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Abstract: The optimal power flow problem is central to many tasks in the design and operation of electric

power grids. This problem seeks the minimum cost operating point for an electric power grid while satisfying

both engineering requirements and physical laws describing how power flows through the electric network.

By additionally considering the possibility of component failures and using an accurate AC power flow

model of the electric network, the security-constrained AC optimal power flow (SC-AC-OPF) problem is of

paramount practical relevance. To assess recent progress in solution algorithms for SC-AC-OPF problems

and spur new innovations, the U.S. Department of Energy’s Advanced Research Projects Agency–Energy

(ARPA-E) organized Challenge 1 of the Grid Optimization (GO) competition. This special issue includes

papers authored by the top three teams in Challenge 1 of the GO Competition (Teams gollnlp, GO-SNIP,

and GMI-GO). To introduce these papers and provide context about the competition, this paper describes

the SC-AC-OPF problem formulation used in the competition, overviews historical developments and the

state of the art in SC-AC-OPF algorithms, discusses the competition, and summarizes the algorithms used

by these three teams.

Key words : security-constrained AC optimal power flow; optimization competition; complementarity

constraints; large-scale optimization; nonlinear optimization
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1. Introduction

The Security-Constrained Alternating Current Optimal Power Flow (SC-AC-OPF) problem is

central to almost all optimization models in electric power grids. This problem seeks optimal

settings for power generation and grid control equipment so as to minimize operating cost while

ensuring that the system can continue to be operated in the event of localized equipment failures.

The SC-AC-OPF problem is a large-scale, nonsmooth, nonconvex, and nonlinear optimization

problem, which, in the simplified case without security constraints, has been shown to have multiple

local minima (Hiskens and Davy 2001, Bukhsh et al. 2013, Molzahn 2017) and a corresponding

feasibility problem that is strongly NP-hard (Bienstock and Verma 2019). The nonlinearities of the

SC-AC-OPF problem involve products and trigonometric functions, its constraints are nonconvex

and nonsmooth, and the problem can have several million variables and constraints. Furthermore,

SC-AC-OPF must be solved frequently every few minutes for each power system. These attributes

make SC-AC-OPF an extremely difficult problem for which no effective exact method is known.

Rapidly emerging technologies like renewable generation, batteries, and electric vehicles motivate

the development of new techniques for solving SC-AC-OPF problems. Further, improvements in

SC-AC-OPF software have the potential to save $6B to $19B of electricity costs yearly in the US

(ARPA-E 2018), even without taking into account the potential gains in reliability.

To advance the state-of-the-art in this high-risk, high-reward topic, the Advanced Research

Projects Agency–Energy (ARPA-E) in the US Department of Energy (DOE) launched the Grid

Optimization (GO) Competition – Challenge 1, focusing on SC-AC-OPF, in 2018. This paper

overviews the ARPA-E GO Competition Challenge 1 from the perspective of both the organizers

and the top-three teams in the competition. We introduce the SC-AC-OPF problem from Chal-

lenge 1 to specialists in operations research (Section 2), present a historical review and discuss

recent developments (Section 3), discuss the competition (Section 4), compare our teams’ algo-

rithms (Section 5), and provide concluding remarks (Section 6).
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2. Problem Formulation

The SC-AC-OPF problem seeks to minimize the production cost of generators to supply the load

demands using an alternating current (AC) network. This section introduces the classical version of

this problem to non-specialists with a basic understanding of direct current (DC) electrical circuits.

We cover the most recurrent questions from researchers without a power engineering background

during the competition, such as “why are there angles?” and “why are there two types of power?”

We start by reviewing AC circuits and phasor notation. This section is similar in spirit to (Frank

and Rebennack 2016, Bienstock et al. 2022), but we take a deeper look at power in AC circuits.

We then describe the elemental components of a power grid: buses, generators, loads, shunts, and

branches. We finally present the SC-AC-OPF problem by bringing those components together.

2.1. Alternating current circuits

AC circuits operating in steady-state are similar to steady-state DC circuits in that their quantities

of interest can be determined by solving algebraic, often linear, equations. The key difference

between the two is that, while steady-state DC circuits can be algebraically described using only

real numbers, AC circuits require complex numbers representing sinusoids, which we call phasors.

We next summarize these concepts. For further details, the reader is referred to Section EC.1 of

the electronic companion material for this article as well as textbooks in circuit theory, such as

(Alexander and Sadiku 2008, Part 2), (Hayt 2018).

Steady-state voltages and currents in an AC power system are modeled via sinusoidal waveforms.

We denote a voltage waveform as v(t) =
√
2V cos(ωt), where V is the root mean square (RMS)

voltage and ω is the angular frequency. Power system models are derived using the fundamental

equations for the resistors, inductors, and capacitors: iR(t) = v(t)/R (Ohm’s Law), iL(t) = 1/L ·∫ t

−∞ v(τ)dτ (Faraday’s Law), and iC(t) = C dv
dt
(t) (Ampere-Maxwell’s Law), where R, L, and C

denote resistance, inductance, and capacitance, respectively.

Applying these equations to the voltage waveform v(t) reveals that resistors relate voltages

and currents via scalar multiplication, i.e., iR(t) =
√
2V
R
cos(ωt). Capacitors and inductors relate
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voltages and currents by both scalar multiplication and a π/2 phase shift (in opposite directions

for inductors versus capacitors), i.e., iL(t) =
√
2 V
ωL

cos
(
ωt− π

2

)
and iC(t) =

√
2V ωC cos

(
ωt+ π

2

)
.

Observe that the voltage and current waveforms all have the same frequency ω.

These relationships motivate electrical engineers to represent AC circuit signals as elements of

the complex plane, where multiplication and phase shift correspond to multiplication by complex

numbers. Moreover, note that sinusoids can be orthogonally decomposed into components with

phases 0 and π/2. This decomposition naturally maps to the real and imaginary axes on the

complex plane, enabling addition of sinusoids to take place via these orthogonal components. We

refer to this representation of sinusoids as elements in the complex plane as phasors.

Formally, we define the phasor transformation Fω : Sω → C, where Sω is the set sinusoidal

functions with frequency ω, as:

Fω

(√
2A cos(ωt+ϕ)

)
=A exp(iϕ)≡A ϕ, (1)

where i=
√
−1. For simplicity, we denote phasors using a dot below its corresponding symbol, e.g.,

Fω(v(t)) = •
v. The phasor transformation is bijective with inverse F−1

ω (
•
x) =ℜ

(
•
x ·

√
2exp(iωt)

)
.

The phasor representation of the voltage and current relationships for a generic circuit element e

(resistor, capacitor, or inductor) can be expressed as
•
ie = Ye •

v, which is identical to Ohm’s law, but

with complex quantities, where Ye is called the admittance of the element; YR = 1/R, YL =−i/(ωL),

and YC = iωC. The addition of currents is performed along the real and imaginary axes in the same

fashion as in DC circuits. We also note that parallel admittances are added directly to obtain the

total admittance. Conversely, the total equivalent admittance for a series connection of admittances

is the reciprocal of the sum of their reciprocals. The real and imaginary parts of an admittance Y

are the conductance G and susceptance B, respectively, i.e., G=ℜ(Y ) and B =ℑ(Y ).

Power in AC circuits is also represented using complex quantities, though complex power is not

a phasor as defined above. We first review instantaneous power. For an element with voltage v(t) =
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√
2V cos(ωt+ α) and current i(t) =

√
2I cos(ωt+ β), the instantaneous power is p(t) = v(t) · i(t)

which, via the variable change τ = t+α/ω (time translation to align with voltage), yields:

p(τ) = v(τ) · i(τ) =
√
2V cos(ωτ) ·

√
2I cos(ωτ +β−α)

= V I cos(α−β)
(
1+ cos(2ωτ)

)
+V I sin(α−β) cos(2ωτ +π/2).

