
Analyzing Malicious Data Injection Attacks on
Distributed Optimal Power Flow Algorithms

Mohannad Alkhraijah
Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA, USA

mohannad@gatech.edu

Rachel Harris
Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA, USA

rharris94@gatech.edu

Samuel Litchfield
Georgia Tech Research Institute

Atlanta, GA, USA
slitchfield3@gatech.edu

David Huggins
Georgia Tech Research Institute

Atlanta, GA, USA
david.huggins@gtri.gatech.edu

Daniel K. Molzahn
Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA, USA

molzahn@gatech.edu

Abstract—The rapid growth of distributed energy resources
motivates the application of distributed optimization algorithms
for solving optimal power flow (OPF) problems. Using distributed
optimization to solve OPF problems requires repeated data
sharing between agents responsible for different regions of the
power system. The performance of distributed optimization
algorithms depends on the integrity of the shared data and
the communications between the agents. This paper investigates
the vulnerability of a distributed algorithm called Auxiliary
Problem Principle (APP) with respect to cyberattacks on the
communications between the agents. We propose cyberattack
models that manipulate the shared data between neighboring
agents to achieve an objective such as driving the algorithm to
converge to a suboptimal solution. We investigate the convergence
characteristics of the APP algorithm in the context of the
DC optimal power flow (DC OPF) problem with and without
manipulating the shared data. Last, we demonstrate how trained
neural networks can provide highly accurate attack detection.

Index Terms—Cybersecurity, Distributed Optimal Power Flow.

I. INTRODUCTION

With rapid growth in distributed energy resources (DERs)
and expanding communication infrastructures, the risk of
cyberattacks challenges the security of power systems [1–3].
Much of the current cybersecurity research focuses on the
centralized operational paradigm, but power systems are transi-
tioning towards a more decentralized paradigm [4]. Distributed
algorithms help address the computational complexity and
data sharing challenges associated with coordinating DERs.
Finding the optimal operating point of DERs requires solving
the optimal power flow (OPF) problem. In distributed OPF
algorithms, agents compute optimal setpoints for their region
of the power system by sharing the computational task with
their neighboring agents. Although distributed algorithms can
potentially increase the resiliency of power system operations
by eliminating a central single point of failure, involving many
entities in controlling power system operations increases the
number of potential targets for cyberattacks.

Support from NSF AI Institute for Advances in Optimization (#2112533).

The vulnerability of power systems to data manipulation
such as false data injection has been extensively discussed in
the literature [3]. False data injection can severely impact dis-
tributed algorithm convergence [5, 6]. The impact and detec-
tion of false data injection attacks on distributed optimization
algorithms has been considered in the context of generation
control [7, 8], state estimation [9, 10], economic dispatch [11],
and distributed energy management systems [12]. However,
there is limited research on cyberattacks that manipulate
data shared between agents in distributed OPF algorithms.
Reference [13] investigates false data injection attacks on
primal-dual gradient descent distributed DC OPF algorithms.
The authors also propose a detection method which uses
information estimation on data from previous iterations to
detect malicious shared data. The authors of [13] consider
a simplistic attack scenario where the attacker shares data
directly corresponding to the attacker’s target operating point.
However, more sophisticated attack scenarios could bypass
previously proposed detection methods. For example, an attack
which begins with the first iteration or quickly converges to
the attacker’s target would prevent defenders from collecting
enough historical data for the information estimation. We
begin to explore a more sophisticated feedback control attack
and present initial machine learning detection results in [14].

In this paper, we investigate the vulnerability of the Auxil-
iary Problem Principle (APP) algorithm to adversarial attacks
on the shared data. We propose three cyberattack models
for manipulating the shared data during the distributed op-
timization process: (1) sending the attacker’s target values in
every iteration, (2) using PID feedback control, and (3) using
bilevel optimization. In the first two models, the adversarial
agent identifies a target solution to the OPF problem and uses
this information to send false values for the shared variables.
In the third model, the adversarial agent solves a bilevel
optimization problem with a target objective in the upper
level and the neighboring region’s problem in the lower level.
With these attack strategies, we show that an attacker can
drive the distributed optimization algorithm to a feasible target978-1-6654-9921-7/22/$31.00 ©2022 IEEE

solution. Next, we explore how convergence patterns change
for algorithms under attack, and use neural networks (NN)
trained on shared data to detect attacks with high accuracy.

