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Abstract—Efficiently solving large-scale optimal power flow
(OPF) problems is challenging due to the high dimensionality
and interconnectivity of modern power systems. Decomposition
methods offer a promising solution via partitioning large prob-
lems into smaller subproblems that can be solved in parallel, often
with local information. These approaches reduce computational
burden and improve flexibility by allowing agents to manage their
local models. This article introduces a decomposition method that
enables a distributed solution to OPF problems. The proposed
method solves OPF problems with a sensitivity-based formulation
using the alternating direction method of multipliers (ADMM)
algorithm. We also propose a distributed method to compute
system-wide sensitivities without sharing local parameters. This
approach facilitates scalable optimization while satisfying global
constraints and limiting data sharing. We demonstrate the effec-
tiveness of the proposed approach using a large set of test systems
and compare its performance against existing decomposition
methods. The results show that the proposed method significantly
outperforms the typical phase-angle formulation with a 14-times
faster computation speed on average.

Index Terms—Distributed Optimization, Kron Reduction, Op-
timal Power Flow, Power Transfer Distribution Factors.

I. INTRODUCTION

Electric power systems are undergoing unprecedented
changes with a rapid growth of demand and distributed energy
resources. System operators face many emerging challenges
in coordinating a massive number of generators, maintaining
updated systems models, and providing fast solutions to cope
with unpredicted changes in generation and demand. This shift
motivates research into efficient decentralized operations using
distributed optimization and decomposition methods [1].

Distributed optimization allows multiple agents to collab-
oratively solve large optimization problems via decomposing
the problem into smaller subproblems. Each agent maintains
a local model of their subproblem and controls their area
of the system. Distributed algorithms can improve scalability
and maintainability by allowing local agents to solve local
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Fig. 1. Decomposition diagram for the IEEE 73-bus Reliability Test System
into three areas. The top figure shows the system’s three areas with five tie-
lines prior the decomposition. The bottom figure shows the reduced system
of each area with additional reduced lines between boundary buses.

subproblems in parallel. Moreover, decomposing large-scale
problems distributes computational burden and memory usage,
reducing the amount of stored data at any specific location, and
allows local agents to solve local subproblems in parallel.

This article proposes a distributed algorithm that solves
optimal power flow (OPF) problems with a novel decomposi-
tion method. Unlike typical decomposition methods based on
phase-angle formulations, we use Kron reduction to represent
the subproblems as shown in Fig. 1. The boundary buses of
the subproblems capture information from all other subprob-
lems, since each subproblem is a projected version of the
original system. We then use the alternating direction method
of multipliers (ADMM) algorithm to solve OPF problems
with a sensitivity-based formulation. The proposed method
converges to the optimal solution and, as the results later in this
article show, computationally outperforms typical distributed
algorithms based on phase-angle formulations.

A. Related Work

Several distributed optimization algorithms have been pro-
posed to solve OPF problems, such as ADMM [2], Analytical
Target Cascading [3], and Auxiliary Problem Principle [4],
and Augmented Lagrangian Alternating Direction Inexact
Newton [5]. Distributed algorithms decompose problems into
smaller subproblems, typically based on the spatial proximity
of the buses. Problem decomposition has been investigated
in the literature from two perspectives. The first is how
to partition a system, i.e., which variables and constraints
belong to which subproblem. The second is how to separate
neighboring systems, i.e., what type of consistency constraints



should be imposed between coupled subproblems. This article
proposes a new approach to separate neighboring systems.
Throughout the literature, we observe three approaches to
separate two neighboring areas. The first approach, presented
in [3], [4], splits the subproblems by duplicating the variables
and constraints of the tie-lines connecting two areas. This
approach uses auxiliary variables corresponding to the line
flow and the voltages at both ends of the tie-lines and imposes
consistency constraints. The second approach, used in [5],
decomposes the system by splitting the tie-lines that connect
two areas. Then, each area takes a copy of the tie-line
with double the admittance value and imposes consistency
constraints to equate the voltage values and line flows. The
third approach splits the subproblems at the shared buses that
belong to two areas [2]. Our previous work in [6] compares the
three approaches and numerically shows that the first method,
where the splitting occurs at the tie-lines, achieves the fastest
convergence speed compared to the other two approaches.
Most of the distributed optimization methods proposed in
the literature, including all the aforementioned references, use
the phase-angle formulation of the OPF problem. An alterna-
tive OPF formulation is based on sensitivities, such as Power
Transfer Distribution Factors (PTDFs). The PTDF formulation
is widely used to solve DC optimal power flow (DCOPF)
problems in both research and industry. In particular, PTDFs
are often used in market clearing, congestion management,
and contingency analysis, as they provide a fast and accurate
way to relate power injections and line flows using the DC
power flow approximation [7]. The main advantage of using
the PTDF formulation is that it reduces the number of decision
variables and constraints, which can be significant for large-
scale problems [8]. Despite their widespread use in centralized
DCOPF formulations, the application of PTDF in distributed
OPF settings has received limited attention in the literature.
Reference [9] solves distributed OPF problems with PTDF
formulations for market clearing purposes. However, this
method uses global PTDFs and the system parameters are
known to all participants. Reference [10] proposes a dis-
tributed algorithm to solve OPF problems with a local PTDF
formulation, and shows that the power flows from neighboring
areas are a convex combination of power injections of the
external buses. However, this method only allows for two-area
decompositions, requiring additional calculations for multi-
area decompositions. Another method proposed in [11] uses
local PTDFs and allows multi-area decompositions. However,
this method is only applicable for systems with no loops that
pass through multiple areas because there is no guarantee
of recovering phase angles from the solution that satisfy the
DCOPF constraints. To avoid this, [12] and [13] use phase
angle constraints for the tie-lines between areas along with
local PTDFs. Thus, this approach requires additional equality
constraints that limit the benefits of PTDF formulations.

