.g.,
cite the sources you use for external information (any standard citation format is acceptable, but
be consistent in the citation format for all references), write clearly and concisely, organize your
report in an easy to follow manner with section headings, thoroughly proofread to eliminate typos
and grammatical errors, etc. You are encouraged to use clear and appropriate figures (graphs,
tables, decision diagrams, etc.) in your report to illustrate your technical approach and results.

3.2 Task 2: Operational Algorithm

If you choose this second task, you will take the role of a utility engineer responsible for responding
to an ongoing pandemic. In this task, you can assume that you know the parameters associated
with this particular pandemic (i.e., all the parameters in the file setParameters.m are fixed). Your
goal is to determine how to best operate, maintain, and repair the system during this pandemic by
developing an algorithm that computes the generator outputs, load shedding, and crew allocations.
This algorithm should interface with the simulation via the “function-based interface” described
in Section 2.7.2.

Your goal is to develop an algorithm that performs well, as judged by the score at the last turn,
for many simulations conducted using the same parameters. When developing your algorithm,
you may want to consider questions such as:

• Which security constraints should be enforced (no contingencies, all N − 1 contingencies,
some N − k contingencies for k > 1, etc.)?

13

• Which values should be imposed for the line flow limits (exactly the values specified in
mpcs{currentTurn}.branch(:,RATE A) or some smaller or larger values)?

• How to allocate the crews to repair and maintain the lines?

• Should your approach change as the simulation proceeds?

You are welcome to use any tools that you would like to develop and analyze your algorithm.
For instance, you could run many simulations to do statistical analyses of the performance achieved
by various algorithms or to train machine learning tools.

You have three deliverables for this task:

1. A status update describing your progress on the project, due at the end of the day on
December 1, 2022.

2. A written final project report, due at the end of the final exam period (December 9, 2022
at 5:30 pm eastern time). Note: there is no final exam for this course.

3. A copy of the code implementing your algorithm, due at the end of the final exam period.

Your status update should be a one-page or less document describing the work you have done
to date on your project. In this status update, you should also discuss the challenges or difficulties
that you have encountered and your plans for addressing these challenges in order to successfully
complete the project and final report by the deadline. This status update is worth 5% of your
project grade.

Your code should follow good programming practices, including adequate documentation with
comments in order to be readable by other programmers. Your code should run when called by
the function power system pandemic as described in Section 2.7.2.

Your final report should include:

• an appropriate title for the report,

• an executive summary that briefly summarizes your algorithm,

• an introduction discussing the impacts of pandemics on electric power grids,

• a summary of the pandemic simulation model described in Section 2 of this document,

• a detailed description of your algorithm,

• a discussion of your experimental setup indicating how your analyzed your algorithm,

• an analysis of your algorithm with comparisons to alternative approaches that you consid-
ered,

• a conclusion summarizing your report.

14

You can assume that the reader of your report has a basic knowledge of power systems oper-
ation and therefore understands terms like “DC power flow”, “security constraints”, and “unit
commitment”, but is not familiar with this simulation tool itself.

You can use any format for this report. You should follow professional writing practices, e.g.,
cite the sources you use for external information (any standard citation format is acceptable, but
be consistent in the citation format for all references), write clearly and concisely, organize your
report in an easy to follow manner with section headings, thoroughly proofread to eliminate typos
and grammatical errors, etc. You are encouraged to use clear and appropriate figures (graphs,
tables, decision diagrams, etc.) in your report to illustrate your technical approach and results.

3.3 Deadlines

Regardless of the task you select for your project, your project deliverables are due by the following
deadlines:

1. Project Status Report: End of the day on December 1, 2022.

2. Written Final Project Report (both tasks) and code (Task 2): End of the final exam period
(December 9, 2022 at 5:30 pm eastern time). There is no final exam for ECE 4320.

4 Grading Rubric

For either of the tasks, your deliverables will be graded according to the following rubric.

15

Exceeds Meets Does Not Meet
Expectations Expectations Expectations

Overall Technical Contribution (60%)
Technical
Approach
(30%)

Appropriate and reason-
able approach for solving
the technical problem.