The rest of the paper is organized as follows: Section II
describes the problem formulation and the distributed APP al-
gorithm. Section III provides the proposed cyberattack models.
Section III presents numerical results and discusses the attack
implementation and detectability. Finally, Section V concludes
the paper and describes future work.

II. PROBLEM FORMULATION

The OPF problem is fundamental to power system op-
erations. OPF problems search for optimal operating points
which satisfy constraints from both the network model (the
power flow equations) and engineering constraints (transmis-
sion lines’ thermal limits, generator outputs’ limits, etc). The
OPF problem is a non-convex optimization problem due to
the nonlinearity of the power flow equations. To guarantee
the convergence of the APP algorithm, we use the DC OPF
approximation of the power flow (DC OPF) [15] to investigate
the vulnerabilities of distributed algorithms, since the conver-
gence guarantee of the APP algorithm is limited to convex
problems. In our future work, we plan to extend these results
to include more sophisticated power flow representations.

This section first describes the centralized DC OPF for-
mulation and then presents the APP algorithm which solves
DC OPF problems in a distributed fashion.

A. DC Optimal Power Flow

Consider a system with sets of buses, lines, and generators
denoted by N , L, and G. The DC OPF formulation is:

min
∑
g∈G

fg(pg) (1a)

subject to:

pi − di =
∑

(i,j)∈L

Bij(θi − θj), ∀i ∈ N , (1b)

Pmin
g ≤ pg ≤ Pmax

g , ∀g ∈ G, (1c)

− Pmax
ij ≤ Bij(θi − θj) ≤ Pmax

ij , ∀(i, j) ∈ L, (1d)

where fg is the cost function and pg is the power output
of generator g ∈ G. Bij denotes the admittance and Pmax

ij

denotes the thermal limit of the line (i, j) ∈ L. We define the
state of the buses with the phase angle of the voltage, θi for
bus i ∈ N . We denote the demand at bus i ∈ N as di. The
optimization problem minimizes the total generation cost as
shown in the objective function (1a), subject to the operation
constraints (1b)–(1d). The constraint (1b) is the DC power flow
equations, while constraints (1c) and (1d) are the generators’
power output limits and the transmission lines’ thermal limits.

B. Distributed DC Optimal Power Flow

We next describe the Auxiliary Problem Principle (APP)
distributed algorithm that we use to solve the DC OPF
problem. To solve the OPF problem using the APP algorithm,
we decompose the power system into regions. Each region
is equipped with an agent that is capable of solving an

𝜃! 𝜃"

system 𝑛system 𝑚

𝜃!# 𝜃"

system 𝑛
𝜃! 𝜃"#

system 𝑚

Fig. 1. Illustrative example of the network decomposition.

optimization problem and communicating with neighboring
agents. Let Nm, Lm, and Gm define the sets of buses, lines,
and generators for region m ∈ M, where M is the set of all
regions. Two neighboring regions are connected through tie-
lines that belong to both regions. For each tie-line between two
regions, we introduce dummy variables at each terminal of the
tie-line that represent the state variables, i.e., the voltage angles
θ in the DC OPF problem, and enforce the dummy variables to
be equal to the original variables using consistency constraints.
We denote the set of shared variables in region m with N s

m.
The network decomposition is described in Figure 1.

By relaxing the consistency constraints using the Aug-
mented Lagrangian method and applying the APP algorithm,
the DC OPF problem is then iteratively solved using a
sequence of smaller problems [16]. Each problem consists
of an agent’s local objective function, local constraints, and
relaxed consistency constraints with neighboring agents. The
consistency constraints are evaluated using the values received
from neighboring agents in the previous iteration, so each
local problem can be solved independently. The local problem
corresponding to region m at iteration k + 1 is:

min
pk+1,θk+1

F k+1
m (θkm, θkn, λ

k)

=
∑
g∈Gm

fg(p
k+1
g) +

β

2
||θk+1

m − θkm||22

+ γ(θk+1
m)⊤(θkm − θkn) + (λk)⊤θk+1

m (2a)
subject to:

pk+1
i − di =

∑
(i,j)∈Lm

Bij(θ
k+1
i − θk+1

j), ∀i ∈ Nm, (2b)

Pmin
g ≤ pk+1

g ≤ Pmax
g , ∀g ∈ Gm, (2c)

