
1

Assessing the Impacts of Nonideal Communications
on Distributed Optimal Power Flow Algorithms

Mohannad Alkhraijah, Student Member, IEEE, Carlos Menendez, Student Member, IEEE,
and Daniel K Molzahn, Senior Member, IEEE

Abstract—Power system operators are increasingly looking
toward distributed optimization to address various challenges
facing electric power systems. To assess their capabilities in envi-
ronments with nonideal communications, this paper investigates
the impacts of data quality on the performance of distributed
optimization algorithms. Specifically, this paper compares the
performance of the Alternating Direction Method of Multipliers
(ADMM), Analytical Target Cascading (ATC), and Auxiliary
Problem Principle (APP) algorithms in the context of DC Optimal
Power Flow (DC OPF) problems. Using several test systems, this
paper characterizes the performance of these algorithms in terms
of their convergence rates and solution quality under three data
quality nonidealities: (1) additive Gaussian noise, (2) bad data
(large error), and (3) intermittent communication failure.

Index Terms—Distributed Optimization, Nonideal Communi-
cation, Optimal Power Flow.

I. INTRODUCTION

TRADITIONALLY, power system operations are primar-
ily conducted centrally, where the tasks of modeling the

system’s components, solving an optimization problem, and
dispatching setpoints are performed by the system operator.
However, as power systems move toward a more decentral-
ized paradigm with many locally controlled microgrids, scal-
ing these tasks becomes challenging when using centralized
methods. Further, modeling connected systems is difficult,
especially for microgrids in a distribution network.

Distributed algorithms address these challenges by allowing
interconnected systems with local controllers to cooperatively
solve large optimization problems. This increases flexibility
as each microgrid solves a local subset of the original op-
timization problem. Distributed algorithms thus have various
potential advantages, such as allowing parallel computations,
reducing the requisite communication infrastructure, and pos-
sibly maintaining the subsystems’ autonomy and data privacy.

These advantages motivate solving Optimal Power Flow
(OPF) problems in a distributed fashion. OPF problems seek
optimal setpoints for a power system. The decision variables
are typically the generators’ power outputs and the voltage
phasors. Several distributed optimization algorithms have been
proposed for solving OPF problems [1]. The Alternating
Direction Method of Multipliers (ADMM) applies Augmented
Lagrangian Relaxation to decompose the centralized problems
into smaller problems which permit a distributed implemen-
tation [2]. Augmented Lagrangian Relaxation is also used in
other distributed OPF solution algorithms, such as Analytical
Target Cascading (ATC) [3], Auxiliary Problem Principle
(APP) [4], and Dual Decomposition. Other distributed al-
gorithms directly consider the Karush-Kuhn-Tucker (KKT)

optimality conditions for OPF problems. These include the Op-
timality Condition Decomposition and Consensus+Innovation
algorithms. Numerical comparisons among these distributed
OPF algorithms are presented in [5] and [6]. Further, a
numerical analysis presented in [7] shows that distributed
optimization algorithms might converge to suboptimal solu-
tions for nonconvex problems, depending on the initialization.
These studies analyze the distributed algorithm assuming ideal
communication between interconnected systems.

Communication plays a major role in implementing dis-
tributed optimization since regions share data with their neigh-
bors [8]. The shared data between interconnected regions can
be subject to communication errors and malicious attacks.
The authors of [3] investigate the impact of injecting false
values into the shared data of the ATC algorithm when
applied to the network-constrained unit commitment problem
and show that the error injection increases the convergence
time. Nevertheless, it is difficult to derive a conclusion about
the robustness of the algorithms when considering one type
of communication nonideality with a single erroneous value
injection. Reference [9] investigates the communication in-
frastructure requirements for distributed optimization when
applied to power system problems. The authors of [9] model
the communication network using a simulator and investigate
the impact of communication delay on two distributed opti-
mization algorithms. Communication delay is one important
communication nonideality, but other nonidealities can impact
the performance of distributed optimization algorithms.

In more general distributed optimization settings, the im-
pacts of communication noise due to quantization effects have
been investigated in [10]–[12]. The authors of [13] provide
analytic upper and lower bounds on the ADMM algorithm’s
performance in the presence of random errors and validate
the results using randomly generated networks. The authors
of [14] study the robustness of distributed algorithms based on
dual averaging to additive communication noise. The authors
of [15] investigate the ADMM algorithm’s convergence under
additive communication noise and recommend modifications
to the underlying optimization problem. Packet loss is another
communication issue that has been discussed in the literature.
The impact of packet loss on unconstrained convex distributed
optimization is investigated in [16]. A relaxed ADMM algo-
rithm is proposed in [17] to optimize integrated electrical and
heating systems considering communication packet loss.

In this paper, we compare the performance of three dis-
tributed algorithms (ADMM, ATC, and APP) in solving OPF
problems in the presence of nonideal communications. We
characterize the algorithms’ performance in terms of conver-

2

gence rate and solution quality. To serve as a benchmark, we
first compare the performance of the three algorithms with
ideal communications. We then consider three noise models
that impact the shared data between neighboring regions:
(1) additive Gaussian noise, (2) bad data (large error), and
(3) intermittent communication loss. We use five test systems
to evaluate the performance of the algorithms with nonideal
communication. This paper considers the DC OPF formulation
which uses the DC power flow linearization [18]. Thus, this
paper’s main contribution is an extensive empirical study
regarding the impacts of nonideal communication on various
distributed solution algorithms for DC OPF problems.

We note that the convexity of the DC OPF formulation stud-
ied in this paper provides advantages in terms of theoretical
convergence guarantees for the distributed algorithms. These
guarantees are useful in the context of this paper as they ensure
that the distributed algorithms should all converge to the same
solution, thus permitting consistent comparisons that primarily
focus on the speed and robustness of the algorithms. However,
there are applications where the DC power flow approximation
is inappropriate, thus requiring alternative power flow repre-
sentations [19]. This paper forms a basis for future extensions
of our analyses for these applications.

