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Abstract—Distributed algorithms provide attractive features 

for solving Optimal Power Flow (OPF) problems in interconnected 

power systems compared to traditional centralized algorithms. 

Distributed algorithms help to maintain the control autonomy and 

data privacy of subsystems, which is particularly relevant in com-

petitive markets and practical control system implementations. 

This paper analyzes a distributed optimization algorithm known 

as the “Auxiliary Principle Problem” to solve multiperiod distrib-

uted DCOPF problems with distributed energy resources includ-

ing energy storage systems. The proposed approach enables mul-

tiple interconnected systems with their own sub-objectives to share 

their resources and to participate in an electricity market without 

implicitly sharing information about their local generators or in-

ternal network parameters. The paper also shows how the pro-

posed approach can enable future microgrids to coordinate their 

operation, reduce the total operational cost, and avoid internal 

constraint violations caused by unscheduled flows (USF) while 

maintaining the subsystems’ autonomy. We use an 11-bus test sys-

tem consisting of two interconnected subsystems to evaluate the 

proposed approach and analyze the impact of USF.  
 

Index Terms— Aggregated microgrids, DCOPF, distributed op-

timization, unscheduled flow. 

I. INTRODUCTION 

A. Motivation 

PTIMAL power flow (OPF) is one of the fundamental 

problems in power systems with a wide variety of appli-

cations in security assessment, market operations, and long-

term planning. The OPF problem aims to find the optimal op-

erating setpoints for generating units and other controls in a 

power system. Common objectives of the OPF problem include 

minimizing the generation cost, the total power losses, and the 

voltage deviations from nominal values [1]. Many solution al-

gorithms and methodologies have been proposed since the OPF 

problem was introduced in 1962 [2]. The deployment of distrib-

uted energy resources (DERs) such as distributed generation, 

energy storage systems (ESS), and controllable loads pose sig-

nificant challenges to the OPF problem in terms of scalability, 

information exchange, and system complexity [3-4].  

Conventionally, the OPF problem is solved in a centralized 

manner, where the computation is done by a grid operator who 

has access to a detailed network model, receives information 

about the system state in real-time, runs the optimization, and 

returns the optimal setpoints to the controllable resources. The 

recent emergence of microgrids as independent subsystems that 

operate their local DERs and interact with the larger power sys-

tem increases the difficulty of solving the OPF problem [5-6]. 

The active behavior of the DERs can introduce power injection 

variability that challenges the grid operator’s ability to accu-

rately model the system and determine appropriate setpoints. 

The grid operator has limited visibility regarding the locations, 

statuses, and outputs of DERs and the internal networks of 

small independent systems with behind-the-meter DERs [7-8], 

making it difficult to ensure satisfaction of network constraints 

within these subsystems. 

B. Unscheduled Flow 

Growing quantities of independently operated subsystems 

could compromise system reliability due to unscheduled flows 

(USF), i.e., loop flows [9]. USF is defined as the mismatch be-

tween the actual and scheduled power flows. The actual power 

flow is governed by the network topology characterized by the 

lowest impedance path, while the scheduled flow is determined 

by a market clearing procedure. USF is a widely studied prob-

lem in both academia and industry, particularly with respect to 

the shared use of transmission infrastructure [9-12]. Problems 

resulting from USF have been also attributed to major blackouts 

and equipment damage [10-11].  

USF is expected to occur more frequently in deregulated 

markets [12]. Researchers have recently proposed new concepts 

such as peer-to-peer (P2P) markets in order to enable mi-

crogrids to directly share their resources with other microgrids 

[13]. Interconnected microgrids with high DERs penetration ca-

pable of participating in P2P energy trading might compromise 

system reliability due to constraint violations from USF. Coor-

dinating the microgrids using a centralized controller avoids 

problems associated with USF. However, this requires sharing 

the microgrids’ internal network details and local generation 

costs with the centralized controller, which raises concerns re-

garding data privacy. These challenges motivate the use of dis-

tributed optimization algorithms. 