−Pmax
ij ≤ Bij(θ

k+1
i − θk+1

j) ≤ Pmax
ij , ∀(i, j) ∈ Lm, (2d)

where α, β, and γ are user-selected parameters associated
with the APP algorithm. Fm is the local objective function
of agent m. The variables θkm and θkn are vectors, with the
same cardinality as N s

m, that denote the shared variables’
values obtained from the solution of the same agent’s and
the neighboring agents’ local problems from the previous
iteration, respectively. λk is a vector of Lagrange multipliers.
The superscript ⊤ denotes the vector transpose, and || · ||2
denotes the vector l2-norm. In each iteration, the agents first
solve their local problems (2) in parallel. Then, each agent
sends the shared variables θk+1

m to the neighboring agents.

Using the received values, the agents then update the Lagrange
multipliers λ using (3):

λk+1 = λk + α(θk+1
m − θk+1

n), (3)

where θk+1
n denotes the shared variable values received from

the neighboring agents. Once the agents calculate the Lagrange
multipliers, they again solve their local problems and share the
results of the shared variables with their neighbors. The algo-
rithm terminates when the l2-norm of the mismatch between
the shared variables is less than a specified tolerance.

III. THREAT MODEL AND ATTACKER STRATEGIES

We model an attacker as an agent that controls a particular
region in order to manipulate the APP algorithm. The attacker
has complete knowledge of the entire power system, includ-
ing both the system-wide problem and the problems solved
by neighboring agents. We primarily consider a financially
motivated attacker. However, our threat model can be readily
extended for other purposes such as increasing the system’s
operating costs or causing constraint violations that damage
physical components. In this paper, the attacker seeks to
increase the revenue by forcing the APP algorithm to converge
to a solution where other regions buy more power from the
attacker’s region. First, the attacker finds an advantageous
convergent state for the system and then determines an ap-
proach for driving the shared variable values such that the
APP algorithm converges to that state. We propose three
methods to accomplish this with varying levels of complexity
and detectability, e.g., how much the attack deviates from the
typical behavior of the APP algorithm.

1) Simple Attack: The attacker determines an advantageous
convergent state by modeling the system-wide OPF problem,
but manipulates generation cost functions such that neighbor-
ing regions purchase more power from the attacker’s region.
This provides the attacker with the voltage angles at the tie-
lines to neighboring regions that would correspond with this
solution. With this knowledge, we first consider an attack
strategy where the malicious agent sets the shared variables
they control to exactly these target voltage angle values at each
iteration of the algorithm. This is the least complex approach,
but also the least subtle, increasing the likelihood of detection.

2) Feedback Controller: To manipulate the shared data in a
less obvious manner, we next consider an attack strategy that
incorporates a feedback control mechanism. The attacker uses
a Proportional-Integral-Derivative (PID) controller to drive the
shared variable values to their target values. This casts the
attacker’s problem as a traditional feedback control problem,
with the shared variable values received from neighboring
agents representing inputs, the neighboring regions acting as
plants, and the shared variable values sent by the attacker
functioning as actuators. This is illustrated in Figure 2.

The attacker determines their shared variable values at
each iteration k by first calculating the error ek between the
neighboring shared variables, θkn, and their target, θktarget as
ek = θtarget − θkn. The attacker then computes an actuation
term using three tuned parameters (a term proportional to the
error Kp, a term related to the accumulated error Ki, and a

Attacker’s Feedback Controller

Feedback
Controller

𝜃!

Neighboring
Agents’

Controller

𝜃"

𝜃#!$%&#

-

Fig. 2. Feedback control attack model.

term related to the rate of change in the error Kd) as shown
in (4) to obtain the attacker’s shared variable values for the
next iteration, θk+1

a .

θk+1
a = θtarget +Kpek +Ki

k∑
n=0

en +Kd(ek − ek−1). (4)

Varying the parameters Kp, Ki, and Kd changes the dynamics
of the APP algorithm’s convergence and can possibly cause
the algorithm to not converge to the target at all.

3) Bilevel Optimization: The attacker solves a bilevel op-
timization problem with a target objective in the upper level
and the neighboring agents’ problems in the lower level. The
advantage of this model is that the attacker does not need
to specify target operating points in advance. Rather, the at-
tacker’s bilevel problem searches for the optimal solution that
is obtainable given their ability to manipulate particular shared
variable values as well as system-specific characteristics such
as the network structure, electrical parameters, etc.