The rest of the paper is organized as follows. Section II
introduces the mathematical notation and the DC OPF prob-
lem. Section III formulates the problem decomposition and the
distributed solution algorithms. Section IV describes the noise
models we use in the analysis. Section V presents numerical
results and discusses the distributed algorithms’ performance
under nonideal communication. Section VI summarizes the
main findings and discusses future work.

Remark on Notation

Throughout the paper, we use bold letters to indicate vec-
tors. We denote a local subproblem and regions with the letter
m and let M indicate the set of all subproblems. The set
N m

s contains the boundary variables for region m. We use the
letters n and c to denote variables from the neighboring regions
and the central coordinator. We use || · || to denote the vector
l2-norm. We use the hat in x̂ to indicate that the variables x are
evaluated with constant values from the previous iteration as
received from neighboring regions or obtained from the prior
local solution.

II. DC OPTIMAL POWER FLOW FORMULATION

OPF problems typically minimize generation costs while
satisfying the power flow equations and limits on generator
outputs, line flows, etc. The optimization variables are the
generators’ outputs and the bus voltages. We consider the
DC power flow approximation [18] to obtain convergence
guarantees for the distributed algorithms, which are discussed
in Section III. The DC OPF formulation used in this paper is:

min
θθθ ,ppp

∑
i∈G

fi(pi) (1a)

s.t. pi−di = ∑
(i, j)∈L

Bi j(θi−θ j), ∀i ∈B (1b)

Pmin
i ≤ pi ≤ Pmax

i , ∀i ∈ G (1c)
−Pmax

i j ≤ Bi j(θi−θ j)≤ Pmax
i j , ∀(i, j) ∈L (1d)

θ
re f = 0 (1e)

where the sets B, G , and L denote the buses, generators,
and lines, respectively. The generation costs are denoted by
fi. The decision variables are θθθ , the bus voltage angles, and
ppp, the generators’ active power outputs. We denote the power
demands by d, and B denotes the lines’ susceptances. Bounds
on the power output of generator i are Pmax

i and Pmin
i , and

Pmax
i j defines the flow limit of the line between buses i and j.

The objective function in (1a) minimizes the total cost of the
generators’ power outputs. Constraint (1b) is the DC approx-
imation of the power flow equations [18]. Constraints (1c)
and (1d) limit the generators’ power outputs and the line flows.
Constraint (1e) sets the reference angle, θ re f .

III. DISTRIBUTED OPTIMIZATION ALGORITHMS

This section overviews the distributed algorithms considered
in this paper. These algorithms decompose the centralized
DC OPF problem into subproblems corresponding to a par-
tition of the original system. In the DC OPF formulation (1),
tie-lines between regions couple the power flow equations (1b)
and the line flow limits (1d). For each tie-line, we duplicate
the boundary variables and assign a local copy to each region
as shown in Fig. 1.

𝜃! 𝜃"

Region 2Region 1

𝜃!# 𝜃"𝜃! 𝜃"#

(a) Before

(b) After

Fig. 1. Tie-line model before (a) and after (b) applying the decomposition.

To obtain a feasible solution to the centralized problem, we
need to ensure consistency between the duplicated variables
in each subproblem. To accomplish this, we consider algo-
rithms that use an Augmented Lagrangian method to enforce
consistency using a penalized objective function:

Lρ(ppp,θθθ ,λλλ) := ∑
i∈G

fi(pi)+ ∑
i∈Ns

λi(θi−θ
′
i)+

ρ

2
||θi−θ

′
i ||22, (2)

where λλλ are the Lagrange multipliers of the consistency
constraints, θθθ ′ are copies of the boundary variables, and ρ is
a parameter. The set Ns contains all copies of the bus voltage
angle variables corresponding to the tie-lines between regions.

The three distributed algorithms we consider are similar in
their application of an Augmented Lagrangian to decompose
the original problem. However, they use different processes for
evaluating the objective function and updating the Lagrange

3

multiplier λ . Generally, the three algorithms use the shared
variables received from neighboring regions to update the
Lagrange multipliers and evaluate the relaxed consistency con-
straints in the objective function. This makes the subproblems
separable and independent from each other. The algorithms
repeat these steps until all regions reach a consensus on
the shared variables’ values. We use the `2-norm of the
shared variables’ mismatch, denoted by ||∆θ ||, to measure the
consensus on the shared variables. We next provide more detail
for these distributed algorithms.

A. Alternating Direction Method of Multipliers (ADMM)

ADMM is a well-known algorithm for solving large opti-
mization problems [20], [21]. The ADMM algorithm solves
the augmented Lagrangian problem in a distributed fashion
that is similar to the Gauss-Siedel iterative method. Solving
the OPF problem using ADMM in a distributed way involves
a central coordinator to decompose the problem. The local
problem of region m for iteration k+1 is:

min
pppk+1,θθθ m,k+1

∑
i∈G m

fi(pk+1
i)+ ∑

i∈N m
s

λ
k
i (θ̂

c,k
i −θ

m,k+1
i)

+
α

2
||(θ̂ c,k

i −θ
m,k+1
i)||22, (3)

subject to the DC OPF constraints (1b)–(1e),

where α is a tuning parameter. The decision variable θθθ m

includes the local variables, i.e., the voltage angles for both
the local and shared buses. The variable θ̂̂θ̂θ c denotes the shared
variables evaluated with values received from the central
coordinator, and λλλ denotes the Lagrange multipliers.

After solving the local problem (3), the local controllers
share their solutions with the central coordinator. The coordi-
nator then solves an unconstrained optimization problem:

min
θθθ c,k+1

∑
m∈M

∑
i∈N m

s

λi(θ
c,k+1
i − θ̂

m,k+1
i)

+
α

2
||(θ c,k+1

i − θ̂
m,k+1
i)||22, (4)

where θθθ c are the decision variables and θ̂̂θ̂θ m are the shared
variables received from the local controllers. The shared vari-
able values obtained from the central coordinator’s problem
are then sent to the local controllers to update the Lagrange
multipliers according to (5):

λλλ
k+1 = λλλ

k +α(θθθ c,k+1−θθθ
m,k+1), (5)

where α is the same parameter used in the local optimization
problem (3). Note that θθθ m and θθθ c are the solutions of (3)
and (4), respectively. The local controllers then use the updated
Lagrange multipliers and the central coordinator’s solution to
update the local problems. This process is repeated until the
shared variables agree to within a specified tolerance.