Overall technical ap-
proach is reasonable but
has some minor flaws or
shortcomings.

Approach has serious
flaws or does not solve
the technical problem.

Quality
of Results
(20%)

Capabilities and advan-
tages/disadvantages of
the technical approach
are successfully and con-
vincingly demonstrated.

The technical approach
is demonstrated success-
fully, but has some minor
inadequacies or short-
coming.

Demonstrations of the
technical approach are
nonexistent or severely
lacking in appropriate-
ness.

Creativity
(10%)

Several aspects of the
technical approach are
performed with a high de-
gree of creativity.

The technical approach
has some moderately cre-
ative aspects.

The technical approach
lacks creativity.

Written Report (35%)
Structure
(5%)

All paragraphs are well-
organized. Section layout
is logical.

Paragraphs are usually
well-organized. Section
layout is logical.

Paragraphs are poorly or-
ganized. Section layout is
illogical.

Content
(15%)

Technical discussions are
clear and comprehensive.
Figures enhance the read-
ability of the report.

Technical discussions are
mostly clear. Figures
generally support the
project results.

Technical discussions
lack clarity.

Writing
Quality
(10%)

At most a few minor
grammatical issues or
word choice errors.

Sentences are generally
well-written. There are
a few incorrect word
choices or grammatical
errors that do not overly
distract from the report’s
legibility.

Sentences are poorly
written. There are nu-
merous incorrect word
choices and grammatical
errors. The report’s
legibility is significantly
flawed.

References
(5%)

Detailed references and
discussion explain the
technical content in
context of other work.
Citations use a consistent
format.

References adequately
provide context for the
project work. Citations
are generally consistent.

The report fails to cor-
rectly or adequately ref-
erence related work.

Project Status Update (5%)
Status
Update
(5%)

Update provided by
December 1st.

16

Appendix

GUI-Based Example

This appendix first provides an illustrative example of interacting with the simulation via the
GUI.

1 % Start the simulation with the GUI

2 ece4320;

3
4 % Define constants to help reference quantities in the Matpower format.

5 define_constants;

6
7 % Display the lines with the highest failure probability

8 sortrows ([(1:30).' mpcs{currentTurn }. failure_probability],2,'descend ')
9

10 ans =

11 28.0000 0.0658

12 25.0000 0.0469

13 24.0000 0.0101

14 18.0000 0.0097

15 27.0000 0.0094

16 2.0000 0.0078

17 26.0000 0.0075

18 7.0000 0.0073

19 8.0000 0.0069

20 30.0000 0.0062

21 21.0000 0.0061

22 9.0000 0.0056

23 12.0000 0.0055

24 23.0000 0.0049

25 19.0000 0.0048

26 17.0000 0.0047

27 14.0000 0.0044

28 10.0000 0.0042

29 11.0000 0.0040

30 1.0000 0.0039

31 20.0000 0.0037

32 3.0000 0.0036

33 22.0000 0.0036

34 15.0000 0.0035

35 29.0000 0.0034

36 16.0000 0.0032

37 6.0000 0.0024

38 13.0000 0.0023

39 5.0000 0.0022

40 4.0000 0.0021

41
42 % Assign crews to maintain the top two lines in terms of failure probability.

43 % Two crews assigned to the first , one crew assigned to the second.

44 crewAllocation (1) = 28; % Assign the first crew to line 28

45 crewAllocation (2) = 28; % Assign the second crew to line 28

46 crewAllocation (3) = 25; % Assign the third crew to line 25

47
48 % Run a security -constrained unit commitment to determine the generator

49 % outputs and any load shedding.

50 contingencies = eye (30 ,30); % Consider all single -line failure contingencies.