B. Contributions

This article introduces a method for solving OPF problems
with a sensitivity-based formulation using the ADMM algo-

rithm. The main contributions of this article are:

o development of a method based on Kron reduction to
decompose OPF problems into multiple subproblems
with a mathematical proof guaranteeing consistency with
the original central problem,

o development of a distributed method to calculate the local
PTDF matrices without sharing the local parameters,

¢ proposition of an ADMM-based distributed algorithm for
solving OPF problems with the PTDF formulation, and

o demonstration of the proposed method using numerical
results with 44 test systems that have up to 6500 buses.

Unlike the method in [10], which is only applicable to systems
with two areas, the method proposed in this article enables
solving OPF problems with any number of areas. Moreover,
we propose a systematic method to calculate local PTDF
matrices without sharing the local parameters, which involves
solving a simple weighted least squares (WLS) problem for
each area compared to solving an OPF instance for each
column of the local PTDF matrix as proposed in [10]. Finally,
the proposed method uses only the PTDF formulation and
does not require constraints on phase angles between areas
as in [12] and [13]. Thus, the proposed method brings the
advantages of PTDF-based formulations to distributed set-
tings. To the best of our knowledge, this is the first method
that solves OPF problems with the PTDF formulation using
distributed optimization that permits multiple-area decompo-
sitions. In addition, the reduced representation of the areas is
essentially a projection of the full system, which facilitates the
exchange of more useful information among areas, leading to
a faster convergence speed compared to typical phase-angle
formulations, as the results at the end of this article show.

C. Mathematical Notation

Sets and Subsets: We represent a power system network by
a graph G(N, &), where N and & are the sets of buses and
lines. We denote the sets of generators and loads as G and
L. We use G, C G and £,, C L to denote the subsets of
generators and loads connected to bus n € A. We use A to
denote the set of areas and define N* C N, £ C &, G* C G,
and L% C L as subsets of buses, lines, generators, and loads
belonging to area a € A. We use A_, to denote the set of all
elements in A except a, i.e., A_, = A\ {a}.

Vectors and Matrices: For a vector z € RV! with some set
of integers A/, the subscript x,, denotes the entry corresponds
to n € NV, and the superscript z* denotes the vector containing
the entries correspond to the elements in o« C A. Similarly,
for a matrix A € RWVIXIMI the subscript A;; denotes the
entry corresponds to ¢ € N and j € M, and the superscript
AP denotes the block matrix containing the corresponding
rows and columns to the elements in o C A and 8 C M.

Variables and Parameters: For a power system G(NE),
the decision variables are the phase angles and power injec-
tions of the buses 6 and p € RMVI, the power outputs of
the generators g € RI9!, and the line flows f € RI¢l. The
parameters are the power demands of the loads d € RIl, the
upper and lower bounds of the generators § and g € RI9!,



the maximum line flows f € RI€l, and the susceptances
of the lines b € RI€l. The matrices B € RWIXINI and
BE ¢ RIEIXINT are the susceptance matrix and the line
susceptance matrix, defined in [14]. We use a polynomial cost
function ¢k (gr) = Ckgg]% + ck19k + co for generator k € G.

D. Organization

The remainder of the article is organized as follows. Sec-
tion II reviews the DCOPF problem with the PTDF formula-
tion. Section III presents a distributed optimization algorithm
for solving OPF problems with the PTDF formulation. Sec-
tion IV demonstrates the proposed algorithm via numerical
simulations. Section V presents conclusions and future work.

II. BACKGROUND

OPF is a key optimization problem that finds the operat-
ing setpoints while satisfying the power flow equations and
engineering constraints. The power flow equations govern
the relationship between the voltages, the power injections,
and the line flows, while the engineering constraints bound
the decision variables. Various OPF formulations proposed
in the literature use different linearization and relaxation
methods [14]. We consider a linear representation of the OPF
problem such as the common DCOPF approximation [15],
which uses the linear DC power flow approximation instead
of the nonlinear AC power flow equations. Although we use
the DCOPF formulation in this article, the proposed methods
apply to other linear OPF representations that allow us to
calculate system sensitivities.

A. Power Transfer Distribution Factors

The PTDF-OPF is an equivalent version of the DCOPF
problem that uses injection shift factors (ISFs). The ISFs
calculate the rate of change in line flows with respect to a
unit change in power injections balanced by an injection at a
reference bus. The PTDF matrix, denoted as H € RIEXIN ‘,
uses the ISFs to map the power injections to the line flows as

f=Hp.