There are several variants of this ADMM implementation
that have been proposed for solving OPF problems. These
include extensions that eliminate the need for a central co-
ordinator [22], [23]. A proximal massage passing (PMP)
method proposed in [24] also permits a fully distributed
ADMM implementation. The calculations in this paper use
a fully distributed implementation of the ADMM algorithm

by replacing the central coordinator’s problem with its first-
order optimality conditions. In this implementation, each local
controller uses the prior local solution and the neighboring
regions’ solutions to solve the central coordinator’s problem
locally. We also note that the ADMM algorithm has been
proven to converge to the optimal solution if the subprob-
lems are convex. See [2] for more detail regarding ADMM
implementations and convergence guarantees.

B. Analytic Target Cascading (ATC)

ATC is another distributed algorithm based on augmented
Lagrangian relaxation that solves a large optimization problem
via dividing it into hierarchically connected subproblems with
multiple levels [25]. Two levels of subproblems are connected
if they share coupling variables. To solve the OPF problem,
we use a two-level ATC structure. The first level consists of
a central coordinator, while the regions’ local problem are in
the second level. The local problem m for iteration k+1 is:

min
pppk+1,θθθ m,k+1

∑
i∈G m

fi(pi)+ ∑
i∈N m

s

λi(θ̂
c,k
i −θ

m,k+1
i)

+ ||β (θ̂ c,k
i −θ

m,k+1
i)||22, (6)

subject to DC OPF constraints (1b)–(1e),

where λλλ are the Lagrange multipliers and β is a parameter.
We denote the shared variables that are fixed to their values
from the central coordinator with θ̂̂θ̂θ c. The local controllers
communicate the resulting shared variable values with a
central coordinator. The coordinator solves an unconstrained
optimization problem that minimizes the differences between
the boundary variables for neighboring regions:

min
θθθ c,k+1

∑
m∈M

∑
i∈N m

s

λi(θ
c,k+1
i − θ̂

m,k+1
i)

+ ||β (θ c,k+1
i − θ̂

m,k+1
i)||22. (7)

The coordinator shares the target results θθθ c,k+1 with the lo-
cal controllers. Next, the local controllers update the Lagrange
multipliers and the parameters β using the target variables:

λλλ
k+1 = λλλ

k +2(β k)2(θθθ c,k+1−θθθ
m,k+1), (8a)

β
k+1 = αβ

k, (8b)

where β is the same parameter used in the local optimization
problem (6), and α is a tuning parameter. After updating
the Lagrange multipliers, the local controllers and the central
coordinator repeat the process until the shared variables are
within a specified tolerance.

Variants of ATC use different functions besides the Aug-
mented Lagrangian to relax the consistency constraints [26].
Further, the ATC variant proposed in [3] is fully distributed,
eliminating the need for a central coordinator. Similar to the
ADMM algorithm, we use a fully distributed implementation,
where each local controller uses the first-order optimality con-
ditions of the central coordinator’s problem to solve the local
subproblem. The ATC algorithm is proven to converge for
convex problems if the interaction is limited to subproblems
in different levels [25].

4

C. Auxiliary Problem Principle (APP)

The APP algorithm is also based on augmented Lagrangian
decomposition [27]. The APP algorithm solves a sequence of
auxiliary problems in a distributed fashion without the need
for a central coordinator. In contrast to ADMM and ATC
which directly use the Augmented Lagrangian, APP linearizes
the quadratic term in the augmented Lagrangian around the
previous iteration and introduces a regularization term in the
objective function [28]. Using the APP algorithm, the OPF
formulation for region m and iteration k+1 is:

min
pppm,k+1,θθθ k+1

∑
i∈G

fi(pk+1
i)+ ∑

i∈N m
s

β

2
||θ m,k+1

i − θ̂
n,k
i ||

2
2

+ γθ
m,k+1
i (θ̂ m,k

i − θ̂
n,k
i)+λθ

m,k+1
i , (9)

subject to DC OPF constraints (1b)–(1e),

where α , β , and γ are tuning parameters. We define θ̂̂θ̂θ m,k

as the value of the shared variable obtained by region m
in the previous iteration, and θ̂̂θ̂θ n,k denotes the values of the
shared variables received from neighboring regions. After each
region’s local controller solves its associated problem and
exchanges the results with the neighboring regions, each local
controller updates the values of the Lagrange multipliers as
follows:

λλλ
k+1 = λλλ

k +α(θθθ m,k+1−θθθ
n,k+1). (10)

To summarize, each region iteratively solves (9), shares the
results with neighboring regions, and updates the Lagrange
multiplier using (10) until reaching consensus on the shared
variables. If the local problems are convex and differentiable,
selecting parameters satisfying the condition α < 2γ < β

guarantees that the APP algorithm will converge [4].

IV. NONIDEAL COMMUNICATIONS MODELS

The communication requirements for a distributed algorithm
depend on the shared variables. During each iteration, each
region shares the results of its local optimization by commu-
nicating with the neighboring regions. Since communication
networks are not ideal, the shared data may suffer from
data quality issues or interruptions that impact the distributed
algorithms’ performance. In this section, we introduce three
models for nonideal communications: additive Gaussian noise,
bad data (large errors), and intermittent loss of communication.