51 [sol] = rundcscuc(mpcs{currentTurn},contingencies);

52 printpf(sol); % Show the solution

53
54
55
56
57

17

58 Converged in 0.00 seconds

59 Objective Function Value = 23853.56 $/hr
60 ==

61 | System Summary |

62 ==

63
64 How many? How much? P (MW) Q (MVAr)

65 --------------------- ------------------- ------------- -----------------

66 Buses 20 Total Gen Capacity 7635.0 0.0 to 0.0

67 Generators 6 On-line Capacity 7635.0 0.0 to 0.0

68 Committed Gens 6 Generation (actual) 3491.1 0.0

69 Loads 20 Load 3491.1 0.0

70 Fixed 20 Fixed 3491.1 0.0

71 Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0

72 Shunts 0 Shunt (inj) -0.0 0.0

73 Branches 30 Losses (I^2 * Z) 0.00 0.00

74 Transformers 0 Branch Charging (inj) - 0.0

75 Inter -ties 0 Total Inter -tie Flow 0.0 0.0

76 Areas 1

77
78 Minimum Maximum

79 ------------------------- --------------------------------

80 Voltage Magnitude 1.000 p.u. @ bus 1 1.000 p.u. @ bus 1

81 Voltage Angle -13.60 deg @ bus 4 20.61 deg @ bus 11

82 Lambda P 0.00 $/MWh @ bus 1 0.00 $/MWh @ bus 1

83 Lambda Q 0.00 $/MWh @ bus 1 0.00 $/MWh @ bus 1

84
85 ==

86 | Bus Data |

87 ==

88 Bus Voltage Generation Load Lambda ($/MVA -hr)
89 # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) P Q

90 ----- ------- -------- -------- -------- -------- -------- ------- -------

91 1 1.000 9.193 456.18 0.00 94.20 0.00 0.000 -

92 2 1.000 -8.191 - - 80.40 0.00 0.000 -

93 3 1.000 -1.019 0.00 0.00 145.10 0.00 0.000 -

94 4 1.000 -13.600 - - 206.90 0.00 0.000 -

95 5 1.000 -13.372 - - 1477.50 0.00 0.000 -

96 6 1.000 0.000* 1125.00 0.00 225.70 0.00 0.000 -

97 7 1.000 -10.478 - - 66.80 0.00 0.000 -

98 8 1.000 -8.765 - - 308.30 0.00 0.000 -

99 9 1.000 14.321 783.25 0.00 28.60 0.00 0.000 -

100 10 1.000 -12.914 - - 71.30 0.00 0.000 -

101 11 1.000 20.613 666.67 0.00 174.20 0.00 0.000 -

102 12 1.000 10.668 - - 29.10 0.00 0.000 -

103 13 1.000 5.826 - - 48.80 0.00 0.000 -

104 14 1.000 10.105 - - 31.30 0.00 0.000 -

105 15 1.000 4.404 - - 34.00 0.00 0.000 -

106 16 1.000 11.438 460.00 0.00 302.60 0.00 0.000 -

107 17 1.000 2.667 - - 67.20 0.00 0.000 -

108 18 1.000 5.514 - - 13.30 0.00 0.000 -

109 19 1.000 9.210 - - 50.90 0.00 0.000 -

110 20 1.000 8.203 - - 34.90 0.00 0.000 -

111 -------- -------- -------- --------

112 Total: 3491.10 0.00 3491.10 0.00

113
114 ==

115 | Branch Data |

116 ==

117 Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z)

118 # Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)