(2)

Instantaneous power has three components, all proportional to the product of RMS voltage and

current: (i) one continuous component, which is also proportional to the cosine of the phase differ-

ence between voltage and current; (ii) one sinusoidal component, with double the frequency of the

circuit proportional to the cosine of the phase difference; and (iii) another sinusoidal component

of double frequency, but proportional to the sine of the phase difference and with a π/2 phase shift

with respect to the other sinusoidal component. Observe that only the first component can make

actual work (spending energy over time), whereas the second is necessary for the first, and both

become larger as the phase difference becomes closer to zero. The third component, on the other

hand, cannot produce any work over time. The first and second component of instantaneous power

is only present for resistors (producing work), whereas inductors and capacitors only have the third

component (storing and releasing energy from their magnetic and electric fields, respectively).

To obtain meaningful power quantities when working with phasors, we define complex power as

•
s=

•
v ·

•
i∗, where

•
i∗ denotes the complex conjugate of the current phasor, and hence we have:

•
s=

•
v ·

•
i∗ = V α · I −β = V I α−β = V I cos(α−β)︸ ︷︷ ︸

p

+ i V I sin(α−β)︸ ︷︷ ︸
q

, (3)

where p is referred to as the active power, representing the first and second components of instan-

taneous power, and q is referred to as the reactive power, representing the third component of

instantaneous power.

The analysis of large-scale power systems is built, mostly, out of the elements reviewed in this

section. Aspects not reviewed here, which are also relevant in the study of power systems, are the

treatment of transformers, three-phase circuits, the per-unit system, and symmetrical components.

For the purposes of this paper, it suffices to say that the per-unit system and symmetrical compo-

nents can be used to obtain a single-phase equivalent power system model. When applied to this
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model, the material reviewed above provides the basis for understanding the SC-AC-OPF problem

considered in Challenge 1 of the GO Competition. For further details on these topics, the reader

is referred to power systems textbooks, such as (Gonen 2016, Glover et al. 2016).

2.2. Power grid components

This section reviews the components of the power system in the OPF problem, their power and

voltage variables, and the constraints on those variables. Each of these components can have

two modes of operation, one for base-case (normal) conditions and another for post-contingency

(emergency) conditions, as well as constraints indicating how to transition from base case to post-

contingency mode. A contingency event, in this context, corresponds to the abrupt disconnection

of a generator, line, or transformer, leaving the rest of the system to adjust to new operating

conditions in order to avoid a cascading failure or blackout. The base to post-contingency transition

constraints presented in this section assume that no decision can be made in between base-case

and post-contingency states, but rather the transition is dictated by automatic controller actions

based on local observations. This is commonly referred to as a preventive model in the literature.1

We denote base-case parameters and variables with a 0 subscript and contingency parameters

and variables with a k ∈ K subscript, where K ̸∋ 0 is the set of contingencies. For notational

convenience, we let K0 :=K∪{0} denote the set of all system conditions.

From this section onward, we use the same notation as in ARPA-E’s GO Competition Challenge 1

(ARPA-E 2019), except that we use upper case for parameters and lower case for variables.

2.2.1. Buses Buses correspond to the nodes in the electrical network where generators, loads,

branches, and shunts connect to the rest of the grid. Each bus n in the set of buses N has voltage

phasors vn,0 θn,0 in the base case and vn,k θn,k in each post-contingency condition k ∈ K, with

(RMS) voltage magnitude limits:

V n ≤ vn,0 ≤ V n ∀n∈N , (4)

V E
n ≤ vn,k ≤ V

E

n ∀n∈N , k ∈K, (5)
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where V E
n ≤ V n ≤ V n ≤ V

E

n for all n ∈ N are lower and upper voltage bounds. Since angles only

make sense relative to one another, a reference bus nref ∈ N is chosen to have θnref,k = 0 for all

k ∈K0.

2.2.2. Generators Generators transform primary energy sources into electrical power that

is injected into the power system, that is, they act as voltage sources from Section 2.1. Each

generator g in the set of generators G can inject active power pg,0 (base case), pg,k (post-contingency)

and reactive power qg,0 (base case), qg,k (post-contingency) into the network within certain limits:

P g ≤ pg,k ≤ P g, Q
g
≤ qg,k ≤Qg ∀g ∈ G, k ∈K0 (6)

Let n(g) denote the bus where the generator is connected. In the base case, both active and reactive

injections can be decided freely, within the above limits, irrespective of the voltage magnitude at

the generator’s bus, vn(g),0. In post-contingency state k ∈K, however, if the generator is in the set of

generators that remain online G(k)⊆G, the generator’s behavior is constrained by two controllers.

First, the voltage control system attempts to maintain the base-case voltage magnitude vn(g),0 in

the post-contingency state by injecting or absorbing reactive power; voltage magnitude increases

with reactive power injection. The voltage control system only allows the post-contingency voltage

vn(g),k to deviate from vn(g),0 after depleting the generator’s reactive power capability, fixing qg,k to

its upper limit if voltage decreases post-contingency and to its lower limit if voltage increases post-

contingency (Stott 1974). This behavior is modeled via the following complementarity constraints:

ν+
n(g),k − ν−

n(g),k = vn(g),k − vn(g),0 (7)

0≤ ν−
n(g),k ⊥Qg − qg,k ≥ 0 ∀g ∈ G(k), k ∈K (8)

0≤ ν+
n(g),k ⊥ qg,k −Q

g
≥ 0 ∀g ∈ G(k), k ∈K (9)

where ν+
n(g),k and ν−

n(g),k are the voltage increase and decrease, respectively, in post-contingency k.

Second, the droop control system, also referred to as the automatic generation control system,

adjusts the post-contingency active power pg,k following the post-contingency deviation in system
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frequency δk for k ∈ K. This system increases generation if there is a frequency decrease (δk < 0,

indicating a lack of generation) and decreases it in case of a frequency increase (δk > 0, indicating a

generation excess) (Jaleeli et al. 1992). Each generator g may have a different droop slope Ag ≥ 0,

indicating how much to increase or decrease production per each unit of frequency deviation. The

droop control saturates at the active power limits, as a generator can only operate within them.

This behavior can be modeled as the following complementarity constraints:

ρ+g,k − ρ−g,k = pg,k − (pg,0 +Agδk) (10)

0≤ ρ−g,k ⊥ P g − pg,k ≥ 0 ∀g ∈ G(k), k ∈K (11)

0≤ ρ+g,k ⊥ pg,k −P g ≥ 0 ∀g ∈ G(k), k ∈K (12)

where ρ+g,k and ρ−g,k are the upward and downward deviations from the linear response of generator g

in post-contingency k due to saturation at minimum and maximum power output, respectively. If

generator g ∈ G is not online in post-contingency k ∈ G, i.e., g /∈ G(k), then it cannot provide power:

pg,k = qg,k = 0 ∀g ∈ G \G(k), k ∈K (13)

2.2.3. Loads Loads are modeled as constant withdrawals of active and reactive power from

the system. The load at bus n∈N is denoted as PL
n for active power and QL

n for reactive power.

2.2.4. Shunts In the context of OPF, shunts correspond to variable inductors or capacitors—

or a mixture of the two—connecting between a bus and the ground, thereby “deviating” current

from its main path from generator to consumers.2 Shunts are used to withdraw (inductor) or inject

(capacitor) reactive power to the grid, helping with reactive power and voltage control.

The total susceptance of shunts at bus n∈N is denoted bn,k for k ∈K0 and is bounded as follows:

Bn ≤ bn,k ≤Bn ∀n∈N , k ∈K0 (14)

2.2.5. Branches Branches correspond to the paths traversed by electricity from generators

to loads. This paper covers AC transmission lines, as they are the most prevalent branch in existing
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o(e)
pe,o,k + iqe,o,k

iBCH
e /2 iBCH

e /2

Ge + iBe

d(e)
pe,d,k + iqe,d,k

vo(e),k θo(e),k vd(e),k θd(e),k

Figure 1 Equivalent circuit for transmission line e ∈ E(k) (k ∈ K0), from bus o(e) ∈ N to bus d(e) ∈ N . The

circuit uses one resistor and one inductor, with combined admittance Ge + iBe, to model the thermal

losses and magnetic fields around the conductors. The circuit also uses two capacitors, with admittance

iBCH
e /2 each, to model the effect of electric fields between the conductor and the ground. Complex

power is defined as entering the line at both o(e) and d(e).

power systems. Other types of branches, not covered here, include transformers, phase-shifters, and

DC transmission lines; the reader is referred to (Gonen 2016) for further information.