A. Additive Gaussian Noise

The data shared between connected regions may be subject
to noise resulting from imperfect communication. This noise
could be due to quantization error [29] or added to enforce
data privacy requirements [30]. To model noisy shared data,
we inject additive Gaussian noise into the shared variables:

θθθ noisy = θθθ noiseless +NNN(0,σnoise) (11)

where θθθ noisy is the data that is actually communicated to the
neighbors, θθθ noiseless is the true data, and NNN(0,σnoise) is a vector
of normally distributed random numbers with zero mean and
standard deviation of σnoise.

B. Bad Data

Neighboring regions may occasionally receive “bad data”,
i.e., data with large errors. Bad data may be due to an instanta-
neous bit error [31] or a malicious adversarial agent [32]. We
model a random injection of bad data at a specified occurrence
probability as shown in the following model:

θnoisy = θnoiseless + 2 R r,

where r =

{
U1−0.5 if U2 < p,
0 otherwise.

(12)

In (12), R is the maximum magnitude of the error and r is
the error multiplier that randomly selects the error magnitude.
The variables U1 and U2 are uniformly distributed random
numbers between [0,1], and p is the probability of bad data
occurrence per iteration.

C. Intermittent Communication Loss

Communications between the agents may occasionally fail
entirely for multiple iterations. For instance, communication
transmission collisions or instability of the communication
link can cause packet loss preventing the agents from sharing
data for a number of iterations [16]. We consider a simple
two-state model with success and fail states to represent the
loss of communication. If the communication channel is in
a success state, then the data will be transmitted while the
fail state means the data will be lost. The transition from one
state to another occurs with a constant probability. This model
is similar to Gilbert-Elliott Erasure channel used to model
pocket loss [33]. Although communication loss can have more
complicated occurrence behaviour, this model is used to model
pocket loss due to its tractability and reasonable behaviour
with respect to experimental data [34].

To model intermittent communication loss, we define the
failure probability, denoted λ f , as the transition probability
of the communication channel from success to fail states per
iteration given that the channel was in success state during the
previous iteration. Similar to the failure probability, we define
the repair probability, denoted λr, as the transition probability
from fail to success state. We also introduce a state variable
s for each communication channel connecting two regions,
where s = 1 is a success state and s = 0 is a fail state. We
use an indicator function 111{x}, which equals 1 if x is true
and 0 otherwise. We model the state of the communication
channel by sampling from a uniformly distributed random
number U at each iteration and compare it with the failure
(repair) probability to decide the channel state. If the controller
detects an interruption from a neighboring region, it uses
the value from the last successful data transmitted from this
region. The following pseudocode describes our intermittent
communication loss model:

Intermittent Communication Loss Model
1: generate a random number U ∈ [0,1]
2: if s = 1 then set s = 1−111{U < λ f }
3: else set s = 111{U < λr} end if
4: if s = 0 then set θθθ

k+1
shared = θθθ k

shared end if

5

V. PERFORMANCE ANALYSES

This section presents the numerical results of solving the
DC OPF problem using the three distributed algorithms. We
first present the results of each algorithm with ideal commu-
nication. We then compare the performance of the distributed
algorithms with the nonideal communication models in Sec-
tion IV. We use five test systems: the 5-bus system “WB5”
from [35] and the IEEE 14-bus, IEEE 118-bus, IEEE 300-
bus, and RTS GMLC 73-bus systems from MATPOWER [36].
The first two systems are decomposed into two regions, while
the latter three systems are decomposed into three regions.
We model the distributed algorithm using a combination of
JuMP [37] and PowerModels [38] libraries in Julia program-
ming language [39], and use Gurobi to solve the subproblems.

A. Performance with Ideal Communications

We use the distributed algorithms assuming each region
shares the exact results with neighboring regions at each
iteration. We use the two-norm of the mismatches between
the values of the shared variables to measure the consensus
and set the stopping criteria. We use the results of the
ideal communication to tune the parameters and evaluate the
convergence rates of the algorithms.

1) Alternating Direction Method of Multipliers (ADMM):
The ADMM algorithm’s performance depends on the value
selected for the parameter α . Fig. 2 shows the convergence
of the ADMM algorithm for the IEEE 118-bus system. For
this test system, we observe that the regions reach consensus
on the shared variables the fastest when the value of α is
1× 106 at the first 50 iterations. However, we obtain more
stable convergence when we set α equal 1× 105 and the
convergence became faster after 260 iterations. For the WB5,
IEEE 14-bus, RTS GMLC, and IEEE 300-bus systems, we
tune the value of α to be 1× 102, 1× 103, 1× 105 and
1×105, respectively. Selecting smaller values for α increases
the number of iterations to achieve consensus, while selecting
significantly larger values cause oscillations that reduces the
convergence rate.

Fig. 2. ADMM convergence with different parameters for the IEEE 118-bus
system with ideal communications.

2) Analytical Target Cascading (ATC): Similar to ADMM,
the ATC algorithm requires tuning one parameter (α). The
convergence of the shared variables for the IEEE 118-bus
system is shown in Fig. 3. We observe that setting the
parameter α = 1.1 increases the convergence rate by a factor
of two compared to α = 1.05. We see similar behaviour for the
other systems. Furthermore, the solver fails to find an optimal
solution to the local problems when the number of iterations
increases as shown in Fig. 3. This behaviour occurs due to the
parameter update criteria (8b), which exponentially increases
the penalty on the shared variable consistency term as the
number of iterations increases.

Fig. 3. ATC convergence with different parameters for the IEEE 118-bus
system with ideal communications.

3) Auxiliary Problem Principal (APP): Unlike ADMM
and ATC, the APP algorithm contains three parameters that
need to be tuned. We adopt the condition α = γ = 1

2 β from
prior literature [4] in order to simplify the parameter tuning.
For the IEEE 118-bus system with three regions, the APP
algorithm converges when α = 1× 104 as shown in Fig. 4.
The algorithm does not converge with the value of α = 1×103

after 1000 iterations. For the WB5, IEEE 14-bus, RTS GMLC,
and IEEE 300-bus systems, we find a value of α equal to
1× 102, 1× 103, 1× 105, and 1× 105, respectively, yield
a fast convergence rate. While selecting larger parameter
values might improve the convergence rate, this also degrades
the mismatch error in the shared variables achieved by the
algorithm.