119 ----- ----- ----- -------- -------- -------- -------- -------- --------

120 1 10 4 12.16 0.00 -12.16 0.00 0.000 0.00

121 2 5 10 -14.25 0.00 14.25 0.00 0.000 0.00

122 3 3 6 -79.46 0.00 79.46 0.00 0.000 0.00

123 4 6 2 178.11 0.00 -178.11 0.00 0.000 0.00

124 5 5 8 -121.80 0.00 121.80 0.00 0.000 0.00

18

125 6 6 5 641.73 0.00 -641.73 0.00 0.000 0.00

126 7 7 15 -248.43 0.00 248.43 0.00 0.000 0.00

127 8 5 17 -277.03 0.00 277.03 0.00 0.000 0.00

128 9 10 2 -97.71 0.00 97.71 0.00 0.000 0.00

129 10 8 9 -430.10 0.00 430.10 0.00 0.000 0.00

130 11 1 9 -76.51 0.00 76.51 0.00 0.000 0.00

131 12 7 4 181.63 0.00 -181.63 0.00 0.000 0.00

132 13 20 12 -16.30 0.00 16.30 0.00 0.000 0.00

133 14 20 13 28.96 0.00 -28.96 0.00 0.000 0.00

134 15 1 5 435.80 0.00 -435.80 0.00 0.000 0.00

135 16 11 18 252.49 0.00 -252.49 0.00 0.000 0.00

136 17 12 19 30.06 0.00 -30.06 0.00 0.000 0.00

137 18 9 15 172.59 0.00 -172.59 0.00 0.000 0.00

138 19 14 19 40.68 0.00 -40.68 0.00 0.000 0.00

139 20 16 15 109.83 0.00 -109.83 0.00 0.000 0.00

140 21 4 5 -13.11 0.00 13.11 0.00 0.000 0.00

141 22 19 13 19.84 0.00 -19.84 0.00 0.000 0.00

142 23 14 11 -151.26 0.00 151.26 0.00 0.000 0.00

143 24 17 3 65.64 0.00 -65.64 0.00 0.000 0.00

144 25 1 11 -88.72 0.00 88.72 0.00 0.000 0.00

145 26 14 18 79.29 0.00 -79.29 0.00 0.000 0.00

146 27 20 16 -47.57 0.00 47.57 0.00 0.000 0.00

147 28 9 12 75.46 0.00 -75.46 0.00 0.000 0.00

148 29 17 18 -318.47 0.00 318.47 0.00 0.000 0.00

149 30 1 17 91.40 0.00 -91.40 0.00 0.000 0.00

150 -------- --------

151 Total: 0.000 0.00

152
153 ==

154 | Generation Constraints |

155 ==

156 Gen Bus Active Power Limits

157 # # Pmin mu Pmin Pg Pmax Pmax mu

158 ---- ----- ------- -------- -------- -------- -------

159 2 3 0.000 560.00 - 1845.00 -

160 3 6 - 260.00 1125.00 1125.00 0.000

161 6 16 0.000 460.00 460.00 1215.00 -

162
163
164 % Show any load shedding

165 sortrows ([(1:20).' mpcs{currentTurn }.bus(:,PD)-sol.bus(:,PD)],2,'descend ')
166
167 ans =

168 2.0000 0.0000

169 19.0000 0.0000

170 1.0000 0

171 3.0000 0

172 4.0000 0

173 5.0000 0

174 6.0000 0

175 7.0000 0

176 8.0000 0

177 9.0000 0

178 10.0000 0

179 11.0000 0

180 13.0000 0

181 14.0000 0

182 15.0000 0

183 16.0000 0

184 17.0000 0

185 18.0000 0

186 20.0000 0

187 12.0000 -0.0000

188
189 % Observe that the solution does not have any load shedding (all values equal to zero above).

190
191

19

192 % Assign the solution from the security -constrained unit commitment to the appropriate variables

193 Pg = sol.gen(:,PG);

194 Pd = sol.bus(:,PD);

195
196 % Clicking the Take Next Turn button in the GUI results in the following output.

197 % This output corresponds to what actually happened on the simulation for this turn.

198 % At the bottom of this output , we see that there is no load shedding , so the total

199 % cost is just the generation cost. We also see that the line maintenance has reduced

200 % the failure probabilities at the lines where we allocated our crews earlier.

201 % More generally , we would also see updates on line failures , line repairs , and crews

202 % that are quarantined , when applicable.