Using the DC power flow approximation, we have

p=B 0, (1a)
f=BFo. (1b)
Applying the chain rule on (1), we get the PTDF matrix as
of of 00 E o1
=—=—- —=B"DB"". 2
dp 00 Op @

Since the susceptance matrix B is singular, we invert the
reduced matrix defined by omitting the column and row
corresponding to a reference bus. This formulation implicitly
assumes that the reference bus compensates for any mismatch
in power injections. The selection of the reference bus is
arbitrary, as we can always compensate for an injection from
one bus with an injection of equal magnitude to another bus,
which cancels the injection to the reference bus.

B. Central Formulation
Using the PTDF matrix, the PTDF-OPF formulation is

minimize c , 3a
i kz k(gr) (3a)
€g
subject to: Z gk — Z d;y =0, (3b)
keg lel
fe= ) Hen (D gr— Y ), Ve€€&, (o)
neN kegn leL,
9 < 9k < G Yk € G, (3d)
—fe < fe < fo Ve e £. (3e)

The objective (3a) minimizes the generation cost. Con-
straints (3b) and (3c) are the power balance and power flow
equations using the PTDF matrix. Inequalities (3d) and (3e)
bound the generators’ outputs and the line flows.

The computational advantages of using PTDF-OPF are
significant, especially when a small subset of the line flow
bounds are potentially binding. In such cases, we can eliminate
the columns and rows of the constraints matrix corresponding
to non-binding line flows, which simplifies the problem and
enhances computational efficiency. There are similar PTDF-
ACOPF formulations that use a first-order Taylor expansion
around a nominal operating setpoint to compute linear sensi-
tivities for active and reactive line flows [16].

III. DISTRIBUTED SENSITIVITY-BASED
OPTIMAL POWER FLOW

This section introduces a distributed PTDF-OPF formulation
using the ADMM algorithm. In distributed settings, there are
multiple agents, each of which operates a different portion of
the power system network, with a fully connected communica-
tion network between agents.We first develop a decomposition
scheme based on Kron reduction. We then present a distributed
method to calculate the local PTDF matrix. After that, we
define consistency constraints that ensure recovering a feasible
DCOPF solution. Finally, we present the ADMM algorithm to
solve distributed PTDF-OPF problems.

Solving PTDF-OPF problems with distributed optimization
requires overcoming two main challenges.

1) The value of a line flow depends on the power injections
from all buses as implied by (3c). To calculate a line
flow, we thus need the power injections at the internal
buses of other areas, as well as the global PTDF matrix.

2) The PTDF formulation requires a reference bus that
compensates for any mismatch in the system power
balance (3b). Thus, the power injection of the reference
bus depends on the total mismatch in the power balance.

To overcome these challenges, we next present a decompo-
sition scheme that ensures sharing the required information
among agents to formulate the distributed PTDF-OPF.

A. System Decomposition

Common decompositions to solve OPF problems with dis-
tributed algorithms similar to the methods in [6] are not



applicable for PTDF-OPF, as explained previously. Instead, we
use Kron reduction to find an equivalent system that eliminates
neighboring areas and encompass information from the whole
system. Intuitively, the reduced systems are a projected version
of the original system with a lower dimension. When multiple
agents collaborate in solving the problem, they can recover
the central problem with the original dimension.

Kron reduction is a well-known technique in electric circuits
and power systems analysis to find a reduced equivalent
system [17], [18]. For a power system G(N,E&), let o C N
be the subset of buses we want to keep and 8 C N be the
subset of the buses that we want to eliminate. We write the

power balance equations (1a) as
pa Boc Boe[f JALe?
[p ] B [Bﬂa Bﬁﬂ] [95] '
Kron reduction uses Gaussian elimination to get the reduced
system. The reduced system’s power balance equations are

“4)

where B = B — B*# (BAF)~1 B is the reduced matrix
and A = —B*? (BPP)~! is the accompanying matrix.

The distributed PTDF-OPF problem uses the power balance
of the reduced system (4). The reduced system of any area
includes the internal buses, the boundary buses at both ends
of tie-lines, and the reference bus. We include the reference bus
because the PTDF-OPF uses the reference bus to compensate
for changes in power injections.

Comparing the proposed method with the method in [10],
we have three main differences. First, the reference bus is
not necessarily internal to each area. This implies that the
contribution of the boundary buses to the internal lines is
a linear rather than a convex combination of the external
buses. Second, the proposed decomposition does not assume
that shared buses have zero power injection. Third, instead of
solving DCOPF problems to compute the PTDF matrix entries,
the proposed decomposition allows for a systematic approach
to calculate the local PTDF matrix without sharing the internal
parameters via solving a WLS problem, as explained next.

p=p"+Ap’=B6",

B. Distributed Sensitivity Approximation

The proposed decomposition requires finding the reduced
matrix B and the accompanying matrix A for each area,
which involves inverting the matrix B”? that contains the
system parameters from other areas. This section presents a
distributed method to calculate the Kron reduction matrices
without sharing the internal system parameters.'