4) Remark about the Algorithms’ Performance: Along with
the convergence rate, the quality of the final solution is another
metric for selecting parameters. To evaluate solution quality,
we use the Relative Gap (RG), defined as the absolute value
of the difference between the generation cost of the distributed
and centralized solutions divided by the centralized solution’s
cost. Table I summarizes the convergence rate results obtained
from the three algorithms after reaching consensus on the
shared variables with tolerance equal to 1× 10−4 radians
(5.7×10−3 degrees). The convergence rate of the distributed
algorithms depends on the selection of the tuning parameters.
Comparing the convergence rate of the three algorithms with
the tuning parameters that we select, no algorithm outperforms
the others, and the fastest algorithm varies depending on the
test system.

6

Fig. 4. APP convergence with different parameters for the IEEE 118-bus
system with ideal communications.

TABLE I
CONVERGENCE RESULTS WITH IDEAL COMMUNICATION

System Measure ADMM ATC APP

WB5

α 103 1.5 102

Iterations 61 22 34
Time (s) 0.1631 0.0642 0.0894

14-Bus

α 104 1.04 105

Iterations 116 149 107
Time (s) 0.3134 0.4064 0.2897

RTS

α 107 1.3 107

Iterations 33 35 33
Time (s) 0.8871 1.0216 0.9153

118-Bus

α 106 1.1 106

Iterations 55 87 62
Time (s) 0.4973 0.8381 0.5842

300-Bus

α 107 1.2 107

Iterations 130 62 100
Time (s) 2.1788 1.0833 1.7360

B. Performance with Additive Gaussian noise

We next assume the regions send shared variable infor-
mation with additive Gaussian noise as described in (11).
To compare the performance of the algorithms, we vary the
standard deviation of the noise σnoise. The consensus on the
voltage angles achieved by the three algorithms for the IEEE
118-bus system with standard deviation σ = 1×10−3 radians
is shown in Fig. 5. The results indicate that small noise
levels do not significantly impact the convergence rate of the
algorithms. Further, the three distributed algorithms converge
to a similar level of accuracy as the level of the injected
noise. However, the ATC algorithm can exhibit numerical
instability preventing the solver from solving the subproblems
when the algorithm is not terminated, which we attribute to
the parameter update rule (8b).

We run the distributed algorithms 100 times and calculate
the mean and the standard deviation of the shared variables
mismatch. The mean and the standard deviation of the shared
variables’ mismatches in the final solution, µ||∆θ || and σ||∆θ ||,
for the three algorithms with three noise levels are shown in
Table II. To visualize the performance differences, Fig. 6- 10
show the mean of the shared variable mismatches, µ||∆θ ||, in
the final solutions for the test systems as the noise standard

Fig. 5. The three algorithms’ convergence for the IEEE 118-bus system with
additive Gaussian noise (σnoise = 1×10−3).

deviation, σnoise, varies from 1×10−6 to 1×10−3. The three
algorithms achieve consensus on the shared variables with an
error that increases approximately linearly with the standard
deviation of the added noise, with a slightly lower mismatch
observed for ATC compared to ADMM and APP. This is
specially noticeable for the IEEE 300-bus case with low noise
standard deviating.

Fig. 6. Mean of the mismatch in the final solution for the WB5 system with
different noise levels.

Fig. 7. Mean of the mismatch in the final solution for the IEEE 14-bus system
with different noise levels.

7

TABLE II
MEAN (µ||∆θ ||) AND STANDARD DEVIATION (σ||∆θ ||) OF THE MISMATCH IN THE FINAL SOLUTION WITH DIFFERENT VALUES OF NOISE (σnoise)

Algorithm ADMM ATC APP
System σnoise 10−5 10−4 10−3 10−5 10−4 10−3 10−5 10−4 10−3

WB5 µ||∆θ || 4.8×10−5 4.3×10−4 4.6×10−3 4.4×10−5 3.9×10−4 4.4×10−3 5.0×10−5 4.4×10−4 4.7×10−3

σ||∆θ || 1.5×10−5 1.2×10−4 1.2×10−3 1.1×10−5 8.9×10−5 9.2×10−4 1.3×10−5 1.1×10−4 1.1×10−3

14-Bus µ||∆θ || 5.7×10−5 5.0×10−4 5.7×10−3 6.1×10−5 5.2×10−4 5.4×10−3 5.8×10−5 5.1×10−4 5.4×10−3

σ||∆θ || 1.3×10−5 1.1×10−4 1.5×10−3 1.5×10−5 1.1×10−4 1.3×10−3 1.4×10−5 1.1×10−4 1.3×10−3

RTS µ||∆θ || 1.3×10−4 1.1×10−3 1.0×10−2 8.0×10−5 7.7×10−4 8.0×10−3 1.2×10−4 1.1×10−3 1.0×10−2

σ||∆θ || 3.6×10−5 3.5×10−4 2.9×10−3 1.4×10−5 1.2×10−4 1.3×10−3 3.2×10−5 3.4×10−4 2.4×10−3

118-Bus µ||∆θ || 1.2×10−4 1.0×10−3 1.1×10−2 1.1×10−4 8.9×10−4 9.7×10−3 1.2×10−4 1.0×10−3 1.1×10−2

σ||∆θ || 2.3×10−5 2.0×10−4 2.0×10−3 1.5×10−5 1.4×10−4 1.2×10−3 2.0×10−5 1.8×10−4 1.8×10−3

300-Bus µ||∆θ || 1.2×10−3 2.3×10−3 1.9×10−2 1.5×10−4 1.2×10−3 1.1×10−2 1.1×10−3 1.9×10−3 1.8×10−2

σ||∆θ || 1.6×10−4 1.1×10−3 7.2×10−3 3.3×10−4 1.8×10−4 1.2×10−3 1.6×10−4 6.8×10−4 6.7×10−3

Fig. 8. Mean of the mismatch in the final solution for the IEEE 118-bus
system with different noise levels.