To successfully manipulate the shared variable values, the
attacker needs to consider multiple consecutive iterations in the
bilevel optimization. The first iteration corresponds to the orig-
inal local problem described in (2) without any manipulation to
identify the neighboring agents’ outputs for the next iteration.
In the subsequent iterations, the attacker tries to select shared
variables that will force the neighboring agents’ local solutions
to match the attacker’s goals as closely as possible. For a
setting where the attacker considers two iterations, the bilevel
optimization problem is:

min Gtarget(p
k+2
a , θk+2

a) (5a)
subject to:

(pk+1
n , θk+1

n) = argmin
(pk+1

n ,θk+1
n)∈An

F k+1
n (θkn, θ

k
a , λ

k), (5b)

(pk+2
n , θk+2

n) = argmin
(pk+2

n ,θk+2
n)∈An

F k+2
n (θk+1

n , θk+1
a , λk+1), (5c)

(pk+2
a , θk+2

a) ∈ Aa, (5d)

θk+2
a = θk+2

n , (5e)

λk+1 = λk + α(θk+1
n − θk+1

a), (5f)

where Gtarget is the attacker’s objective function. In this attack
model, we consider a linear target objective function. We de-
note the attacker’s and the neighboring agents’ variables with
subscript a and n, respectively. For notational simplicity, we
denote the feasible region of each agent m as Am defined by
the constraints (2b)–(2d). Constraints (5b) and (5c) correspond
to the lower-level problem consisting of two iterations of the

Solve local problem
(2) With

F!"#$ 𝜃%", 𝜃&", 𝜆" .

𝜃%"#$𝜃&"#$

Attacker Neighboring AgentIteration

𝑘

𝑘 + 1

Calculate 𝜆" using (3).

𝜃&"#'

𝜃'"#'
Solve local problem

(2) with
F!"#' 𝜃%"#$, 𝜃&"#$, 𝜆"#$.

Calculate 𝜆" using (3).

Calculate 𝜆"#$ using (3)

𝜃%"#$

Solve the attacker
problem (6) to compute

𝜃&"#$ and 𝜃&"#'.

𝑘 + 2 Attacker’s Target + Consistency
(𝜃&"#' = 𝜃%"#')

Fig. 3. Flow diagram visualizing the bilevel attack strategy.

neighboring agents’ local problems. The representations of
each iteration require the shared variables and the Lagrange
multiplier values from the previous iteration as inputs to
evaluate the objective functions F k+1

n and F k+2
n . Unlike (5b)

where the inputs of F k+1
n are constants, the inputs of the

objective function F k+2
n in (5c) contain decision variables. The

objective functions of both lower-level problems, F k+1
n and

F k+2
n , are quadratic functions while the constraints defined

by the region An are linear.
We include the first iteration of the lower-level problem

in (5) to simplify the representation of the attacker’s problem.
However, the attacker solves the first iteration of the lower-
level problem (5b) before solving the bilevel problem. In
other words, since θkn, θka , and λk are inputs to (5b), we can
evaluate (5b) prior to solving (5). We then solve the bilevel
problem (5) by reformulating the second iteration’s lower-level
problem (5c) using its Karush–Kuhn–Tucker (KKT) conditions
parameterized with the upper-level variables, i.e., θk+1

a . The
parameterized KKT conditions consist of linear constraints
with integer variables that we use to linearize the comple-
mentary slackness constraints [17]. Thus, the bilevel problem
is a Mixed-Integer Linear Programming (MILP) problem that
can be solved using commercial solvers.

Figure 3 illustrates the bilevel attack strategy. This figure
depicts two iterations of the APP algorithm. The attack in
the diagram starts at iteration k, where the attacker solves the
bilevel optimization problem to compute the values that will be
shared with neighboring agents, i.e., θk+1

a and θk+2
a , shown in

red. These values drive the neighboring agents’ solution to the
targeted solution by changing the Lagrange multipliers and the
second iteration outputs, i.e., λk+1 and θk+2

n , shown in blue.
This attack model ensures that the attacker’s target setpoints
are achieved and the consistency constraints are met after the
second iteration.

IV. ATTACK DETECTION

We develop a distributed attack detection method, in which
each local agent trains a NN to classify a sequence of shared
variable mismatches as either “not attacked” or “attacked”.