203 Update for Turn 1:

204 Converged in 0.00 seconds

205 Objective Function Value = 23853.56 $/hr
206 ==

207 | System Summary |

208 ==

209
210 How many? How much? P (MW) Q (MVAr)

211 --------------------- ------------------- ------------- -----------------

212 Buses 20 Total Gen Capacity 7635.0 0.0 to 0.0

213 Generators 6 On-line Capacity 7635.0 0.0 to 0.0

214 Committed Gens 6 Generation (actual) 3491.1 0.0

215 Loads 20 Load 3491.1 0.0

216 Fixed 20 Fixed 3491.1 0.0

217 Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0

218 Shunts 0 Shunt (inj) -0.0 0.0

219 Branches 30 Losses (I^2 * Z) 0.00 0.00

220 Transformers 0 Branch Charging (inj) - 0.0

221 Inter -ties 0 Total Inter -tie Flow 0.0 0.0

222 Areas 1

223
224 Minimum Maximum

225 ------------------------- --------------------------------

226 Voltage Magnitude 1.000 p.u. @ bus 1 1.000 p.u. @ bus 1

227 Voltage Angle -13.60 deg @ bus 4 20.61 deg @ bus 11

228 Lambda P 0.00 $/MWh @ bus 1 0.00 $/MWh @ bus 1

229 Lambda Q 0.00 $/MWh @ bus 1 0.00 $/MWh @ bus 1

230
231 ==

232 | Bus Data |

233 ==

234 Bus Voltage Generation Load Lambda ($/MVA -hr)
235 # Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr) P Q

236 ----- ------- -------- -------- -------- -------- -------- ------- -------

237 1 1.000 9.193 456.18 0.00 94.20 0.00 0.000 -

238 2 1.000 -8.191 - - 80.40 0.00 0.000 -

239 3 1.000 -1.019 0.00 0.00 145.10 0.00 0.000 -

240 4 1.000 -13.600 - - 206.90 0.00 0.000 -

241 5 1.000 -13.372 - - 1477.50 0.00 0.000 -

242 6 1.000 0.000* 1125.00 0.00 225.70 0.00 0.000 -

243 7 1.000 -10.478 - - 66.80 0.00 0.000 -

244 8 1.000 -8.765 - - 308.30 0.00 0.000 -

245 9 1.000 14.321 783.25 0.00 28.60 0.00 0.000 -

246 10 1.000 -12.914 - - 71.30 0.00 0.000 -

247 11 1.000 20.613 666.67 0.00 174.20 0.00 0.000 -

248 12 1.000 10.668 - - 29.10 0.00 0.000 -

249 13 1.000 5.826 - - 48.80 0.00 0.000 -

250 14 1.000 10.105 - - 31.30 0.00 0.000 -

251 15 1.000 4.404 - - 34.00 0.00 0.000 -

252 16 1.000 11.438 460.00 0.00 302.60 0.00 0.000 -

253 17 1.000 2.667 - - 67.20 0.00 0.000 -

254 18 1.000 5.514 - - 13.30 0.00 0.000 -

255 19 1.000 9.210 - - 50.90 0.00 0.000 -

256 20 1.000 8.203 - - 34.90 0.00 0.000 -

257 -------- -------- -------- --------

258 Total: 3491.10 0.00 3491.10 0.00

20

259
260 ==

261 | Branch Data |

262 ==

263 Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z)

264 # Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)