Each transmission line e in the set of lines E has two terminals, origin o and destination e, which

are connected to buses o(e)∈N and d(e)∈N , respectively. Each line e is modeled using the circuit

presented in Fig. 1. The complex power from bus o(e) entering line e through its o terminal in

system condition k ∈K0 can be expressed as

pe,o,k + iqe,o,k = vo(e),k θo(e),k

[(
i
BCH

e

2
· vo(e),k θo(e),k

)∗

+
(
(Ge + iBe)

(
vo(e),k θo(e),k − vd(e),k θd(e),0

))∗
]

which, when separated in real (active) and imaginary (reactive) parts, yields

pe,o,k =Gevo(e),k −Ge cos
(
θo(e),k − θd(e),k

)
vo(e),k vd(e),k −Be sin

(
θo(e),k − θd(e),k

)
vo(e),k vd(e),k (15)

qe,o,k =−
(
Be +BCH

e /2
)
v2o(e),k +Be cos

(
θo(e),k − θd(e),k

)
vo(e),k vd(e),k −

Ge sin
(
θo(e),k − θd(e),k

)
vo(e),k vd(e),k

(16)

for all e∈ E , k ∈K0. Analogous equations for the power into the d terminal from the d(e) bus are,

for all e∈ E , k ∈K0,

pe,d,k =Gevd(e),k −Ge cos
(
θd(e),k − θo(e),k

)
vd(e),k vo(e),k −Be sin

(
θd(e),k − θo(e),k

)
vd(e),k vo(e),k (17)

qe,d,k =−
(
Be +BCH

e /2
)
v2d(e),k +Be cos

(
θd(e),k − θo(e),k

)
vd(e),k vo(e),k −

Ge sin
(
θd(e),k − θo(e),k

)
vd(e),k vo(e),k

(18)
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Lines disconnected in post-contingency case k ∈K cannot carry power, and thus

pe,o,k = pe,d,k = qe,o,k = qe,d,k = 0 ∀e∈ E \ E(k), k ∈K (19)

Equations (15)–(18) are derived using the polar representation of voltages and rectangular repre-

sentation of power, yielding the so-called polar formulation of the OPF problem. Alternatively, one

can chose to represent voltage in rectangular coordinates, leading to the rectangular formulation.

Another choice is to use complex current instead of complex power, yielding the IV formulation.

Further changes of variables exist, yielding additional formulations of the OPF problem. We refer

to (Molzahn and Hiskens 2019) for a details on alternative OPF formulations.

Each transmission line can admit a certain maximum current determined, primarily, by its

thermal capacity. In order to limit the current magnitude using only complex power and voltage,

observe that
•
s=

•
v ·

•
i∗ =⇒ |

•
s|= |

•
v| · |

•
i|, and thus one can write the current magnitude limit as:

√
p2e,o,0 + q2e,o,0 ≤Reve,o,0 +σe,o,0,

√
p2e,d,0 + q2e,d,0 ≤Reve,d,0 +σe,d,0 ∀e∈ E (20)

where Re > 0 is the thermal rating of line e, and σe,o,0 ≥ 0 and σe,d,0 ≥ 0 are overload slack variables.

For post-contingency situations, RE
e ≥Re is defined as the emergency rating of line e and

√
p2e,o,k + q2e,o,k ≤RE

e ve,o,k +σe,o,k,
√

p2e,d,k + q2e,d,k ≤RE
e ve,d,k +σe,d,k ∀e∈ E(k), k ∈K (21)

is enforced, where σe,o,k ≥ 0 and σe,d,k ≥ 0 are overload slack variables.

2.3. SC-AC-OPF problem formulation

Along with their individual constraints, all components of the power grid in conjunction must

respect active and reactive power balance at each node n∈N :

∑
g∈G(k):
n(g)=n

pg,k −PL
n −

∑
e∈E(k):
o(e)=n

pe,o,k −
∑

e∈E(k):
d(e)=n

pe,d,k = σP
n,k ∀n∈N , k ∈K0 (22)

∑
g∈G(k):
n(g)=n

qg,k −QL
n + bn,kv

2
n,k −

∑
e∈E(k):
o(e)=n

qe,o,k −
∑

e∈E(k):
d(e)=n

qe,d,k = σQ
n,k ∀n∈N , k ∈K0 (23)
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where σP
n,k and σQ

n,k, for all k ∈K0, are slack balance variables, and G(0) = G and E(0) = E .

Piecing all components together, the SC-AC-OPF model is:

min
p,q,b,v,θ
δ,ν,ρ,σ

∑
g∈G

Cg(pg,0)+
∑
e∈E

(Ce(σe,o,0)+Ce(σe,d,0))+
∑
n∈N

(
CP

n

(
σP
n,0

)
+CQ

n

(
σQ
n,0

))
+

1

|K|

( ∑
e∈E(k)

(Ce(σe,o,k)+Ce(σe,d,k))+
∑
n∈N

(
CP

n

(
σP
n,k

)
+CQ

n

(
σQ
n,k

)))

s.t. Base case constraints, k= 0: (4), (6), (14), (15)–(18), (20), (22), (23)

Transition constraints, k ∈K: (8)–(12)

Post-contingency constraints, k ∈K: (5), (6), (13), (14), (15)–(18), (19), (21), (22), (23)

(24)

where Cg is the generation cost function corresponding to fuel cost for thermal generators, opportu-

nity costs for hydros, etc.; Ce is a convex increasing penalization function for line overloading; and

CP
n and CQ

n are convex penalization functions that are nonlinear and symmetric with respect to 0

for power imbalance. In a nutshell, the SC-AC-OPF model (24) seeks to minimize the operation

cost for the base case (normal operation) while ensuring that there exists a feasible operating point

to which the system would deviate in case of a contingency event.

3. History of Power Systems Optimization and Recent Developments

3.1. Historical Review of Power System Optimization

Power system optimization dates back to the earliest days of interconnected power grids. Since the

early 1900s, system operators solved economic dispatch problems to schedule the generators’ power

outputs in order to minimize system-wide operating costs (Noakes and Arismunandar 1962). Later

formulations described by Stahl (1931) and Steinberg and Smith (1943) included approximations

of power losses in transmission lines. Operators solved economic dispatch problems using special-

ized computing machines (see Johnson and Umbenhauer (1939)), potentially augmented with loss

approximations from network analyzers, that is, analog computers that approximately modeled

the transmission network (George et al. 1949). With the advent of digital computing in the 1950s
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(Cohn 2015), economic dispatch formulations such as those considered by Early (1953) and Squires

(1960) more accurately modeled power losses in transmission lines.

Building on this foundation, J.L. Carpentier at Électricité de France first formulated what is

now called the optimal power flow (OPF) problem (Carpentier 1962). The OPF problem extends

the economic dispatch problem to consider additional constraints such as line flow and voltage

magnitude limits. The solving of OPF problems was motivated by the increasing interconnectivity

of transmission systems (Cohn 2017). Around the same time Carpentier formulated the OPF

problem, erroneous programming of a single relaying device caused a widescale blackout of the

Northeastern United States and Ontario, Canada in 1965. To avoid similar blackouts, T. Dy-Liacco

proposed an extension to OPF problems known as security constraints. Security-constrained OPF

(SC-OPF) problems ensure that an operating point will withstand all component failures within a

specified set of contingencies (often including the individual failures of each component, i.e., N −1

security) without causing a cascade of further failures (Dy Liacco 1967, Stott et al. 1987). (In

this section, the terminology SC-OPF refers to the general class of security-constrained optimal

power flow problems that either consider an AC power flow model as in Challenge 1 of the GO

Competition or instead focus on various approximated or relaxed power flow models, while SC-AC-

OPF refers specifically to SC-OPF problems that use an AC power flow model.) The importance

of security was widely recognized; reflecting on another blackout, Carpentier (1979) noted “. . . the

general failure of 19 December 1973 lasted only 3h but caused a loss of production for the country

estimated to be at least the equivalent of 50 years’ savings through economic dispatch . . . ” .