C. Distributed Optimal Power Flow  

Distributed optimization algorithms have the potential to ad-

dress important challenges in future power systems. A survey 

of different applications of distributed algorithms in power sys-

tems including OPF is provided in [14]. In distributed ap-

proaches, the OPF problem is segmented into smaller independ-

ent subproblems. Each subproblem represents a subsystem, 

e.g., a microgrid, that can be controlled and operated by a local 

controller. Each local controller solves the subproblem and 

shares the results with other subsystems. An iterative process is 

then implemented between the subsystems to achieve the opti-

mal solution without sharing the generation cost information.  

Fully distributed OPF solution approaches have many poten-

tial advantages over centralized approaches including 
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(a) providing scalable computation as long as the coupling be-

tween the subsystems is sparse [15], (b) allowing parallel com-

putation as each subsystem solves the associated subproblem 

independently, (c) limiting the amount of shared data, providing 

the possibility for increased privacy, (d) reducing the commu-

nication infrastructure requirements since each subsystem only 

needs to communicate with neighboring subsystems, (e) in-

creasing robustness against a single point of failure, and (f) 

providing modularity and flexibility to cope with the frequent 

changes in the subsystems. 

D. Literature Review 

The advantages of distributed optimization in solving the 

OPF motivate research into different distributed algorithms, 

e.g., Alternating Direction Method of Multipliers (ADMM) 

[15-16], Auxiliary Principle Problem (APP) [17-18], and Ana-

lytical Target Cascading (ATC) [19]. Numerical comparisons 

among different distributed algorithms are provided in [20-21]. 

Notably, the distributed OPF methods in [14-21] do not con-

sider time-variant models to solve multiperiod OPF. To model 

time-varying DERs such as Energy Storage Systems (ESS), an 

extension to the distributed OPF problem is necessary.  

Zhu et al. [22] proposed a multiperiod OPF formulation con-

sidering a configuration of meshed microgrids connected radi-

ally to the main grid with a three-phase unbalanced network. 

Distributed algorithms have been applied with convex relaxa-

tion methods for multiperiod OPF problems. A multiperiod 

OPF formulation is proposed in [23] using the branch flow 

model for radial networks. The authors of [23] also consider a 

three-phase unbalanced network and use ADMM to solve the 

ACOPF problem. In [24], an SDP relaxation is iteratively 

solved using ADMM. While the global optimality guarantees 

for convex relaxation methods are limited to radial networks 

that satisfy additional technical conditions [25-26], these relax-

ation approaches still produce approximate solutions even when 

not exact. The models proposed to solve the multiperiod prob-

lems are either radially or semi-radially connected microgrids, 

i.e., the subsystems themselves are not directly interconnected. 

In [27], a multiperiod DCOPF problem considering carbon 

emission trading is solved using an ADMM-based distributed 

algorithm for interconnected subsystems. An ADMM-based 

distributed algorithm is proposed in [28] to solve the ACOPF 

problem considering demand response and discrete variables 

for real-time pricing applications. The convergence of different 

OPF formulations is compared with and without the discrete 

variables. The study shows that a quadratic ACOPF using con-

vex relaxation formulations as proposed in [5] is the fastest in 

many cases; however, this distributed algorithm is only guaran-

teed to converge for a convex problem, which is not the case for 

ACOPF problems. The same algorithm also shows stable con-

vergence for the DCOPF problem. 

The interest in using distributed algorithms to solve the OPF 

problem has been increasing in recent years, motivated by the 

promising features desired for future power systems. Nonethe-

less, there are potential advantages and unexpected disad-

vantages that have not been explored when considering practi-

cal implementations of distributed algorithms. 

E. Contribution 

This paper explores the application of the APP algorithm to 

multiperiod DCOPF problems. The APP algorithm enables a 

fully distributed approach that permits co-optimizing multiple 

microgrids/subsystems while respecting their internal con-

straints. Using a small test system as a proof of concept, we 

show the APP algorithm’s ability to coordinate an electricity 

market in a distributed fashion while avoiding internal con-

straint violations that might arise due to USF. 