265 ----- ----- ----- -------- -------- -------- -------- -------- --------

266 1 10 4 12.16 0.00 -12.16 0.00 0.000 0.00

267 2 5 10 -14.25 0.00 14.25 0.00 0.000 0.00

268 3 3 6 -79.46 0.00 79.46 0.00 0.000 0.00

269 4 6 2 178.11 0.00 -178.11 0.00 0.000 0.00

270 5 5 8 -121.80 0.00 121.80 0.00 0.000 0.00

271 6 6 5 641.73 0.00 -641.73 0.00 0.000 0.00

272 7 7 15 -248.43 0.00 248.43 0.00 0.000 0.00

273 8 5 17 -277.03 0.00 277.03 0.00 0.000 0.00

274 9 10 2 -97.71 0.00 97.71 0.00 0.000 0.00

275 10 8 9 -430.10 0.00 430.10 0.00 0.000 0.00

276 11 1 9 -76.51 0.00 76.51 0.00 0.000 0.00

277 12 7 4 181.63 0.00 -181.63 0.00 0.000 0.00

278 13 20 12 -16.30 0.00 16.30 0.00 0.000 0.00

279 14 20 13 28.96 0.00 -28.96 0.00 0.000 0.00

280 15 1 5 435.80 0.00 -435.80 0.00 0.000 0.00

281 16 11 18 252.49 0.00 -252.49 0.00 0.000 0.00

282 17 12 19 30.06 0.00 -30.06 0.00 0.000 0.00

283 18 9 15 172.59 0.00 -172.59 0.00 0.000 0.00

284 19 14 19 40.68 0.00 -40.68 0.00 0.000 0.00

285 20 16 15 109.83 0.00 -109.83 0.00 0.000 0.00

286 21 4 5 -13.11 0.00 13.11 0.00 0.000 0.00

287 22 19 13 19.84 0.00 -19.84 0.00 0.000 0.00

288 23 14 11 -151.26 0.00 151.26 0.00 0.000 0.00

289 24 17 3 65.64 0.00 -65.64 0.00 0.000 0.00

290 25 1 11 -88.72 0.00 88.72 0.00 0.000 0.00

291 26 14 18 79.29 0.00 -79.29 0.00 0.000 0.00

292 27 20 16 -47.57 0.00 47.57 0.00 0.000 0.00

293 28 9 12 75.46 0.00 -75.46 0.00 0.000 0.00

294 29 17 18 -318.47 0.00 318.47 0.00 0.000 0.00

295 30 1 17 91.40 0.00 -91.40 0.00 0.000 0.00

296 -------- --------

297 Total: 0.000 0.00

298
299 ==

300 | Generation Constraints |

301 ==

302 Gen Bus Active Power Limits

303 # # Pmin mu Pmin Pg Pmax Pmax mu

304 ---- ----- ------- -------- -------- -------- -------

305 2 3 0.000 560.00 - 1845.00 -

306 3 6 - 260.00 1125.00 1125.00 0.000

307 6 16 0.000 460.00 460.00 1215.00 -

308
309 Generation cost: $23854
310 Load shed penalty: $0
311 Total cost: $23854
312
313 Maintenance: Updated Failure Probability

314 Line F_BUS T_BUS Previous New

315 28 9 12 0.066 0.013

316
317 % Future steps are conducted in a similar manner.

Function-Based Example

This appendix next provides an illustrative example of interacting with the simulation via the
function-based interface. We will base this example on a function called benchmark approach

21

that takes four arguments, mpcs, ncrew, currentTurn, and lastTurn, and has three outputs, Pg,
Pd, crewAllocation. This function is provided below.

1 function [Pg,Pd,crewAllocation] = benchmark_approach(mpcs ,ncrew ,currentTurn ,lastTurn)

2 % Solve a security -constrained unit commitment at every turn.

3 % Randomly choose which lines to repair and maintain , weighted by their

4 % outage statuses and failure probabilities.

5
6 %% Set some useful constants

7 define_constants;

8 nbus = size(mpcs {1}.bus ,1);

9 ngen = size(mpcs {1}.gen ,1);

10 nbranch = size(mpcs {1}. branch ,1);

11
12 %% For reference , load in the parameters that control the simulation

13 [opts , ~, ~] = setParameters;

14
15 % Controls what fraction of an outaged line is repaired every turn

16 repairEffectiveness = opts.repairEffectiveness;

17
18 %% Formulate the set of contingencies to consider

19 % Don 't consider any contingencies (N-0 security):

20 %%%

21 % contingencies = [];

22 %%%

23
24 % Consider contingencies consisting of the individual failures for each

25 % line (N-1 security):

26 %%%

27 contingencies = eye(nbranch ,nbranch);

28 %%%

29
30 % Consider contingencies consisting of the individual failures for each

31 % pair of lines (N-2 security):

32 %%%

33 % branch_pairs = nchoosek (1: nbranch ,2);

34 % contingencies = zeros(nbranch ,size(branch_pairs ,1));

35 % contingencies(sub2ind(size(contingencies),branch_pairs (:,1) ,(1:size(branch_pairs ,1)).')) = 1;

36 % contingencies(sub2ind(size(contingencies),branch_pairs (:,2) ,(1:size(branch_pairs ,1)).')) = 1;

37 % contingencies = [eye(nbranch ,nbranch) contingencies]; % Include all N-1 and N-2 contingencies.