The shared variable mismatch is the difference between the
local agent’s value for a shared variable and the neighboring
agent’s value. The sequences of shared variable mismatches
exhibit different characteristics for different attack strategies.
Therefore, each agent trains separate NNs for each attack
strategy. The agent can then flag an attack if any of the NNs
detect malicious data manipulation. After offline training, a
NN can perform classification on shared variable mismatches
very quickly during real-time operation.

Each agent records their shared variable mismatches from
the final 50 iterations of the distributed algorithm to use
as the input to the NN. The output is binary, with ‘1’
representing attacked algorithms and ‘0’ representing non-
attacked algorithms. The NN contains 8 hidden layers, each
with rectified linear unit (ReLU) activation. The loss function
minimized during training is the mean absolute error, written
as 1

N

∑N
i=1 |ŷi − yi| for a set of N predictions, where ŷi

denotes the i-th prediction and yi denotes the i-th true value.
Before training, the data is normalized so that mismatches at
each iteration have zero mean and unit variance.

V. NUMERICAL RESULTS

In this section, we show simulation results from implement-
ing the proposed attack strategies on the APP algorithm.

A. Simulation Setup

We simulate attacks for three test systems: the IEEE 14-bus
system, the IEEE 39-bus system, and the IEEE 118-bus system
from [18]. We decompose the test cases into two regions
controlled by two different agents. The attacker controls the
output of one of the agents, while the other agents solve the
distributed algorithm normally. The attacker’s objective is to
increase the total power output of the generators within the
attacker’s region in order to increase this region’s revenues
by selling more energy. As described by the threat models
in Section III, the attacker can manipulate the distributed
optimization algorithm only by modifying the values of the
shared variables sent to the other agent.

We run the simulations using the Julia programming lan-
guage [19] on a PC with an Intel Core i7 processor and
16 GB of RAM. We use JuMP [20] and Gurobi to solve
all optimization problems and we use BilevelJuMP [21] to
reformulate the bilevel optimization problems (5) as MILPs.

In the simple and PID feedback attack strategies, the at-
tacker must find a target setpoint prior to the attack. We deter-
mine these target setpoints by solving a centralized DC OPF
problem using PowerModels [22] with a cost function that
maximizes the total generation within the attacker’s region.
We tune the parameters of the APP algorithm to be α = β

2 =
γ = 2× 104 and set the stopping tolerance to 10−4 radians.

B. Simulation Results

The three cyberattack models successfully drive the results
of the APP algorithm to the attacker’s target values. We use
the optimality gap, i.e., the relative value of the objective
function to the optimal solution, to measure the deviation of
the attacker’s target from the optimal solution. The results of

TABLE I
SIMULATION RESULTS OF THE ATTACK MODELS

Case Attack Model Iterations Attacker Output (MW) Neighboring Region
Output (MW) Optimality Gap (%) Computation Time (sec)

14-Bus

No Attack 80 0 259 0.02 0.99
Simple Attack 1409 200 59 24.37 9.68
PID Feedback Attack 981 200 59 24.39 6.65
Bilevel Optimization Attack 51* 200 59 24.41 1.81

39-Bus

No Attack 397 3192 3061 0.06 5.66
Simple Attack 648 3709 2544 8.12 5.26
PID Feedback Attack 447 3709 2544 8.14 3.43
Bilevel Optimization Attack 301* 3706 2548 8.08 5.86

118-Bus

No Attack 184 1043 3199 0.01 3.90
Simple Attack 3735 2576 1666 20.25 53.56
PID Feedback Attack 2778 2576 1666 20.25 38.56
Bilevel Optimization Attack 101* 2576 1666 20.25 9.78

* The bilevel optimization attack converges within two iterations of starting the attack, the timing of which can be selected by the attacker.

the attack strategies using the three test cases are summarized
in Table I. Figure 4 shows the convergence of the IEEE 118-
bus test case to a suboptimal solution using the proposed
attack strategies. The figure shows the operation cost of the
true optimal solution and the relative cost of the suboptimal
solution which is the attacker’s target.

0 20 40 60 80 100 120 140 160 180 200

Iteration

-100

-80

-60

-40

-20

0

20

40

O
p
ti

m
al

it
y
 G

ap
 (

%
)

No attack

Simple attack

PID feedback

Bilevel optimization

Bilevel optimization attack

starts at iteration 100

Post-attack operation cost

Optimal operation cost

Fig. 4. 118-bus relative cost convergence pre- and post-attack.