The method proposed in [10] calculates the system sensi-
tivities via solving a sequence of OPF instances. Each OPF
instance is used to calculate a single column of a local PTDF
matrix. In contrast, our method calculates a local PTDF matrix

'The agents do not directly share internal data regarding their areas, which
has potential advantages regarding privacy. However, like other distributed op-
timization methods, there are no rigorous privacy guarantees in the absence of
more sophisticated techniques, such as differential privacy methodologies [19],
which can be applied to the method proposed in this article.

via solving a single WLS problem that finds the reduced
system parameters, which can then be used locally to calculate
the PTDF matrix.

Our approach is based on the approximate matrix inversion
proposed in [20]. To find the inverse of a square matrix
X € R"™ ™ of size n, this method solves an unconstrained
optimization problem in the form

X~ ~ argmin HXQ—InH?,, 5
Q

where |- || is the Frobenius norm and I is the identity
matrix of appropriate size. Solving (5) requires full access
to the matrix X, which in our case requires full access to
the system parameters to solve for the inverse of B%?. We
modify this approximation to calculate the Kron reduction for
each area without sharing the local system parameters. Instead
of inverting B%?, we directly calculate A = —B*? (BAF)~1
using distributed optimization.

Let A be the set of areas. For area i € A, we use o' and
ﬂi to denote the set of reduced and eliminated buses, and let
Bt and A be the reduced and accompanying matrices from
the Kron reduction in (4). We can approximate A’ as

A ~ arg min HQBM—FBM;H?. (6)
Q
We dropped i in o and 3° for notational simplicity.

Let B?? ¢ RIFIXIN*NSI be a matrix containing the columns
of BP8 that correspond to the internal buses of a € A_;.
Similarly, B2# € RI*IXIN*08l contains the columns of B
that correspond to the internal buses of a € A_;. We introduce
auxiliary variables @), for all a € A_;, and formulate an
equivalent problem to (6) as

>

a€A_;

A® mzarg min

yWa

|QuBI*+BS?|1Q = Qu,Va € A

This is a typical consensus problem that can be solved itera-
tively using the consensus ADMM algorithm [21]. Moreover,
we can solve the subproblems analytically as follows

QU+ .= (B2P(BPF)T— %)\gk)_ gQ(k))(BgB(BfB)T+ g[)_la

Ya € A_;, (Ta)
1
QU+ — e Z QU+ (7b)
“tlaca_,
AkHD = \K) | p(@Uk+D) — U1y, Ya € A_;, (7c)

where p > 0 is a tuning parameter, \, € RI*/*I8| is a matrix
of Lagrange multipliers, and I is the identity matrix of appro-
priate size. Agents iteratively solve this problem in parallel,
until the values of ||Q, — Q||?, and ||Q.BS? +Bgﬁ||i, for
all a € A_;, are below a predefined tolerance.

The solution of (7b) converges to the accompanying matrix
A, which can be used to calculate the reduced matrix B°
for all ¢ € A. Finally, agents use the reduced matrix B to
calculate the local PTDF matrix as described in (2).
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Fig. 2. An example of two areas with a tie-line that shows the elements of
the sets appearing in the consistency constraints.

Using this approach, agents calculate the local PTDF ma-
trices without directly sharing the local parameters. Since the
reduced system is a projection of the full system, the local
PTDF encapsulates the sensitivities of the full system. In fact,
the accompanying matrix A is a linear mapping from the
eliminated buses to the boundary buses, which the reduced
system uses to calculate the eliminated buses’ contributions.

C. Consistency Constraints

This section introduces consistency constraints that ensure
recovering the actual problem when using the proposed de-
composition. We model the line flow from/to the eliminated
buses as fictitious generators (i.e., active power output can
take positive and negative values) and impose consistency
constraints to equate the reduced generators with the line flows
between the areas. Next, we formalize this approach.

Let R be the set of shared buses, and R C R be the
subset of shared buses with area 7, including the internal and
boundary buses denoted R C R? and R} C R, respec-
tively. The subproblem of area ¢ includes reduced generators
connected to boundary buses R} that represent the line flows
from neighboring agents. Recall that N is the set of internal
buses in area i. Thus, o’ == N" U R} and 8" :== N \ o’. An
example of the sets defined in this section is shown in Fig. 2.
Using this notation, we define the consistency constraints as

vELRINN? vEBNNI

- Z Z Anv pv Z Z Anv pv - (8)

a€A_i; veBiNNa a€A_ij veEBINNa

Imposing the consistency constraints (8) for all shared vari-
ables n € R ensures the decomposed problem is consistent
with the central PTDF-OPF (3), as stated in the theorem below.