Fig. 9. Mean of the mismatch in the final solution for the RTS GMLC system
with different noise levels.

C. Performance with Bad Data

For the second type of noise, we inject bad data into the
shared variables as described in (12). We set the value for the
bad data magnitude R = 2 radians and vary the probability of
the injected errors. Fig. 11 shows the mismatches of the shared
variables with probabilities of bad data occurrence p = 0.1%
for the IEEE 118-bus system.

We observe that the mismatches return to the same con-
vergence pattern after a large error is injected in all three

Fig. 10. Mean of the mismatch in the final solution for the IEEE 300-bus
system with different noise levels.

Fig. 11. The three algorithms convergence for the IEEE 118-bus system with
bad data (p = 0.1%).

algorithms. To quantitatively compare the algorithms’ perfor-
mance, we estimate the probability of achieving the optimal
solution using 100 runs of the algorithm for varying probabil-
ities of bad data occurrence. We consider an algorithm to have
achieved the optimal solution if the value of the relative gap
is below 1% within a maximum of 1000 iterations. Table III
on the next page summarizes the results with probabilities of
bad data equal to 0.1% and 1%. The results show that the
distributed algorithms are highly susceptibility to the bad data
and they may fail to attain the optimal solution even when the

8

TABLE III
PERFORMANCE OF THE DISTRIBUTED ALGORITHMS WITH BAD DATA

Algorithm ADMM ATC APP
Probability of Bad Data 0.1% 1.0% 0.1% 1.0% 0.1% 1.0%

WB5 Success rate (%) 100 100 100 100 100 76
Avg. Iterations 32 41 16 17 25 31

14-Bus Success rate (%) 100 85 99 70 100 88
Avg. Iterations 32 59 44 48 21 43

RTS Success rate (%) 72 19 83 29 56 19
Avg. Iterations 96 1000 66 109 104 1000

118-Bus Success rate (%) 30 0 83 8 30 0
Avg. Iterations 123 NC 60 66 95 NC

300-Bus Success rate (%) 62 0 92 3 55 0
Avg. Iterations 34 NC 62 65 34 NC

NC: Not converged.

bad data probability is as low as 0.1%. Further, Fig. 12-16
show the success rates when varying the bad data probability
from 0.1% to 1% for the test systems. Comparing the three
algorithms, the ATC algorithm shows a better performance
to bad data errors. For the IEEE 118-bus, IEEE 300-bus,
and RTS GMLC test systems, the ATC algorithm attains
the optimal solution more than 80% of the time when the
probability of the bad data is around 0.1%, while the ADMM
and APP fail 40% of the time in the same cases.

Fig. 12. Success rates for the WB5 system with different rates of bad data
injection.

Fig. 13. Success rates for the IEEE 14-bus system with different rates of bad
data injection.

Fig. 14. Success rates for the IEEE 118-bus system with different rates of
bad data injection.

Fig. 15. Success rates for the RTS GMLC system with different rates of bad
data injection.

D. Performance with Intermittent Communication Loss

This section compares the distributed algorithms’ perfor-
mance under the intermittent communication loss model in
Section IV-C. Fig. 17 shows the convergence characteristics of
the shared variable mismatches for the three algorithms with
failure probability λ f = 10% and repair probability λr = 10%.

The results indicate that the distributed algorithms achieve
consensus on the values of the shared variables and the
mismatch almost always decreases as the number of iterations

9

Fig. 16. Success rates for the IEEE 300-bus system with different rates of
bad data injection.

Fig. 17. The three algorithms convergence for the IEEE 118-bus system with
intermittent communication loss (λ f = 10%, λr = 10%).

increases for all cases. However, the final solutions can be far
from optimal with high values of the relative gap. To quali-
tatively compare algorithmic performance during intermittent
communication loss, Table IV describes how the probability of
achieving the optimal solution changes with failure probability
equal to 1% and 5% per iteration. Each of the results in this
table are computed from 100 runs of the algorithm with a
constant repair rate of 10% per iteration. We again consider an
algorithm to have achieved the optimal solution if the relative
gap is below 1% within a maximum of 1000 iterations.

The results show that the three algorithm performance is
impacted by the communication loss values to varying degrees.
With a low probability of failure, the algorithms manage to
archive the optimal solution most of the time. Comparing the
three algorithms, the ATC algorithm is the most susceptible
algorithm to communication loss. The ATC algorithm fails
around half the time to obtain the optimal solution for the
largest three test system when the failure probability is 1%,
and almost all the time when the failure probability is 5%.

Fig. 18- 22 present a comparison between the algorithms’
performance when subjected to intermittent communication
loss by varying the failure probability from 0.5% to 15%,
while fixing the repair probability to 10%. The ADMM
algorithm shows a slightly better performance than the APP

algorithm for the five test systems. Overall, the results suggest
that the ADMM and APP algorithms outperform the ATC
algorithm with the intermittent communication loss model for
all test systems we considered in this study.

Fig. 18. Success rates for the WB5 system with different communication
failure probability. Communication repair probability λr = 10%.

Fig. 19. Success rates for the IEEE 14-bus system with different communi-
cation failure probability. Communication repair probability λr = 10%.

Fig. 20. Success rates for the IEEE 118-bus system with different commu-
nication failure probability. Communication repair probability λr = 10%.

10

TABLE IV
PERFORMANCE OF THE DISTRIBUTED ALGORITHMS WITH INTERMITTENT COMMUNICATION LOSS

Algorithm ADMM ATC APP
Failure Probability 1% 5% 1% 5% 1% 5%

WB5 Success rate (%) 97 88 92 71 99 89
Avg. Iterations 36 45 17 24 27 37

14-Bus Success rate (%) 84 69 82 38 94 57
Avg. Iterations 32 34 43 45 22 26

RTS Success rate (%) 70 28 33 7 58 29
Avg. Iterations 81 91 69 124 71 94

118-Bus Success rate (%) 88 48 46 1 77 19
Avg. Iterations 89 77 60 54 75 61

300-Bus Success rate (%) 99 95 65 6 99 89
Avg. Iterations 37 71 65 75 35 71

Fig. 21. Success rates for the RTS GMLC system with different communi-
cation failure probability. Communication repair probability λr = 10%.