The first algorithms for SC-OPF problems were based on solving the Karush-Kuhn-Tucker con-

ditions using diverse approximations for gradients and Hessians within first- and second-order

methods (Cory and Henser 1972, Alsac and Stott 1974). These approaches are effective for small

systems, but do not scale to practically sized power grids. Subsequent advances during the 1980s

came from the adoption of formal decomposition techniques in SC-OPF. In particular, Benders

decomposition was employed to solve a simplified SC-OPF (linearized, active power only) with cor-

rective actions (i.e., dispatch decisions in contingency subproblems) (Pereira et al. 1985). This work
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was later extended to the full nonlinear SC-AC-OPF problem using a generalized Benders decom-

position technique (Monticelli et al. 1987), though this extension does not guarantee convergence

due to the contingency subproblems’ nonconvexity. During the 1980s, most industrial implemen-

tations were based on linear programming technology (Alsac et al. 1990), which was much more

mature than nonlinear programming technology at that point. By the end of the 1980s, nonlinear

programming techniques became competitive alternatives for SC-AC-OPF algorithms that showed

promise for scaling up to industry requirements (Papalexopoulos et al. 1989).

Despite continuing progress in the subsequent decades (see Huneault and Galiana (1991), Momoh

et al. (1999), Panciatici et al. (2014) for OPF literature surveys), there are still several challenges

that need to be addressed both in the formulation and solution of SC-OPF problems (Momoh

et al. 1997, Stott and Alsaç 2012, Capitanescu et al. 2011, Capitanescu 2016). One key challenge

is the nonconvex nature of the problem, which prevents its direct use in computing electricity

prices (dual variables) and precludes global optimality guarantees. As will be discussed further

in Section 3.2, operators have resorted to convex (usually linear) approximations of SC-AC-OPF

problems to compute prices and solve globally the approximated problems while recovering feasible

but suboptimal solutions for the original SC-AC-OPF problem in post-processing steps. Other

challenges include the need to extend modeling capabilities (e.g., transient stability requirements

(Bruno et al. 2002, Yuan et al. 2003) and limits on the number of post-contingency corrective

actions (Capitanescu et al. 2011, Phan and Sun 2015)), scale to larger networks, and improve

solution speed for the use of SC-AC-OPF algorithms in near-real-time operations.

Parallel computing has demonstrated promising results for addressing the aforementioned scala-

bility and speed challenges. As the first parallel computing approach to SC-OPF, Rodrigues et al.

(1994) decomposed the computations for a dual simplex method with constraint generation to

solve a linear approximation of the problem. Subsequent work solved the nonlinear SC-AC-OPF

problem in parallel by decomposing the factorizations in an interior point method (Qiu et al.

2005, Petra 2019). Other recent parallel computing approaches, such as the work by Liu et al.
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(2013), decompose the SC-AC-OPF problem at the formulation level by separating the problem

into base-case and contingency subproblems. Subproblems are solved using off-the-shelf nonlin-

ear programming packages such as Ipopt (Wächter and Biegler 2006), and coordination among

subproblems is achieved through first-order methods, similar to earlier work (Pereira et al. 1985).

With increasing computational capabilities, engineers have generalized SC-OPF formulations for

applications beyond scheduling generator setpoints (Kirschen and Strbac 2018). Generalizations of

SC-OPF problems are used to, e.g., optimize the statuses of switches that determine the network

topology (Lyon et al. 2016), choose the generators’ on/off statuses in unit commitment problems

(Padhy 2004), manage uncertainty from stochastic generators (Bienstock et al. 2014), compute

stability margins (Avalos et al. 2009), and plan system expansions (Mahdavi et al. 2019).

3.2. Approximating Optimal Power Flow Problems

Many applications require solutions to SC-OPF problems within demanding time constraints, e.g.,

approximately 10 minutes for real-time applications. The computational difficulties of SC-AC-OPF

problems have traditionally precluded direct solution within this time frame. Thus, operators often

resort to power flow approximations that apply various assumptions based on characteristics of

typical transmission systems to linearize the power flow equations (Stott and Hobson 1978, Stott

et al. 2009, Molzahn and Hiskens 2019). While these approximations provide advantages in com-

putational speed and reliability, they may neglect important aspects of the power system physics

(e.g., voltage magnitudes and reactive power) and can introduce significant errors that impact both

the achievable cost and the feasibility of the resulting solutions (Overbye et al. 2004, Purchala et al.

2005, Coffrin et al. 2012, Dvijotham and Molzahn 2016). Nevertheless, operators have a long his-

tory of using power flow linearizations. For instance, the so-called “DC power flow” approximation

was first used for fault analysis problems in the early 1900s (Wilson 1916) and the New York Power

Pool employed linearizations to optimize near-real-time generator dispatch in 1981 (Elacqua and

Corey 1982). Engineers have developed a wide variety of power flow approximations that model

power losses in transmission lines, use proxy constraints to address more complex characteristics
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such as stability and voltage magnitude limits, and are tailored for particular applications. Molzahn

and Hiskens (2019) provide a recent survey of power flow approximations.

Complementing these approximations, researchers have recently developed a wide range of power

flow relaxations formulated as linear, second-order cone, and semidefinite programs (Low 2014a,b,

Molzahn and Hiskens 2019). Relaxations enclose the nonconvex OPF feasible regions within a larger

convex set and thus provide bounds on the globally optimal objective value. Moreover, whenever

the solution to a convex relaxation is feasible for the original problem, the solution is guaranteed to

be a global optimizer. Additionally, infeasibility of a convex relaxation certifies infeasibility of the

nonconvex problem. At the same time, convex relaxations have a major practical disadvantage: they

may have solutions that are infeasible for the original problem and recovering a feasible solution

can be challenging (Venzke et al. 2020).

In contrast to the outer enclosures used for convex relaxations, recently developed convex restric-

tions construct convex regions contained within an OPF problem’s nonconvex feasible region. Using

fixed-point theorems (Brouwer 1911), convex restrictions are constructed via a self-mapping set

around a nominal operating point (Lee et al. 2019, Cui and Sun 2019). Convex restrictions have

been applied to compute feasible paths between operating points (Lee et al. 2020) and solve robust

AC-OPF problems that account for uncertain power injections (Lee et al. 2021).

4. Competition Description

Recent developments in nonlinear optimization methods, alternative power flow modeling, and

other technologies have raised the question of whether traditional approaches to SC-AC-OPF

problems may be complemented or replaced by more sophisticated methods. Several optimization

competitions have been organized to answer this question, notably including the Grid Optimization

(GO) Competition run by the Advanced Research Projects Agency–Energy (ARPA-E) in the U.S.

Department of Energy. This paper focuses on SC-AC-OPF problems in the form considered in

Challenge 1 of the GO Competition as presented in Section 2 (ARPA-E 2019).

We note that subsequent ARPA-E competitions that consider different problem formulations are

underway or forthcoming. Moreover, other power grid competitions have focused on applications of
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metaheuristics (IEEE PES Working Group on Modern Heuristic Optimziation 2014) and machine

learning (Marot et al. 2020, 2021b, Donnot 2020b,a, Marot et al. 2021a) as well as maintenance

scheduling problems (Ruiz et al. 2020, Crognier et al. 2021). More generally, competitions are fre-

quently used to spur innovation in optimization, machine learning, and computer science. Existing

platforms for conducting these competitions (e.g., Kaggle (2022)) do not provide computational

resources on the scale needed by the GO Competition, especially timed runs on fixed hardware,

thus necessitating customized hardware and software for this competition. The remainder of this

section summarizes Challenge 1 of the ARPA-E GO Competition with a focus on aspects of the

competition structure and computing platform that strongly influenced the solution algorithms.