Theorem 1. Given a connected system G(N,E) with a sus-
ceptance matrix B. Assume the susceptances are independent
and have non-zero values. Using the decomposition described
in Section III-A to decompose the problem into subproblems
A, a solution p* and §° € RN i € A is a solution to
the power balance equations of the reduced systems (4) and
satisfies the consistency constraints (8) if and only if there
is a unique solution p and 0 € RWI 10 the power balance
equations of the original system (1) such that 0,, = ¢, for all
neNicA

The proof is shown in Appendix A

D. Distributed Formulation

This section describes the use of the ADMM algorithm
to solve PTDF-OPF with the decomposition described in
Section III-A. We introduce auxiliary variables z® € RIRI,
for all a € A, and a consistency constraint (8) for all shared
buses n € R. We rewrite the consistency constraint of a shared
bus n inside area ¢ and on the boundary of area j as

=ph+ >, A, p (9a)
’UE,@”WN’
=—p), - Z AL, (9b)
veEBINNI
Z Anv pv =+ Z Arw pvvva S A—ij7 (9C)
vERINN@ veERINN
>z =o. (9d)

Each agent uses one of (9a)—(9c¢) in their subproblem,
while (9d) is a global constraint that ensures satisfying (8). For
the example above with the shared bus n inside area ¢ and on
the boundary of area j, agent ¢ takes (9a), agent j takes (9b),
and the other agents take (9c). We collect the right-hand side
of (9) in a vector (! € RI®I that contains the shared variables
associated with agent ¢, including the shared variables that are
not in the reduced system of agent ¢, such that

Pt Y Al pi ifneR N R},
veEBINN?
i
- zfém Pt S A bl TR ERE R,
veEBLNN vEBRINN*

Each agent uses one of the three expressions in (10) based on
where bus n is located and shared with whom. Note that the
expression of ¢* includes power injections in area ¢ defined as

=> g— > d, Vne N'UR;. (11)

kegl leci

Recall that G} and L£! denote the subsets of generators and
loads connected to bus n in area ¢, and RZ is the set of
boundary buses of area i, which have reduced generators.

We then iteratively solve the PTDF-OPF problem using the
ADMM algorithm as follows

, 2
2

(0,9, 1, " Dimargmind S cr(gr) + 2 |
p,9,f¢ kegi 2

+(yi<k))T<zi(k)—C) | (3b)—(3e) (10), (11)}, Vie A, (12a)

D) i) _ Z ¢+, Vi e A, (12b)
IAI ey
YD) i) (Zi(kJrl) _ Cz‘(kﬂ)) . Vie A (120

where p > 0 is a tuning parameter and y*(*) € RIRl is a vector
of Lagrange multipliers. The value of z*(*) is a projection
of the shared variables ¢*(*) into the linear subspace given
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Fig. 3. Flowchart of the proposed method. In the top gray block, agents find
the reduced systems parameters offline. In the bottom block, agents solve
distributed PTDF-OPF to find the operational setpoints online.

by (9d), which we analytically compute using the derivation
in [22, sec 5]. The agents then repeat solving the subprob-
lem (12a), share the solutions of the auxiliary variables (?,
solve the coordination problem (12b), and update the Lagrange
multipliers 3° using (12c), until the solution converges. The
algorithm converges when the l5-norm of the primal residual
|22 — Ci(k)|’§ and the dual residual ||p(z**) — zi(k‘l))H;
for all ¢ € A are below a predefined tolerance. Since
the ADMM algorithm converges to the optimal solution for
convex problems [21] and the distributed PTDF-OPF subprob-
lems (12a)-(12c) are convex, the algorithm converges to the
optimal solution.

The shared data at the end of each iteration in typical dis-
tributed phase-angle formulations consists of local information
about the boundary buses. In contrast, the data shared at the
end of each iteration of the proposed method encapsulate
information from the entire system. This has a significant
impact on the convergence speed of distributed optimization,
as the results in the next section show. Moreover, any feasible
solution of a subproblem can be used to obtain a solution to
the power balance equations of the full system (1).

The overall flowchart of the proposed method is shown
in Fig. 3. In summary, the proposed method solves PTDF-
OPF problems (3) using the ADMM algorithm. The method
employs Kron reduction to decompose the systems into mul-
tiple areas and solves WLS problems to calculate the local
PTDF matrices without sharing the local parameters. The local
PTDF calculation step is an offline process that agents need to
perform once or when the system parameters change. Finally,
agents use the local PTDF matrix to solve distributed PTDF-
OPF. To the best of our knowledge, this is the first method
that solves PTDF-OPF problems using distributed optimization
with multiple-area decomposition.
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IV. SIMULATION RESULTS

This section presents simulation results for solving OPF
problems with the PTDF-OPF formulation using the ADMM
algorithm and a comparison with the phase-angle formulation.
We consider 44 test systems from the PGLib-OPF library [23]
with sizes ranging from 50 to 6500 buses. We decompose the
test systems based on the area of the buses. For test systems
with a single area, we partition the systems into five areas
using the KaHyPar partition algorithm [24]. The results use
PowerModels [25] and PowerModelsADA [26] libraries in the
Julia programming language to solve central and distributed
OPF problems and use the Ipopt solver [27]. We produced the
results using a computer with a 4.5 GHz, 14-core CPU and
48 GB of memory. The simulation results in this section use
a parallel implementation of the ADMM algorithm.