F. Paper Organization 

This paper is organized as follows. Section II formulates the 

centralized multiperiod DCOPF problem. Section III introduces 

the distributed multiperiod DCOPF problem based on the APP 

formulation. Section IV demonstrates the USF impacts and dis-

cusses the distributed OPF implementation. Finally, Section V 

concludes the paper and presents future work. 

II. CENTRALIZED DC OPTIMAL POWER FLOW 

The OPF problem considered in this paper minimizes the to-

tal generation cost for multiple interconnected subsystems that 

are connected to the main grid at the point of common coupling 

(PCC). We use a multi-period formulation appropriate for ESS. 

The optimization variables are the power flow from/to the grid, 

the active power generation, and the voltage angles. The solu-

tion must satisfy engineering constraints including active power 

generation, ramp rate, and line flow limits. The DC approxima-

tion of the power flow used in this paper is shown in (1) [29]. 

min
(𝑝𝑖,𝜃𝑖)

∑ ∑ 𝑓𝑎(𝑝𝑎,𝑡) − 𝜋𝑡  𝑝𝑃𝐶𝐶,𝑡𝑎 ∈ 𝒢𝑡 ∈ 𝑇                 (1.1) 

  subject to: 

𝑝𝑖,𝑡 − 𝑝𝑖,𝑡
𝑆𝐶 + 𝑝𝑖,𝑡

𝑆𝐷 − 𝑃𝑖,𝑡
𝑑 = ∑ 𝐵𝑖𝑗(𝜃𝑖,𝑡 − 𝜃𝑗,𝑡)(𝑖,𝑗)∈ℒ         (1.2) 

𝐸𝑏,𝑡 − 𝐸𝑏,𝑡−1 − 𝜂 𝑝𝑏,𝑡
𝑆𝐶 +

1

𝜂
 𝑝𝑏,𝑡

𝑆𝐷 = 0         (1.3) 

𝑃𝑎
𝑚𝑖𝑛 ≤ 𝑝𝑎,𝑡 ≤ 𝑃𝑎

𝑚𝑎𝑥                   (1.4) 

𝑃𝑏
𝑆𝐶 𝑚𝑖𝑛 ≤ 𝑝𝑏,𝑡

𝑆𝐶 ≤ 𝑃𝑏
𝑆𝐶 𝑚𝑎𝑥                 (1.5) 

𝑃𝑏
𝑆𝐷 𝑚𝑖𝑛 ≤ 𝑝𝑏,𝑡

𝑆𝐷 ≤ 𝑃𝑏
𝑆𝐷 𝑚𝑎𝑥                 (1.6) 

−𝑃𝑖𝑗
𝑚𝑎𝑥 ≤ 𝐵𝑖𝑗(𝜃𝑖,𝑡 − 𝜃𝑗,𝑡) ≤ 𝑃𝑖𝑗

𝑚𝑎𝑥         (1.7) 

−𝑅𝑎
𝑑𝑜𝑤𝑛  ≤ 𝑝𝑎,𝑡−1 − 𝑝𝑎,𝑡 ≤ 𝑅𝑎

𝑢𝑝
          (1.8) 

𝜃𝑡
𝑟𝑒𝑓

= 0                    (1.9) 

  ∀ 𝑖 ∈ 𝒩, 𝑎 ∈ 𝒢, 𝑏 ∈  ℬ, (𝑖, 𝑗) ∈ ℒ, 𝑡 ∈  𝑇 

where 𝜋 is the price of active power from the main grid at the 

PCC. The decision variables are the generator active power out-

put 𝑝, the ESS’s charging and discharging power 𝑝𝑆𝐶  and 𝑝𝑆𝐷, 

and the voltage angles 𝜃. The sets 𝒩, 𝒢, ℒ, and ℬ, respectively, 

correspond to the system buses, generators, lines, and ESS. 

𝑇 denotes the time horizon over which the optimization is per-

formed. 𝑃𝑑 is the power demand, and 𝐸 is the energy state and 

𝜂 is the efficiency of the ESS. 𝑃𝑚𝑎𝑥  and 𝑃𝑚𝑖𝑛  are the upper and 

lower bounds on the power outputs of the generators and ESSs. 