With membership drawn from academia, national laboratories, and industry, 27 teams par-

ticipated in the ARPA-E GO Challenge 1 competition. The teams had expertise in areas such

as electric power systems, optimization, high-performance computing, and applied mathematics.

Several teams included the developers of numerical optimization and modeling packages such

as Ipopt (Wächter and Biegler 2006), SNOPT (Gill et al. 2021), Knitro (Byrd et al. 2006),

BARON (Sahinidis 1996), PowerModels.jl (Coffrin et al. 2018), and Gravity (Hijazi et al. 2018).

The year-long competition involved three trial events before the final submission deadline, with

increasingly difficult datasets released before and after each trial event for testing and evaluation.

The teams’ implementations produced outputs for the full solutions SC-AC-OPF problems within

specified computational time requirements. These outputs were then scored by the competition

organizers to determine each team’s place within four different categories on the competition’s

leaderboard. We next summarize key aspects of the competition.3

4.1. Datasets

The datasets provided in the competition consist of input files describing the network and scenarios

for the load demands and generator costs. These datasets are formatted according to power system

industry standards (namely, an extension of the data format used by the power system simulation

tool PSS/E), chosen for its familiarity throughout the field of power systems.4 The trials and the



I. Aravena, D.K. Molzahn, S. Zhang et al.: ARPA-E GO Competition Challenge 1 Overview
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 17

final event used a mix of previously published and unseen networks, each of which included a variety

of scenarios. The final event was conducted with 17 synthetic networks (each with 20 scenarios)

and 3 actual industrial networks (each with 4 scenarios) for a total of 352 SC-AC-OPF problems.

The industry datasets correspond to actual systems used in practical applications. As these

datasets are confidential, the teams only received their overall scores for these datasets rather

than detailed results. The synthetic datasets used in the competition were developed as part of

the ARPA-E program “Generating Realistic Information for the Development of Distribution and

Transmission Algorithms” (GRID DATA). Building on efforts dating back to at least the 1970s

(Zaininger et al. 1977), the GRID DATA program created realistic, but not real datasets for use

in the GO competition and other settings, i.e., datasets that are realistic enough to accurately

benchmark algorithms, but free of confidential information and thus are publicly shareable.5 The

methodologies for creating synthetic grids included “top-down” approaches that obfuscated infor-

mation from actual industry datasets (Huang et al. 2018, Soltan et al. 2019, Fioretto et al. 2020,

Mak et al. 2020) and “bottom-up” approaches that built systems from scratch from geographic

data such as population density and zoning information (Thiam and DeMarco 2016, Birchfield

et al. 2017b). Researchers have performed many studies assessing and validating the realism of

these synthetic networks (Hines et al. 2010, Birchfield et al. 2017a,b, Kersulis et al. 2018, Li et al.

2018, Babaeinejadsarookolaee et al. 2021). These and other datasets are available at two reposito-

ries, DR POWER (Rice et al. 2020) and BetterGrids (Nielsen et al. 2019). Several datasets from

the GO Competition are also in the PGLib-OPF library (Babaeinejadsarookolaee et al. 2019).

The competition’s datasets have networks ranging in size from 500 to 30,000 buses and include

thousands of contingencies. The corresponding SC-AC-OPF problems thus have tens of thousands

of variables and constraints in the base case alone. Considering contingencies yields problems with

hundreds of millions of variables and constraints, thus posing significant computational challenges.

4.2. Computing Platform and Architecture

Teams participating in the GO Competition provided code implementing their algorithms to the

competition organizers who then ran each team’s code on the same computing platform. Each team



I. Aravena, D.K. Molzahn, S. Zhang et al.: ARPA-E GO Competition Challenge 1 Overview
18 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

accessed computing hardware, housed at Pacific Northwest National Laboratory (PNNL), with six

24-core computing nodes (two Intel Xeon E5-2670 v3 (Haswell) CPUs per node), each of which has

64 GB of memory, for a total of 144 cores.6 This hardware was intended to represent the typical

computing resources that an Independent System Operator (ISO) may have available to solve

SC-AC-OPF problems in practical settings. The computing platform used the Centos operating

system. Teams could access a number of optimization solvers (e.g., Gurobi, Cplex, Mosek, Ipopt,

Knitro), programming languages (e.g., Python, Julia, Matlab), and modeling tools (e.g., GAMS,

AMPL, CVX, JuMP).7 Decomposition strategies and parallel computing (MPI between nodes and

pthreads within each node) were key to efficiently using the computing hardware.

Figure 2 Workflow summary showing how teams’ submissions were managed by the competition’s organizers.

Teams used a website to specify details like the programming language, location of their code, division

of the competition, and datasets. The competition platform retrieved and executed each teams’ code,

evaluated the outputs to compute a score for each problem, and stored and reported the results. See

Appendix EC.2 for further details.

The full computing cluster at PNNL had over 500 nodes with up to 250 reserved for the exclusive

use of the GO Competition. Challenge 1 accounted for over 200,000 computing tasks from 70,000

problems and used 16 million CPU-hours (wall clock) while generating over 200 petabytes of data.
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To manage these computing tasks, Fig. 2 shows the competition organizer’s workflow in executing

the teams’ codes and evaluating the results. Appendix EC.2 provides further details.

The organizers tracked hardware failures to automatically requeue and rerun affected submis-

sions. Problems that timed out with no results were automatically rerun once. Computing runs

that resulted in bad or infeasible results within the time limit were generally not rerun unless

there was reason to suspect resource contention issues, e.g., similar runs on other problems were

successful. Clusters of code failures also raised resource issue flags, the most common of which were

network and disk access contention. Other challenges arose in ensuring consistency between runs

executed on a team’s computing hardware and the competition’s platform. For instance, network

traffic could lead to variability in run times. Additionally, differences in hardware and variations in

software versions could affect the result of race conditions. In some cases, extensive troubleshooting

between a team and the organizers was needed to resolve these and other issues.

4.2.1. Required Outputs and Timing Requirements Each team’s software had to pro-

vide values for the variables associated with both the base case and each contingency. However,

the values for the base-case and post-contingency variables did not have to be computed simul-

taneously. Rather, the software was divided into two components: Code 1, which determined the

base-case solution, i.e., values of the variables associated with nominal operation, and Code 2, which

produced values for every contingency. More precisely, Code 1 observed the combined base-case and

contingencies problem in order to optimize the base-case solution subject to the contingencies, but

was only asked to provide a base-case solution. Afterwards, Code 2 was run to produce values for

post-contingency variables using the base-case solution that was determined by the run of Code 1.

The motivation for these two components of the software is that many industrial applications of

SC-AC-OPF problems do not need explicit values for the post-contingency variables. Rather, the

key requirement is obtaining base-case generator setpoints along with a strong degree of confidence

that the base-case solution is secure against contingencies. This may not require explicit solutions

for each contingency. However, the competition organizers needed post-contingency solutions to
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assess the security of the solution. With strict time limits for computing the base-case variables in

Code 1 and permissive time limits for the post-contingency variables in Code 2, the competition

assessed the practical relevance of the software with respect to both speed and security.

The competition was also divided into two categories: real-time and offline optimization with

strict 10-minute and 45-minute time limits, respectively, imposed on the execution of Code 1.

These time requirements reflect the five- to fifteen-minute clearing times used in typical real-time

electricity market operations as well as practical considerations related to assessing many scenarios

in off-line applications. An additional time limit of two seconds per contingency was imposed on

Code 2 regardless of category to prevent teams from submitting software with extremely long

execution times while still maintaining tractability for computing the post-contingency variables.

4.2.2. Solution Evaluation and Scoring Methods After applying a team’s software to

solve a set of problems, the organizers evaluated the solutions and scored the results. To evaluate a

solution, hard constraints were checked for feasibility and the total objective was computed based

on both the generation costs associated with power production and any penalty terms on the slack

variables. These penalty terms ensured the feasibility of each team’s outputs, despite any potential

violations of power balance and branch flow limit constraints. The penalties were calculated via

piecewise linear functions that significantly disincentivized large constraint violations.