Fig. 22. Success rates for the IEEE 300-bus system with different commu-
nication failure probability. Communication repair probability λr = 10%.

E. Discussion and Comparison

Parameter tuning plays a major role in the performance of
distributed algorithms as it strongly impacts the convergence
rate. The parameters in the selected algorithms are associated
with the penalty terms for the relaxed consistency constraints.
We observe that all three algorithms converge for a certain
range of parameter values. Generally speaking, selecting large
parameter values will prevent the algorithm from achieving
the optimal solution and, in some cases, large values might

cause the algorithm to diverge. On the other hand, small
values reduce the convergence rate and, in extreme cases, the
algorithm can diverge. We also observe that different systems
and cost functions might require repeating the parameter
tuning step.

The results shown in this paper indicate the importance of
data integrity on the performance of the distributed algorithms.
We observe various responses from the distributed algorithms
to the error models. With Gaussian communication noise, all
three algorithms converge to an accuracy that is proportional
to the standard deviation of the noise. We observed a slightly
better performance when using the ATC algorithm compared
to the other two algorithms. Among the three algorithms
considered in this paper, the ATC algorithm has the best
performance with the presence of bad data, while the ADMM
and APP algorithms have the best performance when there is
a high intermittent communication loss probability.

Both the ADMM and APP algorithms have a very similar
performance pattern for the three noise models with slightly
better performance observed when using the ADMM algo-
rithm. The ATC algorithm on the other hand has a different
performance pattern. Further, the ATC algorithm’s final solu-
tion can have a high relative gap from the optimal solution
or lead to numerical instability in the optimization solver if
consensus is not achieved, i.e., the stopping criteria are not
met after many iterations. This happens due to the parameter
update for the ATC algorithm (8b), which exponentially in-
creases the penalty on the consistency term in the objective as
the number of iterations increases. This suggests that reliable
performance of the ATC algorithm in the presence of noise
requires either using another stopping criterion or modifying
the update step in the algorithm.

VI. CONCLUSION AND FUTURE WORK

Distributed algorithms have many attractive features for
solving power system optimization problems, especially for
systems with many independent microgrids. Distributed al-
gorithms allow interconnected systems to cooperatively solve
large optimization problems while maintaining their autonomy.
However, the performance of a distributed algorithm strongly
depends on the quality of the shared data. In this paper, we
numerically show distributed algorithms’ responses to data
quality issues. We evaluate the performance of ADMM, ATC,
and APP distributed algorithms using three noise models.

11

The results show that the three algorithms perform well with
additive Gaussian noise as long as the stopping criteria and the
required solution accuracy are lower than the error standard
deviation. The results also show that the bad data errors have
a severe impact on the quality of the distributed algorithms’
solutions even with low error probability. Moreover, the im-
pacts of intermittent communication loss might not be visible
by the local controllers, as the distributed algorithms might
reach a consensus on the shared variables corresponding to an
operating point that is far from optimal.

As extensions to this work, there are other communication
and data integrity issues requiring detailed investigations.
For power systems applications, these include asynchronous
data sharing between neighboring regions and communication
latency. We further plan to use hardware-in-the-loop testing
with an actual communication network to investigate the per-
formance of distributed algorithms in practical setups. Another
direction for future work is studying how different power
flow representations affect the convergence rates for problems
where the DC approximation is inapplicable.

REFERENCES

[1] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti,
R. Baldick, and J. Lavaei, “A survey of distributed optimization and
control algorithms for electric power systems,” IEEE Trans. Smart Grid,
vol. 8, no. 6, pp. 2941–2962, 2017.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2010.

[3] A. Kargarian, M. Mehrtash, and B. Falahati, “Decentralized implemen-
tation of unit commitment with analytical target cascading: A parallel
approach,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3981–3993,
2018.

[4] B. H. Kim and R. Baldick, “Coarse-grained distributed optimal power
flow,” IEEE Trans. Power Syst., vol. 12, no. 2, pp. 932–939, 1997.

[5] B. H. Kim and R. Baldick, “A comparison of distributed optimal power
flow algorithms,” IEEE Trans. Power Syst., vol. 15, no. 2, pp. 599–604,
2000.

[6] A. Kargarian, M. Mehrtash, and B. Falahati, “Decentralized implemen-
tation of unit commitment with analytical target cascading: A parallel
approach,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3981–3993,
2017.

[7] I. Murzakhanov, A. Malakhov, and E. Gryazina, “Suboptimality of
decentralized methods for OPF,” in IEEE Milan PowerTech, 2019.

[8] J. Mohammadi, G. Hug, and S. Kar, “Role of communication on the
convergence rate of fully distributed DC optimal power flow,” in IEEE
Int. Conf. Smart Grid Commun. (SmartGridComm), 2014, pp. 43–48.

[9] J. Guo, G. Hug, and O. K. Tonguz, “On the role of communications
plane in distributed optimization of power systems,” IEEE Trans. Industr.
Inform., vol. 14, no. 7, pp. 2903–2913, 2018.

[10] H. Li, C. Huang, G. Chen, X. Liao, and T. Huang, “Distributed con-
sensus optimization in multiagent networks with time-varying directed
topologies and quantized communication,” IEEE Trans. Cybern., vol. 47,
no. 8, pp. 2044–2057, 2017.

[11] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “Distributed
subgradient methods and quantization effects,” in 47th IEEE Conf. Decis.
Control (CDC), 2008, pp. 4177–4184.

[12] D. Yuan, S. Xu, H. Zhao, and L. Rong, “Distributed dual averaging
method for multi-agent optimization with quantized communication,”
Syst. Control Lett., vol. 61, no. 11, pp. 1053–1061, 2012.