For both the simple attack and the PID attack, the APP
algorithm converges after a few iterations to a value close to
the target value as shown in Figure 4. However, both attacks
require a larger number of iterations for the shared variable
mismatches to reach the stopping tolerance. Compared to the
simple attack, the PID feedback attack converges substantially
faster in the three test cases as indicated in Table I. The PID
attack takes 31%, 32%, and 26% fewer iterations to converge
compared to the simple attack for the 14-bus, 39-bus and 118-
bus test cases, respectively. The bilevel optimization attack, on
the other hand, drives the shared variables to the target values
within two iterations of when the attacker initiates the attack.
Thus, the attacker can select when the algorithm terminates.

C. Detection Results

We detect attacks using NNs trained on the shared variable
mismatches, which follow different patterns when an attacker
manipulates the shared data. The mismatches for algorithms
run with no attack, PID attack, and bilevel attack on the
IEEE 118-bus case are plotted in Figure 5. In this simulation,
agent 2 is the attacker and the plotted mismatches correspond
to those from agent 1. The plot shows an attack that begins

at iteration 70, at which point the mismatches for attacked
algorithms diverge from non-attacked operation.

Fig. 5. Shared variable mismatches under the three attack scenarios.

We perform detection in a distributed manner using only
local information. Each local agent trains a NN to classify the
results of a distributed OPF problem as valid (not attacked)
or invalid (attacked). To generate data, we run the distributed
OPF algorithm repeatedly on the IEEE 118-bus case under
no attack, PID attack, and bilevel attack. With each run, we
randomly perturb the loads by 50% to 150% of the nominal
values with a uniform distribution. The iteration at which the
attack begins is randomly selected from the interval [50, 100].
In addition, for the PID attack strategy, we randomly select
parameters kp, kd from the interval (0, 0.4) with a uniform
distribution, and fix ki = 0.001. We create and train the NN
using Flux [23]. The detection process operates on the last
50 shared variable mismatch values prior to the algorithm’s
termination. We train separate NNs for each attack type. For
each attack strategy, we use 16000 shared variable mismatch
vectors for training and reserve 4000 for testing.

The trained NNs detect attacks with 100% accuracy on
the test data.As seen in Figure 5, the shared variable mis-
matches behave quite differently under attack, so classification
is relatively straightforward. However, other attack strategies
may not exhibit such obviously different convergence patterns
and could avoid detection by our NNs. Note that this paper’s
bilevel attack likely would not be detected by the information
estimation algorithm proposed in [13], as it converges too
quickly for the defender to make predictions on historical data.

This motivates future work to explore new attack strategies and
determine how well our detection mechanism generalizes to
attacks which it was not trained on.

VI. CONCLUSION

Distributed optimization algorithms have many desirable
features for future electric power systems. However, their
reliance on the communication infrastructure increases their
vulnerability to cyberattacks. This paper has presented three
cyberattack threat models that manipulate the data shared
among the agents in order to change the solution of the OPF
problem. We simulated these cyberattacks on the APP algo-
rithm with three test cases. We considered a scenario where the
attacker exploits the distributed algorithm to increase the total
generation in one region of the system. We also demonstrate
how a NN trained to recognize convergence patterns in the
shared data can detect attacks with high accuracy.

In our ongoing work, we are evaluating the scalability of
the attack strategies considered in the paper to larger systems
with more agents. In addition, we are exploring new attack
strategies which might bypass our detection mechanism. We
are also extending these results to additional power flow
models and considering alternative threat models where the
attacker has only partial knowledge of the OPF problem and
the agents’ states.

REFERENCES

[1] “Executive Order 13800, Strengthening the Cybersecu-
rity of Federal Networks and Critical Infrastructure, Sec-
tion 2(e): Assessment of Electricity Disruption Incident
Response Capabilities,” 2017.

[2] Z. El Mrabet et al., “Cyber-security in smart grid: Survey
and challenges,” Computers & Electrical Engineering,
vol. 67, pp. 469–482, 2018.

[3] A. S. Musleh, G. Chen, and Z. Y. Dong, “A survey on
the detection algorithms for false data injection attacks
in smart grids,” IEEE Trans. Smart Grid, vol. 11, no. 3,
pp. 2218–2234, 2020.