The choice to use penalty functions was motivated by the goal of evaluating and scoring as many

solutions as possible. The competition organizers wanted to match a certain reality of industry

practice. Specifically, if a solver fails for any reason, some kind of solution is still needed and the

best solution available is used as far as possible. From this perspective, any “infeasible” solution

is not really infeasible, but only worse than a feasible one to some degree. If a solution implies a

power imbalance, then devices will adjust according to local control mechanisms in real time, e.g.,

generators will respond according to governor mechanisms and voltage-dependent loads will adjust

their demands. Moreover, the data is also subject to error and uncertainty. However, a solution

with no power imbalance is certainly preferable, so these penalties were especially severe.
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Once the solutions for all the competitors over a set of problem instances were evaluated, the

teams’ algorithms were scored based on the evaluation results. The competition had two scoring

methods. Based on similar benchmarking approaches for other classes of optimization problems

(Mittelmann 2022), the first method computed the geometric mean of the scores for all scenarios

associated with each network to compute a network score, then took the geometric mean of the

network scores across all networks to compute an overall score for the team. The second method

was based on the area under performance profiles that were constructed by comparing the ratios

of teams’ scores for each problem relative to the best score achieved for that problem by any team.

The performance profile method was specifically intended to reward robust solver performance,

at the possible expense of optimality, relative to the geometric mean method. Examination of the

competition results showed that most teams did not change their algorithms in response to the

different scoring methods. Moreover, analytical derivations showed that the two scoring methods

were approximately equal to each other under a monotone transformation, so significantly different

results could not have been expected.

A major challenge in scoring was how to handle the large differences in the scale of the objective

values from one network to another. Generally, larger problems had larger optimal objective values,

so simply adding up the objectives over all problem instances would incentivize good performance

on the larger networks at the expense of performance on the smaller ones. Furthermore, for some

problems, the gaps between the optimal objective and some easily computed relaxation objective or

an objective corresponding to an easily computed heuristic solution might be much larger than the

gaps for other problems. Implicitly, the objective of any optimization problem contains a constant

term that is irrelevant to the quality of any given solution but affects both relative and absolute

measures of optimality. The geometric mean scoring method was an attempt to deal with these

issues in a way that ensured that each problem instance was meaningful to the overall score of a

competitor.

Another major challenge in scoring involved solver outcomes that produced no solution, an

unreadable or incorrectly formatted solution, an infeasible solution, or a very low quality solution.
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To address this challenge, the organizers computed a “worst-case” solution. The worst-case solution

was created by keeping the optimization variables equal to their values in a pre-specified operating

point, projecting to ensure feasibility of hard constraints, and accepting the resulting soft constraint

violation penalties.8 In industry practice, a solver needs to have a highly reliable backup method

that can be used if the main solver fails. The worst-case solution played that role in the competition.

Solutions that either could not be scored otherwise or had poorer objective values than the worst-

case score were assigned the worst-case score. Since these worst-case scores had a substantial

negative impact on the overall results, teams needed to develop robust code that nearly always

produced a correctly formatted solution of at least moderate quality within the specified time limit.

For prize awards, the competition had four divisions, corresponding to the two timing categories

(10 minutes and 45 minutes) and the two scoring methods. Within each division, the top ten eligible

teams were each awarded $100,000, with prize eligibility based on a team’s satisfaction of certain

requirements including being led by a U.S. entity. An eligible team placing in the top ten in each

of the four divisions would win $400,000.

5. Summary of Approaches

This special issue includes three papers on algorithms for solving the SC-AC-OPF problem, as

formulated in the GO Competition, from teams gollnlp, GO-SNIP, and GMI-GO. These teams

ranked first, second, and third, respectively, in Challenge 1 out of the 27 participating teams. In this

section, we briefly summarize the algorithms from each team and refer to the following references

for further details (Petra and Aravena 2021, Curtis et al. 2021, Gholami et al. 2022).

The first team, gollnlp (Petra and Aravena 2021), uses nonconvex relaxations of complementar-

ity constraints, two-stage decomposition with sparse approximation of recourse terms, and asyn-

chronous parallelism, together with state-of-the-art nonlinear programming algorithms to compute

SC-AC-OPF base case solutions that hedge against contingencies. The gollnlp algorithm consis-

tently provided high-quality feasible solutions to problems with different sizes and difficulty levels

on both synthetic and industrial datasets. The gollnlp algorithm produced the best-known solu-

tions in 58% of the cases. In the remaining cases, it attained average gaps (with respect to the best
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known solutions) of 0.15% for real-time cases (with 10 minutes of execution time) and 0.21% for

offline cases (with 45 minutes of execution time). The gollnlp algorithm was also among the only

three approaches that produced valid solutions for all cases.

The second team, GO-SNIP (Curtis et al. 2021), developed an algorithm based on an interior-

point method that iteratively enforces constraints associated with additional contingencies. This

algorithm uses contingency screening and parallel processing techniques to identify quickly what

seem to be the most important contingencies. GO-SNIP also designed tailored heuristics for com-

plementarity constraints and avoided certain degeneracies by modifying the problem formulation.

The GO-SNIP algorithm obtained the best-known solutions in 20% of the cases, second-best-known

solutions in over half of the cases, and top-ten solutions for almost all of the test cases.

The third team, GMI-GO (Gholami et al. 2022), developed a two-level alternating direction

method of multipliers (ADMM) algorithm for two-stage SC-AC-OPF problems with a conver-

gence guarantee for the first time in the literature. To handle the complementarity constraints,

GMI-GO created a smoothing technique that allows interior-point solvers to be utilized. To ensure

robust performance, GMI-GO incorporated a contingency screening procedure and a massive par-

allel computation framework with safeguarding mechanisms. The GMI-GO algorithm consistently

outperformed the ARPA-E benchmark algorithm (Coffrin 2021) in all instances and achieved the

best-known solutions in about 5% of the test cases.

The methods developed by these three teams share many similarities:

• Due to the large sizes of the SC-AC-OPF problems, all three teams adopted decomposition

algorithms or iterative contingency incorporation strategies, which are often effective in finding

high-quality feasible solution within the given time limits.

• All three teams used contingency ranking and screening techniques in order to focus on those

contingencies that seem to have a large influence on the base case decisions.

• As the original SC-AC-OPF problem formulation involves challenging nonlinear, nonconvex,

and complementarity constraints, some approximation or relaxation techniques are considered in

all three algorithms to simplify the SC-AC-OPF formulation.
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• To better utilize the computational resources, each algorithm is built upon parallel and dis-

tributed computing methods adapted for the purpose of solving SC-AC-OPF problems.

• The implementation details also play an important role: for example, fallback mechanisms for

failures in the solution process are used by each of the three teams. Moreover, the teams have all

chosen C++ as their programming language and used the interior-point solver Ipopt (Wächter and

Biegler 2006) with the HSL linear solver module (HSL 2002).

Despite these similarities, these algorithms are developed under distinctive assumptions and

formulations, with different numerical performances on the test instances. We therefore encourage

readers to see each paper for further details regarding these algorithms (Petra and Aravena 2021,

Curtis et al. 2021, Gholami et al. 2022). We also note several resources published in other venues

by GO Competition teams based on their work in Challenge 1. These include work by the sixth-

place team Tartan Buffs (Bazrafshan et al. 2020), the eighth-place team Pearl Street Technologies

(Jereminov and Pileggi 2021), and the tenth-place team ARPA-E Benchmark (Coffrin et al. 2018,

Coffrin 2020, Coffrin et al. 2020). The fifth-place team GravityX developed a modeling language,

Gravity, to solve Challenge 1 (Hijazi et al. 2018).

6. Conclusion

Challenge 1 of the ARPA-E GO Competition compared the performance of a broad range of solu-

tion algorithms for SC-AC-OPF problems using state-of-the-art computing hardware and realistic,

large-scale datasets. The results show that algorithms that combine power systems modeling tech-

niques and physics-informed heuristics with advanced numerical optimization methods are capable

of finding high-quality operating points satisfying the constraints of practical SC-AC-OPF problems

within industrially relevant time frames. Thus, these results provide support for efforts to move

nonlinear optimization techniques into industrial applications. This paper has given an overview of

the Challenge 1 competition, including the problem formulation, competition structure, datasets,

computing platform, etc., and summarized both the state of the art in SC-AC-OPF solution tech-

niques and the algorithms used by the three top-performing teams in the competition. For further
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details of these algorithms, we refer to the three papers we authored for this special issue (Petra

and Aravena 2021, Curtis et al. 2021, Gholami et al. 2022).