𝑃𝑖𝑗  is the line flow from bus 𝑖  to bus 𝑗 . 𝑃𝑖𝑗
𝑚𝑎𝑥  is the upper 

bounds on the power flow from bus 𝑖 to bus 𝑗, and 𝐵𝑖𝑗  is the 

(𝑖, 𝑗) entry of the susceptance matrix as defined in [29]. 𝑅𝑢𝑝 

and 𝑅𝑑𝑜𝑤𝑛 are the generators’ ramp up and ramp down rates. 

(1.2) – (1.8) are the equality and inequality constraints of the 

DCOPF. (1.2) is the DC approximation of the power flow, and 

(1.3) is the energy balance of ESS. (1.4) – (1.8) are the engi-

neering constraints, while (1.9) sets the reference angle. In this 

formulation, the PCC is represented as a bus with a connected 

generator that can produce or absorb active power to model im-

porting and exporting power from the main grid. 
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III. DISTRIBUTED DC OPTIMAL POWER FLOW 

We use APP, the distributed optimization algorithm pro-

posed in [17], with an extension to incorporate a linear ESS dy-

namic model. The APP algorithm requires decomposing the 

problem into smaller subproblems with shared variables and 

coupling constraints. Each subproblem is associated with a sub-

system, and the tie-lines between subsystems model the cou-

pling constraints. In the DCOPF case, the subsystems share the 

voltage angles of the tie-line terminals with the neighboring 

subsystems. We introduce dummy variables 𝜃′ to replicate the 

shared variables 𝜃. Fig. 1 illustrates the shared variables before 

(a) and after (b) introducing the dummy variables between two 

subsystems. We use consistency constraints to bind the dummy 

variables 𝜃′ with the respective shared variables. We then relax 

the consistency constraints using augmented Lagrangian relax-

ation to eliminate the coupling between the subsystems’ inter-

nal constraints while assuming the dummy variables are con-

stants.  

 

   
 

 
Fig 1. (a) An example of two subsystems connected through tie-line between 
bus a and b. (b) Dummy variables that duplicate the shared variables for this 

example. 

 

Let 𝒩𝑚 and ℒ𝑚 define the sets of buses and lines at subsys-

tem 𝑚 ∈ ℳ, where ℳ denotes the set of subsystems. Let 𝒢𝑚 

and ℬ𝑚 denote the sets of generators and ESSs at subsystem 𝑚. 

The tie-lines between any local bus and a neighboring bus are 

denoted by the set ℒ𝑚
𝑠 , while the terminal busses of the tie-lines 

are denoted by the set 𝒩𝑚
𝑠 . Using the formulation of the APP 

proposed in [17], the optimal solution of problem (1) is found 

by solving a sequence of subproblems. At each iteration, all of 

the subproblems are solved at the same time by local control-

lers. The result of each subproblem is then shared with the 

neighboring subsystems. Afterwards, each subsystem solves 

the local subproblem again using the newly shared information 

to evaluate the dummy variables. The process is repeated until 

the stopping criterion is met. The subproblem for subsystem 𝑚 

at iteration 𝑘 + 1 is shown in (2). 

min
(𝑝𝑎,𝑡

𝑘+1,𝜃𝑖,𝑡
𝑘+1)

𝑐 + 𝜉𝑝 + 𝜉𝑐                          (2) 

𝑐 = ∑ ∑ 𝑓𝑎(𝑝𝑎,𝑡)𝑎 ∈ 𝒢𝑚
− 𝜋𝑡  𝑝𝑃𝐶𝐶,𝑡𝑡 ∈ 𝑇            (2.1) 

𝜉𝑝 = ∑ ∑
𝛽

2
 ‖𝜃𝑖,𝑡

𝑘+1 − �̂�𝑖,𝑡
𝑘 ‖

2
 𝑖 ∈𝒩𝑚

𝑠𝑡 ∈ 𝑇              (2.2) 