We set the parameter of the ADMM algorithm p = 1000,
and choose primal and dual termination tolerances equal to
1x1073. We consider the algorithm to be successful in solving
an OPF instance if the algorithm converges to the optimal
solution in less than 3600 seconds. We use a lazy constraint
method with the proposed PTDF method, where we add line
flow variables and constraints if the corresponding line flow
bounds are violated in the previous iteration.

The success rate over time of the PTDF and phase-angle
formulations is shown in Fig. 4. The proposed method with
the PTDF formulation successfully converged to the optimal
solution in all 44 test cases in less than 800 seconds, while the
phase-angle formulation failed in two test cases. Moreover, the
proposed PTDF formulation converged in 75% of the test cases
in around 100 seconds, while the phase-angle formulation took
more than 1000 seconds to converge in 75% of the test cases.
When comparing the number of iterations, the difference is
very evident. The PTDF formulation required 1320 iterations
to converge in all test cases, while the phase angle required
over 10,000 iterations to converge in 50% of the test cases.

We also observe that, on average, the computation time
of a single iteration in the proposed PTDF method is four
times greater than the phase-angle formulation, mainly because
the PTDF method checks for constraint violations at each
iteration. However, the average number of iterations in the
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Fig. 5. Convergence time with respect to number of buses for 44 test cases.
The dots represent instances, and the lines represent approximate trends of
the convergence time as the number of iterations increases.

proposed PTDF is 50 times less, significantly reducing the
overall computation time.

We also investigated the convergence time and iterations
with respect to the size of the system, as shown in Fig. 5 and
Fig. 6. The figures show when the algorithms successfully
solved the 44 test cases and the approximated trend as the
number of buses increases. We observe that as the size of the
system increases, both formulations require a longer time to
converge. However, the average number of iterations required
for the PTDF formulation to converge is almost constant as
the size of the system increases, as shown in the red line in
Fig. 6. The list of test systems and the results for the PTDF and
phase-angle formulations are given in Table I in Appendix B.

V. CONCLUSION

Decomposition methods provide many advantages in solv-
ing large-scale OPF problems, as they distribute computational
burden and storage usage among multiple agents, in addition
to allowing parallel computation and limiting data sharing.
However, typical distributed formulations of the OPF problem
suffer from a very slow convergence rate, hindering their usage
in practice. This article proposes a new decomposition method
based on the Kron reduction to solve distributed OPF problem
with the PTDF formulation. The numerical results show that
the proposed method significantly outperforms the phase-angle
formulation in terms of convergence speed and consistency.

Sensitivity-based formulations, such as the PTDF-OPF, have
been widely used in practice for contingency analysis and
congestion management, particularly in deregulated markets.
Traditionally, system operators conduct contingency analysis
and congestion management independently of neighboring
systems. Using PTDF formulations with distributed algorithms
to analyze interconnected systems offers a promising appli-
cation of the proposed method. Furthermore, these methods
can facilitate the clearing of interconnected markets and the
valuation of energy exchange costs with minimal data sharing.

APPENDIX A
PROOF OF THEOREM 1

Proof. We prove the forward implication by induction on the
number of areas. The implication is trivially true for |A| = 1.
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Fig. 6. Convergence iteration with respect to number of buses for 44 test
cases. The dots represent instances, and the lines are approximate trends of the
number of iterations required to converge as the number of iterations increases.

Assuming it is true for |A| = k, we need to show that it
is also true for |A| = k + 1. It is sufficient to show that the
implication is true for two areas, since we can divide the areas
into two groups A; and A, with |A;]| = k and |A| = 1, and
the induction hypothesis implies the implication for .A;.
Consider a system of two areas A = {1, 2}. Recall that N*
is the set of internal buses and R® is the set of shared buses,
which consists of the sets of internal and boundary shared
buses R’ and R}. Let N be the set of internal buses that are
not shared, i.e., N := A"\ R.. We use p1, ps, pp, and py to
denote the power injections of the buses in N 11, Ri, R}, and
./\ff, respectively. Similarly, we use pi, pi, and p}; to denote the
vectors of area i reduced power injections at the buses in N,
RY, and R}, respectively. Note that R} = R? and R} = R2.
The power balance equations prior to Kron reduction (1a) are

4 By Bis 0 0 0,
Ps| _ le Bss Bsb 0 95 (13)
| | 0 DBy Bw B2| |6
D2 0 0  Bay Baa |02
Thus, the reduced power balance of area 1 and 2 are
(o] [ D1 1 [Bi1 Bis 0 [6}]
pi = Ds =|Bs1 Bss B 0; , (14)
pb| po— BweBy'p2] | 0 By, Byll6)
(07| [ps — BaBii'pi] [Byy Bs 0 ][6F]
Py |= P =|Bys Bw Bw||b;|, (15
7] | D2 | L0 By Bxnl|bf

where B}, = By,—Bs1 B;' B1s and By, = Byy,— By By, Boy.
Finally, we write the consistency constraints (8) as

(16)
a7

—1
Pi = pi — Bya By Pi
p; =pt — BaByi'p;-

We want to show that, given a solution of power injections
from the reduced subproblems that satisfy the consistency
constraints, we can recover a unique solution to the original
system such that the phase angles of the buses that appear in
the two reduced systems are the same. Formally, if p},p!, p}



and p?,p?, p? satisfy the reduced power balance (14) and (15),
and the consistency constraints (16) and (17), then the phase
angles of the shared buses 8! = 62 and 6} = 62

Using the consistency constraints (16), we have

Py = P: — BiaBy'p;

= Bys07 + Bppb? + Byab?
= By,b? + By,0>.