We conclude this introductory paper with comments on the advantages and limitations of con-

ducting power systems research within the context of the competition and discuss directions for

future work. The competition had the following significant advantages and research contributions.

• Algorithm development: The competition encouraged teams to create new, highly effec-

tive algorithms for SC-AC-OPF problems that combine existing state-of-the-art techniques with

novel approaches. These algorithms lay the foundation for addressing a wide range of challenging

optimization tasks for future power grids.

• Algorithm benchmarking: The competition enabled benchmarking the performance of

many SC-AC-OPF algorithms on common computing hardware, a consistent and practically rele-

vant problem formulation, and the same scoring method. This fills a key gap in prior literature, as

many earlier OPF algorithms consider incomparable problem formulations and are validated with

inconsistent datasets, varying computing hardware, and limited comparisons to alternatives.

• Building exposure: The ARPA-E GO competition significantly raised the profile of SC-AC-

OPF research and intensely focused the attention of researchers with a diversity of expertise on

this topic. The competition thus provides the groundwork for future efforts in both subsequent GO

Competition challenges and in other areas of power engineering research.

We also note several limiting aspects of performing research in the context of the competition.

• Prioritization of implementation over theory: The GO Competition scoring method

incentivizes teams to focus solely on reducing generation cost and avoiding constraint violations.

These are important goals that are highly relevant to industrial applications. However, this neglects

important complementary goals that focus more on theory, such as assessing the potential subop-

timality of an operating point, proving infeasibility (i.e., certifying when the constraints in (24)

cannot be satisfied with zero-valued slack variables), and bounding worst-case convergence rates.

These and other goals have been the focus of intensive recent research (Molzahn and Hiskens 2019,
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Low 2014a,b). Similarly, while the scoring method encourages developing heuristics that work well

in many instances, there is little benefit for explaining and assessing the limitations to the per-

formance of these heuristics within the context of the competition. Finally, since implementation

quality was of utmost importance to avoid “worst-case” scores from code failures, the benchmark

results from the competition may overlook alternative algorithms that could have performed better

if they had more robust implementations or had better exploited the parallel computing resources.

• Limited scope for off-line computations: As discussed in Section 4.1, the GO Competition

evaluated the teams’ implementations against previously unrevealed datasets, thus precluding the

offline computations needed for many data-driven solution methodologies. However, in practice,

many power grid parameters are relatively constant (e.g., line impedances) and system opera-

tors have good estimates for others (e.g., forecasts of load demands and renewable generation).

Emerging machine learning algorithms perform off-line calculations using this data to inform on-

line computations (Duchesne et al. 2020). Despite their significant promise, such approaches were

not well suited for the GO Competition due to the competition’s structure. In Challenge 2 of the

GO Competition, a Monarch-of-the-Mountain (MoM) event—currently in progress—addresses this

lack of practice with the data. MoM allows teams to use any hardware and any algorithm with no

time limits, only evaluating solutions provided by the teams when they are ready. So far, with 62

scenarios having new solutions out of 84, only 2 show more than a 1% improvement. These results

suggest that the Challenge 2 teams did well without off-line computations.

• Disincentives to disseminating in-progress research: Many leading experts in power

systems optimization were involved in the GO Competition as either members of various teams or in

organizational roles. With competing teams and the organizers keeping their latest findings secret

for the sake of fairness or competitive advantage, research for the competition differed substantially

from the generally open environment that has historically been the norm in the power systems

community. It is therefore essential that ongoing efforts such as the publications in this special issue

as well as a special sessions at conferences and workshops continue to disseminate the knowledge

developed in the GO competition.
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Finally, we note several potential directions for further research. Challenges 2 and 3 of the

GO Competition consider different problem formulations with features like multiple time periods,

corrective controls, adjustable transformer tap settings, line switching, responsive load demands,

and generator startup/shutdown characteristics. Research is also needed into other OPF prob-

lem formulations that are not considered in these challenges, such as uncertainties (Roald et al.

2022), stability considerations (Abhyankar et al. 2017, Geng et al. 2017), distributed solution algo-

rithms (Molzahn et al. 2017), etc.
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Endnotes

1. Whereas preventive models accurately represent the existing operation paradigm and capa-

bilities of power grids, so-called corrective models are also prevalent in the literature. Corrective

models assume that decisions can be made and coordinated between base case and post-contingency

states, and thus problems can be corrected as supposed to only prevented.

2. Shunts can also be connected between different phases of a bus in a three-phase power system.

These shunts can be equivalently represented by a shunt connected between the bus and the ground,

or a neutral point, using the ∆-Y transformation.

3. Further details on the competition structure are available at https://gocompetition.

energy.gov/challenges/challenge-1.

4. Details regarding the data format are available at https://gocompetition.energy.gov/

challenges/challenge-1/input-data-format.

5. For more information on the GRID DATA program, see https://arpa-e.energy.gov/

technologies/programs/grid-data.

https://gocompetition.energy.gov/challenges/challenge-1
https://gocompetition.energy.gov/challenges/challenge-1
https://gocompetition.energy.gov/challenges/challenge-1/input-data-format
https://gocompetition.energy.gov/challenges/challenge-1/input-data-format
https://arpa-e.energy.gov/technologies/programs/grid-data
https://arpa-e.energy.gov/technologies/programs/grid-data
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6. See https://gocompetition.energy.gov/evaluation-platform for further details on the

computing hardware.

7. For the final event, the teams submitted seven Python, four C++, and five each of Julia,

executable binaries, and MATLAB codes.

8. The detailed methodology for computing the worst-case score is available at https://github.

com/GOCompetition/WorstCase.
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EC.1. Illustrative example of phasor transformation in AC circuits

In this section, we demonstrate how phasors simplify computations in AC circuits, from differential

equations in the time domain to algebraic equations in the complex plane, using the illustrative

circuit of Fig. EC.1.

+

−
v(t) R

iR(t)

L

iL(t)

C

iC(t)

i(t)

Figure EC.1 Example AC circuit with one voltage source, one resistor, one inductor, and one capacitor. v(t)

denotes the excitation voltage at the source (left), i(t) the total current draw from the source,

iR(t) the current passing by the resistor, which dissipates electrical power as heat, iL(t) the current

by the inductor, which stores electrical energy in its magnetic field, and iC(t) the current by the

capacitor, which stores electrical energy in its electrical field.

The elemental circuit equations for passive elements (not producing power, i.e., resistor, inductor,

and capacitor) imply: iR(t) = v(t)/R (Ohm’s Law), iL(t) = 1/L ·
∫ t

−∞ v(τ)dτ (Faraday’s Law),

iC(t) =C dv
dt
(t) (Ampere-Maxwell’s Law), and i(t) = iR(t)+ iL(t)+ iC(t) (Kirchhoff’s Current Law).

In steady-state, with an excitation v(t) =
√
2V cos(ωt), where V is the root mean square (RMS)

voltage—which is easier to measure than the voltage amplitude—and ω is the angular frequency,

these circuit equations simplify as follows:

iR(t) =
√
2
V

R
cos(ωt) (EC.1)

iL(t) =
√
2
V

L
·
∫ t

−∞
cos(ωτ)dτ =

√
2
V

ωL
cos
(
ωt− π

2

)
(EC.2)
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Figure EC.2 Oscillogram for voltages and currents in circuit of Fig. EC.1 with R= 2.5Ω, L= 1.3333H, C = 0.75F,

and v=
√
2cos(t) (V = 1 and ω= 1).

iC(t) =
√
2V C

d(cos(ωt))

dt
=
√
2V ωC cos

(
ωt+

π

2

)
(EC.3)

i(t) = iR(t)+ iL(t)+ iC(t) =
√
2
V

R
cos(ωt)+

√
2V
(
ωC − 1

ωL

)
cos
(
ωt+

π

2

)
(EC.4)

We observe that circuit calculations for steady-state AC circuits correspond to multiplication by a

scalar for resistors (EC.1), or a multiplication by a scalar and a phase shift for inductors (EC.2) and

capacitors (EC.3), leaving the frequency ω unaltered. Further, addition is performed in orthogonal

directions (EC.4): any sinusoidal can be decomposed into a part with phase 0 and a part with phase

π/2, and addition can be performed separately for phase 0 and π/2 because they are orthogonal.