𝜉𝑐 = ∑ ∑ (𝛾𝜃𝑖,𝑡
𝑘+1 (�̂�𝑖,𝑡

𝑘 − �̂�′
𝑖,𝑡
𝑘

) + 𝜆𝑖,𝑡
𝑘  𝜃𝑖,𝑡

𝑘+1)𝑖 ∈𝒩𝑚
𝑠𝑡 ∈ 𝑇       (2.3) 

subject to:  

DCOPF Constraints (1.2) – (1.9) 

where c is the operational cost, 𝜉𝑝is a penalty term for the de-

viation from the solution of the previous iteration, and 𝜉𝑐 is an-

other penalty term for mismatches of the relaxed consistency 

constraints. The notation || . || indicates the L2 norm. 𝛽 and 𝛾  

are parameters whose values are discussed in Section IV-B. The 

hat superscript in (2) indicates known variables. 𝜆 is the La-

grange multiplier of the consistency constraints. At each itera-

tion, the Lagrange multipliers are updated as: 

𝜆𝑖
𝑘+1 =  𝜆𝑖

𝑘 + 𝛼 (�̂�𝑖
𝑘+1 − �̂�′

𝑖
𝑘+1

)                      (3) 

where 𝛼 is a parameter. The solution method is shown in Algo-

rithm 1. We used bold letters to indicate vectors. The optimal 

solution is obtained by iteratively solving the subproblems (2), 

sharing the optimal solutions between the subsystems, and up-

dating the Lagrange multipliers according to (3). Observe that 

the parameters appearing in (2.1), the cost function parameters, 

and (2.2), the parameter 𝛽, are fixed throughout the iterations, 

while (2.3) is not, as it contains the Lagrange multipliers up-

dates 𝜆. Conceptually, 𝜆 indicates how the subsystems value 

the power at the tie-line based on the shared information. As the 

iterations proceed and 𝜆 is updated, the value of importing/ex-

porting power changes accordingly. The process continues until 

either consistency is achieved, i.e., the maximum mismatch is 

less than a predefined tolerance value 𝜀, or the maximum num-

ber of iterations 𝑘𝑚𝑎𝑥  is reached. Achieving consistency can be 

interpreted as the subsystems agreeing on the value of the La-

grange multiplier 𝜆. The algorithm is proven to converge to the 

optimal solution of the original problem if all the subproblems 

are convex and differentiable, which is the case with the 

DCOPF problem [30-31]. 

ALGORITHM 1: DC-OPF USING APP 

1: Initialize 𝜽, 𝒑, 𝝀, 𝛼, 𝛽, 𝛾, 𝑘𝑚𝑎𝑥 , 𝜀, and set 𝑘 = 1 

2: while ‖𝜽𝑘+1 − 𝜽′ 𝑘+1
‖

∞
 > 𝜀  and  𝑘 <  𝑘𝑚𝑎𝑥  do  

3: Solve (2) ∀ 𝑚 ∈ ℳ (in parallel) 

4: Share 𝜃𝑖 , ∀𝑖 ∈ 𝒩𝑚
𝑠 , 𝑚 ∈ ℳwith neighbors 

5: Update 𝝀 using (3) 

6: 𝑘 = 𝑘 + 1 

7: end while 

IV. RESULTS AND DISCUSSION 

A. Test Case and Simulation Setup 

The system we study in this paper consists of two intercon-

nected subsystems adapted from the test case “WB5” in [32] as 

shown in Fig. 2. The ratings in Fig. 2 are in per unit with a base 

power of 100 MVA. The first digit of the bus names indicates 

the subsystem number, while the second digit is the bus num-

ber. We introduce an infinite bus representing the PCC that is 

connected to the buses 11 and 21 thorough lines L1 and L2, and 

a tie-line L3 connecting the two subsystems between the buses 

13 and 22. We place two local generators with 100 MW and 

250 MW power capacity at bus 5 of both subsystems. The gen-

eration cost is $30.90/MWh for 𝑃𝐺15  and $19.00/MWh for 

𝑃𝐺25. Subsystem 2 has a 250 MW peak solar generator at bus 

24. Two ESSs with 50 MW/100 MWh and 100 MW/200 MWh 

are placed at bus 4 in each subsystem. The ESS’s efficiency is 

95%. The internal lines’ flow limit is 200 MW, and the lines 

from the subsystems to the PCC have a 300 MW limit. 