— ByaBoy (Bapb? + Baab?)
(18)

We use (15) in the first equality and rearrange the terms in
the second. We also have from (15) that

pi = B),0} + Byb?. (19)

The system of (18) and (19) consists of |R| unknowns and
|R| linearly independent equations. The linear independency
follows from the assumption that line susceptances are inde-
pendent [28, Th. 1]. Thus, the system has a unique solution.
Similarly, we can show that

pi = Bysf! + By,
pl% = 3119; + Bsb9§~

Since both systems are the same and have a unique solution,
their solution must be the same, i.e., 9; = 9? and 6} = 93.
Thus, we can recover a unique solution to (13) by setting the
value of 01 = 0}, 0, = 0! = 02, 0, = 0} = 62, and 05 = 02,
which completes the proof of the forward implication.

The backward implication is a direct consequence of Kron
reduction. Starting from a unique solution to the original
system, we can calculate the power injections of the reduced
systems using (4). For area i € A, let p’ be the reduced power
injections, p®’ be the actual power injection prior to Kron
reduction, and p®" be the power injections of the eliminated
buses. The power injection at n € R such that n € R NR7,
i.e., bus n is inside area 7 and shared with area j, is

ph=ps + > AL Pl
veE B

ph=p + > AL
veBI

Since both reduced systems have bus n, we equate the actual
value of the power injection at bus n prior to Kron reduction,

ie., pgi = pgj. Thus, we have

Z Anv pv Z A'rw pv ) (203.)
vePi UEBJ
Z Z A'IL'U p'l) Z Z An'u pU7 (20b)
acAvepinNe acAveBinNa

ZAnv pv Z Z Anv pv -
veBINNI aEA_j; veBiNNe

p] - Z Anvpv Z Z Anv pv (200)

vERINN? a€A_; veBiNNe

Equation (20b) distributes 3° and 37 to the buses inside the
other areas defined by the sets N for a € A, and (20c) pulls
the terms that contain variables of the buses inside area ¢ and

7 out of the summation. Rearranging the terms, we obtain the
consistency constraints (8), which completes the proof. O

APPENDIX B
TEST SYSTEMS AND NUMERICAL RESULTS

The list of the test systems, the number of components, and
the numerical results of the PTDF and phase-angle formula-
tions are shown in Table I. The optimal objective column is
produced by solving central DCOPF problems. The relative
gap is the percentage relative change in the objective function
of the distributed method with respect to the central solutions.
The time column is the wall-clock time measured in seconds,
and the number of iterations is denoted as “Itr.”. We denote
non-convergent instances with “NC”.
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TABLE I
SIMULATION RESULTS OF THE PHASE-ANGLE AND THE PROPOSED PTDF FORMULATIONS USING 44 TEST CASES FROM PGLIB-OPF