Fig. EC.2 presents the waveforms of iR(t), iL(t), and iC(t) for particular values of the circuit

parameters.

These observations motivate electrical engineers to represent AC circuit quantities as elements of

the complex plane, where multiplication and phase shift correspond to multiplication by complex

numbers, and where addition also takes place in orthogonal components. We map sinusoidal signals

onto the complex plain using the phasor transformation Fω : Sω →C, where Sω is the set sinusoidal

functions with frequency ω, defined in (1), and repeated here for convenience:

Fω

(√
2A cos(ωt+ϕ)

)
=A exp(iϕ)≡A ϕ

We apply the phasor transformation to the circuit equations (EC.1)–(EC.4) to obtain the fol-

lowing compact, algebraic—as oppossed to differential—expressions:

•
iR =

V

R
0 =

1

R •
v (EC.5)
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•
v = 1 0

•
iR = 0.4 0

•
iL = 0.6 −π/2

•
iC = 0.75 π/2

•
i = 0.427 0.359

Figure EC.3 Phasor diagram for voltages and currents in circuit of Fig. EC.1. Same electrical parameters as in

Fig. EC.2.

•
iL =

V

ωL
−π

2
=

−i

ωL •
v (EC.6)

•
iC = ωCV π

2
= iωC

•
v (EC.7)

•
i=

•
iR +

•
iL +

•
iC =

(
1

R
+ i
(
ωC − 1

ωL

))
•
v (EC.8)

The complex plane in Fig. EC.3 presents the phasors for the oscillogram from Fig. EC.2, where

we can observe the scaling and rotation of the current with respect to the voltage for each passive

element, as well as their aggregate.

For each passive element e, their phasor-equivalent equations (EC.5)–(EC.7) can be expressed

as
•
ie = Ye •

v, identical to Ohm’s law but with complex quantities, where Ye is called the admittance

of the element; YR = 1/R, YL = −i/(ωL), and YC = iωC. Similarly, the addition of currents is

performed along the real and imaginary axes in equation (EC.8), in the same fashion that it would

be done in DC circuits. We can also note that admittance in parallel can be added directly to obtain

the total admittance Y = 1/R+ i (ωC−1/(ωL)) (conversely, the total a of series admittance is the

reciprocal of the sum of their reciprocals). We call the real and imaginary parts of an admittance

Y the conductance G and susceptance B, respectively, i.e., G=ℜ(Y ) and B =ℑ(Y ).

As reviewed in Section 2.1, instantaneous power p(t) = v(t) · i(t) (equation (2)) can also be

represented using complex quantities, and we defined complex power as
•
s=

•
v ·

•
i∗ (equation (3)).

We noted that the real component of complex power, active power, represents the continuous and

double frequency part of instantaneous power proportional to the cosine of the phase difference

between voltage v(t) and current i(t). The imaginary component of complex power, reactive power,
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Figure EC.4 Oscillogram for instant power provided by the source, p(t), and consumed by passive elements,

pR(t), pL(t), and pC(t), in Fig. EC.1. This oscillogram uses the same electrical parameters as in

Fig. EC.2.

•
sR = 0.4 0

•
sL = 0.6 π/2

•
sC = 0.75 −π/2

•
s = 0.427 −0.359

Figure EC.5 Complex power diagram for circuit in in Fig. EC.1 using the same electrical parameters as in Fig.

EC.2.

represents the double frequency part of instantaneous power proportional to the sine of the phase

difference between voltage v(t) and current i(t).

These relations can be visually appreciated in Figures EC.4 and EC.5. Figure EC.4 presents the

oscillogram for instantaneous power in the circuit of Fig. EC.1. Figure EC.5 presents the complex

power diagram for the circuit of Fig. EC.1. For the resistor, instantaneous power pR(t) only has a

continuous component of 0.4 and double frequency sinusoidal component with amplitude 0.4, both

proportional to the magnitude of complex power |
•
sR|= 0.4 and the cosine of the angle of complex

power ∠
•
sR = 1. Analog comparisons between instantaneous and complex power can be made for

the inductor, capacitor, and the source. An additional, perhaps more important, observation from

Fig. EC.5 is that that complex power also obeys balance as current does, that is
•
s=

•
sR +

•
sL +

•
sC ,

which is a consequence of the definition of complex power.

EC.2. Competition Platform Details

This appendix summarizes the platform developed for Challenge 1 of the GO Competition. An

internal web server is the central point of coordination among entrants, the computing cluster,
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database, code repository, and network file servers. The internal web server manages the running

and evaluation of pending problems, receives progress updates while transitioning through the life

cycle of a submission, and routes those messages to the entrant through a web interface.

The web server validates and stores the details of each submission and then triggers a chain of

events. The team’s code is checked out to the web server from GitHub using a predefined SSH key.

If the submitted code does not yet exist on the login node of the computing cluster, it is copied

from the web server and compiled if necessary. If this fails, logged information is sent to the team

and the submission is marked as terminated. Otherwise, the code is then run.

Each submission includes a Code 1 which a 10-minute time limit for a real-time case and 45-

minute limit for a planning case. Code 1 is expected to generate a solution1.txt file and optionally

a solution2.txt file. If either Code 1 fails to produce the base case solution or produces an

infeasible solution, the submission is terminated and assigned the worst-case score. Each submission

may also include a Code 2 that is then run to generate a solution2.txt file using information

from solution1.txt. Code 2 is not allowed to recreate or modify solution1.txt and has a time

limit of two seconds per contingency. Once both solutions are available, the evaluation script is

launched to generate a score. Once scored, post-processing archives results in a tar.gz file and

stores scenario’s metadata into a database. Should the team wish to review their score or obtain

the results, they can do so through their submission page on the competition’s web site.

Code 1 and Code 2 could be written in two different languages. The primary language was

solicited from the submission webpage. The most common submissions were in the form of Linux

binary executables, C/C++ (gcc versions 4.7/5.2/7.1/8.1), MATLAB R2019a with MATPOWER

v7.0b, Julia (versions 0.64, 0.7. 1.1, 1.2) and Python (versions 2.7.13, 3.7.2). The entrants could

choose from a broad range of compiler and solver versions, though latest versions of them were

provided if there was no specific request. Entrants also had a wide range of choice of solver libraries

compiled with various versions of gcc upon request, including Ipopt v3.12.13, HSL for Ipopt

v2015.06, Python-based Pyomo v5.6.1, Julia-based JuMP (0.18, 0.19), Gurobi v8.1, IBM CPLEX

https://gcc.gnu.org/
www.mathworks.com
https://matpower.org/
https://matpower.org/
https://julialang.org/
https://www.python.org/
https://coin-or.github.io/Ipopt/index.html#Overview
http://www.hsl.rl.ac.uk/ipopt/
http://www.pyomo.org/
http://www.juliaopt.org/JuMP.jl/dev/
https://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer
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v12, MATLAB-based CVX v2.1, GAMS v27, MOSEK v7, Bonmin v1, and AMPL v2019. In most

cases, commercial solver vendors sponsored a multi-use license for the length of the competition.

Teams could also choose between Intel MPI (versions 2017 and 2018) and OpenMPI (versions 1.8.3

and 3.1) implementations with desired combinations of Intel and gcc compilers.

http://cvxr.com/cvx/doc/intro.html#what-is-cvx
https://www.gams.com/
https://www.mosek.com/
https://projects.coin-or.org/Bonmin
https://ampl.com/
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