(a) 

(b) 



 4 

We solve the DCOPF problem with 24 hours time horizon 

and 1-hour time resolution. We use data obtained from [33] 

with random perturbations for the hourly demands. We also use 

price signal data obtained from [34] and one day of PV power 

output from NREL [35]. The data used in the test case are 

shown in Fig. 3. We assume that energy is purchased and sold 

at the same price and the subsystems are price takers. The im-

plementation uses MATLAB 2020a and CPLEX solver 12.10 

on a personal computer with a 2.8 GHz Quad-Core Intel Core 

i7 CPU and 16GB of RAM.  

 

 

Fig 2. Modified five-bus system from [34] with impedances and peak powers 

in per unit with base power of 100 MVA. 

 

Fig 3. Case study datasets (a) normalized demand data, (b) normalized solar 

energy output power, and (c) the price signal.  

B. Unscheduled Flow Evaluation 

To demonstrate the USF, we first consider independent op-

eration of the two subsystems. In this case, each subsystem in-

dependently solves a DCOPF problem. With the optimal con-

trol setpoints obtained from each subsystem, we used a DC 

power flow to calculate the actual flow. Fig. 4 shows the maxi-

mum daily power flows on each transmission line. If the two 

systems operate according to this schedule, the flows on the tie-

line L3 and the internal line L12 in subsystem 2 violate the line 

flow limits by 1.5% (3 MW) and 15% (30 MW), respectively, 

due to the USF as highlighted in red in Fig. 4. The actual value 

of the maximum USF at each line is shown in Fig. 5. 

To avoid violating the line flow limits, we consider two sce-

narios: (a) removing the tie-line and (b) coordinating the opti-

mization of both subsystems. While eliminating the tie-line will 

prevent USF, the subsystems will not be able to share their re-

sources without going through the PCC. The proposed APP al-

gorithm is well suited for the second scenario as it can coordi-

nate the operation of the subsystems, accounting for the internal 

constraints without explicitly sharing their data.  

 
Fig. 4. Maximum daily line flow when optimized independently, with line 

limit violations highlighted in red. 

 

Fig. 5. Maximum daily USF when optimized independently. 

C. Coordinated Results 

Using the APP algorithm, the two subsystems can coopera-

tively solve the DCOPF problem. We used a flat start to initial-

ize the algorithm and chose an error tolerance of 10−4 radians. 

Fig. 6 shows the power profiles of each subsystem and Fig. 7 

shows the export/import power flows. Between 08:00 and 

13:00, the low energy prices result in both subsystems import-

ing energy from the main grid. During the high-price periods 

from 15:00 to 20:00, both subsystems operate their local gener-

ation units at their maximum outputs to supply their local de-

mands and export excess energy to the grid. Both subsystems 

use their ESSs to sell energy during the high-price periods from 

(a) 

(b) 

(c) 
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06:00 to 14:00, and subsystem 1 imports energy from both the 

main grid and subsystem 2.  

Table I shows the operational costs of the two subsystems 

without coordination and with coordination using APP. The 

negative signs in Table I indicate the revenue from exporting 

energy to the grid. The price signal at the PCC is used to calcu-

late the operational cost for both subsystems. For comparison 

purposes, we used the aggregated cost of the two subsystems to 

calculate the overall operating cost. The overall operation cost 

is reduced by 1.9% ($3450) when we calculate the aggregated 

operation cost. In this case, both subsystems benefit from shar-

ing their resources, as the operating cost of subsystem 1 de-

creases by $3180, while the revenue of subsystem 2 increases 

by $202. 
 
 

 

Fig. 6. Optimal schedule for (a) subsystem 1 and (b) subsystem 2. 

 
Fig. 7. Export and import for (a) the aggregation of the two subsystems, (b) 

subsystem 1, and (c) subsystem 2.  
 