38 %%%

39
40 %% Solve a security -constrained unit commitment and prepare the result for output

41 [sol] = rundcscuc(mpcs{currentTurn},contingencies);

42 Pg = sol.gen(:,PG);

43 Pd = sol.bus(:,PD);

44
45 %% Determine the repair crew allocations according to a simple rule

46 % Simple rule for repair crews: Allocate crews randomly to each outaged

47 % line , weighted by how close they are to being repaired.

48 crewAllocation = zeros(ncrew ,1);

49 outaged_lines = find(mpcs{currentTurn }. branch(:,BR_STATUS) ~= 1);

50
51 % Randomly order outaged lines , weighted by their outage status such that

52 % lines which are nearly repaired are assigned crews first.

53 weighted_status=mpcs{currentTurn }. branch(outaged_lines ,BR_STATUS).*rand(length(outaged_lines) ,1);

54 [~,order] = sort(weighted_status ,'descend ');
55 ordered_outaged_lines = outaged_lines(order);

56
57
58 % Allocate crews to repair lines. Attempt to have a sufficient number of

59 % crew allocated to repair a line in one turn.

60 crewIdx = 1;

61 for lineIdx = 1: length(ordered_outaged_lines)

62 if sum(crewAllocation ~= 0) < ncrew

63 % Get the line 's status

22

64 lineStatus = mpcs{currentTurn }. branch(ordered_outaged_lines(lineIdx),BR_STATUS);

65
66 % Compute how many crews are needed to repair this line in one turn.

67 ncrewRequired = ceil((1- lineStatus) / repairEffectiveness);

68
69 % How many of the available crews aren 't yet allocated?

70 ncrewAvailable = ncrew - sum(crewAllocation ~= 0);

71
72 % Allocate up to this number of crews.

73 crewsToAllocate = min(ncrewRequired ,ncrewAvailable);

74 crewAllocation(crewIdx:crewIdx + crewsToAllocate - 1) = ordered_outaged_lines(lineIdx);

75
76 % Increment the number of crews allocated

77 crewIdx = crewIdx + crewsToAllocate;

78 else

79 break;

80 end

81 end

82
83 %% Allocate the remaining crews to do maintenance according to a simple rule

84 % Simple rule: Have remaining crews perform maintenance , one crew per line ,

85 % in a randomly selected order that is weighted by failure probabilities.

86
87 % Get the indices of the lines in order of decreasing failure probability

88 failure_probability = mpcs{currentTurn }. failure_probability;

89 [~, failure_sort] = sort(failure_probability ,'descend ');
90
91 for i=1: nbranch

92 if sum(crewAllocation ~= 0) < ncrew

93 crewAllocation(crewIdx) = failure_sort(i);

94 crewIdx = crewIdx + 1;

95 else

96 break;

97 end

98 end

To evaluate this function in the simulation, call the function power system pandemic with the
first argument specifying the name of your function (in this case, the function benchmark approach

defined above). This will run the simulation based on the function you provided and display the
resulting solution in both the command window and the GUI. To prevent the code from showing
the GUI window, set the second argument, display gui, to false.

1 display_gui = false;

2 [mpcs ,Pd ,mpcs_specified ,Pd_specified ,crewAllocation ,ncrew ,score] ...

3 = power_system_pandemic('benchmark_approach ',display_gui);

23

	Introduction
	Simulation
	Dependencies and Installation
	Dataset
	Power System Model
	Power Flow Model
	Time-Varying Load Demands
	Generator Model
	Line Failure Model
	Maintenance Model
	Repair Model

	Quarantine Model
	Scoring Methodology
	Computational Tools
	DC Power Flow
	DC Security-Constrained Unit Commitment

	User Interface
	GUI-Based Interface
	Function-Based Interface

	Project Tasks and Deliverables
	Task 1: Parameter Sensitivity Analysis
	Task 2: Operational Algorithm
	Deadlines

	Grading Rubric