Phase-Angle DCOPF Proposed PTDF-OPF
. Optimal Relative Time Relative Time
Case Bus Line Gen. Area Obj:.)ctive ) Gap (%) (sec.) Itr. Gap (%) (sec.) Itr.
case57_ieee 57 80 7 5 34772 | 9.23 x 1073 2.52 371 | 1.71 x 10~2 1.12 122
case60_c 60 88 23 5 90700 | 4.66 x 10~ ° 14.76 1875 | 483 x 10~ % 0.90 121
case73_ieee_rts 73 120 99 3 183003 | 1.38 x 10— % 1.88 312 | 1.29 x 103 0.60 65
case89_pegase 89 210 12 5 105044 | 1.82x 10~ T 336.46 | 33940 | 1.15 x 101 3.11 371
casel18_ieee 118 186 54 5 93101 | 1.93 x 10~ 3 5.42 655 | 2.77 x 10~ % 1.65 179
casel62_ieee_dtc 162 284 12 5 101462 | 265 x 103 22.08 2250 | 1.03x 103 1.96 226
casel79_goc 179 263 29 3 751881 | 2.99 x 10—2 0.86 110 | 1.81x 1071 0.50 69
casel97_snem 197 286 35 5 1.47 | 2.04 x 103 1.77 200 | 1.52 x 10~ % 0.62 63
case200_activ 200 245 49 5 27480 | 1.14 x 103 10.38 1191 | 470 x 10°° 0.75 87
case300_ieee 300 411 69 5 517851 | 7.48 x 103 37.52 3253 | 7.96 x 10~3 2.31 220
case500_goc 500 733 224 5 440549 | 9.73 x 10°° 54.02 4126 | 9.52 x 10~° 2.10 91
case588_sdet 588 686 167 8 310126 | 3.97 x 10~ 3 94.33 7375 | 8.13x 104 15.13 978
case793_goc 793 913 214 5 258308 | 2.08 x 10—3 23.79 1603 | 8.06 x 10~ % 5.44 330
casel354_pegase 1354 | 1991 260 5 1218182 | 3.33 x 10~ 726.24 | 35906 | 1.05 x 103 30.48 | 499
casel803_snem 1803 | 2795 230 4 87696 | 3.43x 101 4.85 162 | 317 x 10T 10.75 259
casel888_rte 1888 | 2531 297 5 1352872 | 2.76 x 10~% [ 1090.74 | 38265 | 3.10 x 10~ % 28.59 288
casel951_rte 1951 | 2596 391 5 2031628 | 2.66 x 10~ ° | 1000.11 | 34724 | 1.28 x 10~ 2 21.16 196
case2000_goc 2000 | 3639 384 3 943042 | 1.77 x 10~ % 32572 7191 | 2.08 x 104 37.08 264
case2312_goc 2312 | 3013 444 5 440328 | 1.04 x 10~ % 279.04 7220 | 3.17 x 10~ % | 119.38 | 1320
case2383wp_k 2383 | 2896 327 4 1804090 | 4.08 x 10 % 8.39 49 | 1.36 x 10~ 3 | 109.92 183
case2736sp_k 2736 | 3504 420 4 1276034 | 6.09 x 10~ 15.37 113 | 1.46 x 10~ 3 94.49 178
case2737sop_k 2737 | 3506 399 4 764009 | 1.44 x 10~ % 12.60 104 | 1.84 x 10~ 3 64.66 161
case2742_goc 2742 | 4673 182 5 259696 | 1.62 x 10~ 4% 296.80 7921 | 3.33x 1073 20.10 169
case2746wop_k 2746 | 3514 520 4 1581425 | 8.68 x 10~ % 9.63 55 | 8.62x 10T | 183.87 139
case2848_rte 2848 | 3776 547 5 1267732 | 8.04 x 10~-% | 1229.30 | 33304 | 1.80 x 10~ 2 36.79 166
case2853_sdet 2853 | 3921 946 5 2036958 | 1.85 x 10~ 4 737.56 | 16012 | 3.44 x 10~% | 509.39 768
case2868_rte 2868 | 3808 599 5 1966684 | 4.86 x 10~ 895.64 | 25805 | 8.87 x 102 50.68 197
case2869_pegase 2869 | 4582 510 5 2386379 NC NC NC | 1.51 x 10T 67.82 317
case3012wp_k 3012 | 3572 502 2 2509001 | 1.00 x 10~5 38.23 263 | 5.00 x 10~% | 131.31 96
case3022_goc 3022 | 4135 637 5 599221 | 3.78 x 10— % 184.83 4262 | 9.61 x 10~2 68.08 | 467
case3120sp_k 3120 | 3693 505 2 2087975 | 1.20 x 103 41.03 291 | 9.63x 10— ° 08.18 111
case3375wp_k 3374 | 4161 596 2 7317012 | 5.98 x 10~ % | 2243.34 | 18025 | 1.09 x 10~ % | 144.10 78
case3970_goc 3970 | 6641 383 5 934219 | 9.88 x 10~ 7 490.49 9397 | 1.62 x 10~ % 62.50 131
case4020_goc 4020 | 6988 352 5 795062 NC NC NC | 467 x 10~ % | 144.10 | 485
cased601_goc 4601 | 7199 408 5 793814 | 2.65 x 10~ 4 466.21 9543 | 4.99 x 10~5 62.99 118
cased4619_goc 4619 | 8150 347 5 457436 | 5.53 x 10~ ° | 2056.33 | 32988 | 4.13 x 10~ 3 54.57 | 207
cased661_sdet 4661 | 5997 | 1176 5 2216303 | 5.69 x 102 | 1017.50 | 12210 | 7.87 x 10~ ° | 738.49 841
cased837_goc 4837 | 7765 332 5 850397 | 2.05 x 10~ % | 1166.83 | 18926 | 2.35 x 10~ 3 49.16 235
cased4917_goc 4917 | 6726 | 1349 5 1383655 | 2.20 x 10~ 3 826.88 | 10759 | 5.07 x 10~ 2 | 366.19 857
case5658_epigrids | 5658 | 9078 474 5 1195466 | 4.47 x 10~° | 3310.68 | 52147 | 2.25 x 10~ | 103.51 217
case6468_rte 6468 | 9000 | 1295 5 1082818 | 2.36 x 10~ ° | 1931.97 | 29198 | 2.20 x 10~ ° | 106.24 263
case6470_rte 6470 | 9005 | 1330 5 2136095 | 1.24 x 10~ % | 1870.29 | 25400 | 4.25 x 10~ % | 335.21 517
case6495_rte 6495 | 9019 | 1372 5 2561787 | 4.00 x 10~3 | 1721.17 | 23346 | 1.84 x 10~ % | 188.33 272
case6515_rte 6515 | 9037 | 1388 5 2559329 | 9.70 x 10~ % | 2774.59 | 36943 | 3.30 x 10~ % | 219.62 312