TABLE I 
THE TOTAL OPERATION COST IN $ 

Coordination 
Independent  

Optimization 

Coordinated 

Optimization 

Subsystem 1 ($) 198330 195150 

Subsystem 2 ($) -16946 -17214 

Aggregation ($) 181380 177930 

Improvement (%) - 1.9 

 

D. APP Tuning and Convergence 

The rate of convergence for the APP algorithm depends on 

the values for the parameters 𝛼, 𝛽, and 𝛾. Satisfying condition 

(4) is sufficient to guarantee convergence of the APP algorithm 

[17]. We used (5) to express all constants in terms of a single 

parameter in order to simplify the tuning analysis. 

𝛼 ≤  2𝛾 ≤  𝛽                     (4) 

𝛼 =
1

2
𝛽 = 𝛾                      (5) 

The convergence of the APP algorithm with different values 

of 𝛼 is shown in Fig. 8. The APP algorithm converges to a so-

lution with an objective value gap within 0.001% of the central-

ized algorithm’s solution. As the value of 𝛼 increases, the con-

vergence time and the number of iterations decreases as shown 

in Table II. However, increasing the value of 𝛼 to 5 × 105 

causes the convergence to be less consistent and slower. Fur-

thermore, increasing the value of 𝛼 above 5 × 105 causes the 

algorithm to diverge. The reverse is also true when the value of 

𝛼 is very small. 

 
Fig. 8. Error convergence with different values of 𝛼. 
 

 TABLE II 

PERFORMANCE EVALUATION WITH DIFFERENT VALUES OF α 

𝛼 1 × 104 5 × 104 1 × 105 5 × 105 

No. Iteration 433 333 299 303 

Avg. Iteration 

Time (s) 
0.07 0.07 0.07 0.07 

Total Time (s) 31.65 23.66 20.42 20.76 

E. Discussion and Remarks 

The APP algorithm converges to the optimal solution of the 

DCOPF problem. However, the APP algorithm has some limi-

tations related to computation times and parameter tuning. The 

parameters tuning of the APP algorithm is system dependent, 

which implies the need for parameter tuning when considering 

a new system. Nonetheless, the APP algorithm has important 

features that can benefit future microgrids in deregulated mar-

kets. A deregulated scheme such as P2P markets could give rise 

to undesirable operation unless the underlying physics and their 

constraints are considered. USF is expected to increase due to 

high penetrations of DERs that actively participate in deregu-

lated markets. USF is especially problematic when there are in-

terconnections between independently operated subsystems. 

The implementation of the proposed algorithm could vary 

depending on the regulations and the market structure. The APP 

(a) 

(b) 

(a) 

(b) 

(c) 
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algorithm requires each subsystem to at least communicate the 

tie-lines’ susceptances and terminal voltages. In our test case, 

Subsystem 2 extensively exports energy during periods of high 

solar power output, when the line limit violation was observed. 

The high solar energy output coincides with low-priced energy 

leading to line flow violations. Similar scenarios could occur 

for any system with many DERs and multiple independently 

operated interconnected subsystems.  

V. CONCLUSION 

Distributed algorithms provide many desirable features for 

future electricity markets. The high expected DER penetrations 

and the emergence of microgrids, i.e., independently operated 

subsystems, will require flexible optimization tools to cope with 

the system complexity. We use a small test case to demonstrate 

the potential impact of operating independent power systems, 

focusing on internal constraint violations due to USF. The APP 

algorithm allows independent subsystems to co-optimize their 

operation while satisfying their internal constraints without ex-

plicitly sharing information about generation costs or internal 

network data. Hence, the subsystems may pool their resources 

and increase system-wide profits from market participation. 

The linearity of the DC approximation allows us to explore 

the capabilities of the distributed algorithms for market clearing 

with multiple microgrids in a multiperiod setting. In our future 

work, we plan to explore other power flow approximation and 

relaxation methods in order to extend our analyses to systems 

for which the DC power flow is inapplicable. Further, the com-

munication system plays a major role in the performance of dis-

tributed algorithms, as the data will be shared continuously be-

tween the neighboring subsystems. We will investigate the im-

plementation of distributed algorithms considering nonideal 

communication models. 
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