[4] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low,
S. Chakrabarti, R. Baldick, and J. Lavaei, “A survey
of distributed optimization and control algorithms for
electric power systems,” IEEE Trans. Smart Grid, vol. 8,
no. 6, pp. 2941–2962, 2017.

[5] A. Kargarian, M. Mehrtash, and B. Falahati, “Decentral-
ized implementation of unit commitment with analyti-
cal target cascading: A parallel approach,” IEEE Trans.
Power Syst., vol. 33, no. 4, pp. 3981–3993, 2017.

[6] M. Alkhraijah, C. Menendez, and D. K. Molzahn, “As-
sessing the impacts of nonideal communications on dis-
tributed optimal power flow algorithms,” to appear in
Electric Power Syst. Res., presented at 22nd Power Syst.
Comput. Conf. (PSCC), 2022.

[7] S. Sridhar and M. Govindarasu, “Model-based attack de-
tection and mitigation for automatic generation control,”
IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 580–591, 2014.

[8] Q. Zhou, M. Shahidehpour, A. Alabdulwahab, and
A. Abusorrah, “A cyber-attack resilient distributed con-

trol strategy in islanded microgrids,” IEEE Trans. Smart
Grid, vol. 11, no. 5, pp. 3690–3701, 2020.

[9] M. H. Cintuglu and D. Ishchenko, “Secure distributed
state estimation for networked microgrids,” IEEE Inter-
net of Things J., vol. 6, no. 5, pp. 8046–8055, 2019.

[10] J. Shi, S. Liu, B. Chen, and L. Yu, “Distributed data-
driven intrusion detection for sparse stealthy FDI attacks
in smart grids,” IEEE Trans. Circuits Syst. II: Express
Briefs, vol. 68, no. 3, pp. 993–997, 2021.

[11] C. Zhao, J. He, P. Cheng, and J. Chen, “Analysis of
consensus-based distributed economic dispatch under
stealthy attacks,” IEEE Trans. Ind. Electron., vol. 64,
no. 6, pp. 5107–5117, 2017.

[12] J. Duan and M.-Y. Chow, “A resilient consensus-based
distributed energy management algorithm against data
integrity attacks,” IEEE Trans. Smart Grid, vol. 10, no. 5,
pp. 4729–4740, 2019.

[13] J. Duan, W. Zeng, and M.-Y. Chow, “Resilient distributed
DC optimal power flow against data integrity attack,”
IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3543–3552,
2018.

[14] R. Harris, M. Alkhraijah, D. Huggins, and D. K.
Molzahn, “On the impacts of different consistency con-
straint formulations for distributed optimal power flow,”
in Texas Power and Energy Conference, 2022.

[15] B. Stott, J. Jardim, and O. Alsaç, “DC power flow
revisited,” IEEE Trans. Power Syst., vol. 24, no. 3, pp.
1290–1300, 2009.

[16] B. H. Kim and R. Baldick, “Coarse-grained distributed
optimal power flow,” IEEE Trans. Power Syst., vol. 12,
no. 2, pp. 932–939, 1997.

[17] J. Fortuny-Amat and B. McCarl, “A representation and
economic interpretation of a two-level programming
problem,” J. Oper. Res. Soc., vol. 32, no. 9, pp. 783–
792, 1981.

[18] S. Babaeinejadsarookolaee et al., “The power grid library
for benchmarking ac optimal power flow algorithms,”
arXiv:1908.02788, 2019.

[19] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,
“Julia: A fresh approach to numerical computing,” SIAM
Rev., vol. 59, no. 1, pp. 65–98, 2017.

[20] I. Dunning, J. Huchette, and M. Lubin, “Jump: A mod-
eling language for mathematical optimization,” SIAM
Review, vol. 59, no. 2, pp. 295–320, 2017.

[21] J. D. Garcia, G. Bodin, and A. Street, “Bileveljump.jl:
Modeling and solving bilevel optimization in julia,”
arXiv:2205.02307, 2022.

[22] C. Coffrin, R. Bent, K. Sundar, Y. Ng, and M. Lubin,
“Powermodels.jl: An open-source framework for explor-
ing power flow formulations,” in 2018 Power Systems
Computation Conference, June 2018, pp. 1–8.

[23] M. Innes et al., “Fashionable modelling with Flux,”
arXiv:1811.01457, 2018.