[13] L. Majzoobi, F. Lahouti, and V. Shah-Mansouri, “Analysis of distributed
ADMM algorithm for consensus optimization in presence of node error,”
IEEE Trans. Signal Process., vol. 67, no. 7, pp. 1774–1784, 2019.

[14] C. Shi and G. Yang, “Distributed optimization under unbalanced di-
graphs with node errors: Robustness of surplus-based dual averaging
algorithm,” IEEE Trans. Control Netw. Syst., pp. 1–1, 2020.

[15] H. Li, B. Jin, and W. Yan, “Distributed model predictive control
for linear systems under communication noise: Algorithm, theory and
implementation,” Automatica, vol. 125, p. 109422, 2021.

[16] S. Chen, W. Lan, J. Ma, and X. Yu, “Distributed optimization design of
multi-agent systems with packet losses,” in IEEE 16th Int. Conf. Control
Autom., 2020, pp. 1241–1246.

[17] X. Liang, Z. Li, W. Huang, Q. H. Wu, and H. Zhang, “Relaxed
alternating direction method of multipliers for hedging communication
packet loss in integrated electrical and heating system,” J. Mod. Power
Syst. Clean Energy, vol. 8, no. 5, pp. 874–883, 2020.

[18] B. Stott, J. Jardim, and O. Alsac, “DC power flow revisited,” IEEE
Trans. Power Syst., vol. 24, no. 3, pp. 1290–1300, 2009.

[19] D. K. Molzahn and I. A. Hiskens, “A Survey of Relaxations and
Approximations of the Power Flow Equations,” Found. Trends Electric
Energy Syst., vol. 4, no. 1-2, pp. 1–221, February 2019.

[20] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear
variational problems via finite element approximation,” Comput. Math.
Appl., vol. 2, no. 1, pp. 17–40, 1976.

[21] R. Glowinski and A. Marroco, “Sur l’approximation, par éléments
finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe
de problèmes de dirichlet non linéaires,” ESAIM: Mathematical Mod-
elling and Numerical Analysis-Modélisation Mathématique et Analyse
Numérique, vol. 9, no. R2, pp. 41–76, 1975.

[22] A. X. Sun, D. T. Phan, and S. Ghosh, “Fully decentralized AC optimal
power flow algorithms,” in IEEE Power & Energy Society General
Meeting, 2013, pp. 1–5.

[23] T. Erseghe, “Distributed optimal power flow using ADMM,” IEEE
Trans. Power Syst., vol. 29, no. 5, pp. 2370–2380, 2014.

[24] M. Kraning, E. Chu, J. Lavaei, and S. Boyd, “Dynamic network energy
management via proximal message passing,” Found. Trends Optimiz.,
vol. 1, no. 2, pp. 70–122, 2013.

[25] N. Michelena, H. Park, and P. Y. Papalambros, “Convergence properties
of analytical target cascading,” AIAA J., vol. 41, no. 5, pp. 897–905,
2003.

[26] S. Tosserams, L. Etman, P. Papalambros, and J. Rooda, “An augmented
Lagrangian relaxation for analytical target cascading using the alter-
nating direction method of multipliers,” Struct. Multidiscip. Optimiz.,
vol. 31, no. 3, pp. 176–189, 2006.

[27] G. Cohen, “Auxiliary problem principle and decomposition of optimiza-
tion problems,” J. Optimiz. Theory App., vol. 32, no. 3, pp. 277–305,
1980.

[28] L. Zhao, D. Zhu, and B. Jiang, “Auxiliary problem principle of aug-
mented Lagrangian with varying core functions for large-scale structured
convex problems,” arXiv:1512.04175, 2015.

[29] D. Marco and D. L. Neuhoff, “The validity of the additive noise model
for uniform scalar quantizers,” IEEE Trans. Inf. Theory, vol. 51, no. 5,
pp. 1739–1755, 2005.

[30] T. Zhang and Q. Zhu, “Dynamic differential privacy for ADMM-based
distributed classification learning,” IEEE Trans. Inf. Forensics Security,
vol. 12, no. 1, pp. 172–187, 2017.

[31] M. Jeruchim, “Techniques for estimating the bit error rate in the simu-
lation of digital communication systems,” IEEE J. Sel. Areas Commun.,
vol. 2, no. 1, pp. 153–170, 1984.

[32] F. Pasqualetti, R. Carli, and F. Bullo, “A distributed method for state
estimation and false data detection in power networks,” in IEEE Int.
Conf. Smart Grid Commun. (SmartGridComm), 2011, pp. 469–474.

[33] G. Haßlinger and O. Hohlfeld, “The gilbert-elliott model for packet
loss in real time services on the internet,” in 14th GI/ITG Conference-
Measurement, Modelling and Evalutation of Computer and Communi-
cation Systems. VDE, 2008, pp. 1–15.

[34] E. Martinian and C. Sundberg, “Decreasing distortion using low delay
codes for bursty packet loss channels,” IEEE Trans. Multimedia, vol. 5,
no. 3, pp. 285–292, 2003.

[35] W. A. Bukhsh, A. Grothey, K. I. M. McKinnon, and P. A. Trodden,
“Local solutions of the optimal power flow problem,” IEEE Trans. Power
Syst., vol. 28, no. 4, pp. 4780–4788, 2013.

[36] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas,
“MATPOWER: Steady-state operations, planning, and analysis tools
for power systems research and education,” IEEE Trans. Power Syst.,
vol. 26, no. 1, pp. 12–19, 2011.

[37] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A modeling language
for mathematical optimization,” SIAM Rev., vol. 59, no. 2, pp. 295–320,
2017.

[38] C. Coffrin, R. Bent, K. Sundar, Y. Ng, and M. Lubin, “PowerModels.jl:
An open-source framework for exploring power flow formulations,” in
Power Systems Computation Conference (PSCC), 2018.

[39] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Rev., vol. 59, no. 1, pp. 65–98,
2017.

