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Abstract—The increasing integration of distributed energy
resources (DERs), particularly solar photovoltaic (PV) systems,
has introduced new cybersecurity challenges in distribution
networks. This paper presents a data-driven attack model that
examines how an adversary can exploit direct load control
(DLC) mechanisms to selectively disconnect downstream loads
during periods of high solar generation. Such targeted load
tripping forces excess PV output to flow back toward the
substation transformer, potentially causing power imbalances
and transformer overloading. We model both PV output and
load demand as multivariate Gaussian distributions to capture
their inherent temporal and spatial uncertainties. A probabilistic
power imbalance metric is defined to quantify the extent of
reverse flow under compromised conditions. To identify the most
impactful combinations of load disconnections and timing, we
employ a multi-armed bandit approach based on the Upper
Confidence Bound (UCB) algorithm. Simulation results demon-
strate the feasibility and effectiveness of the attack strategy under
realistic variability in solar output and demand.

Index Terms—Distributed Energy Resources, Cybersecurity,
Transformer Overloading, Multivariate Gaussian Modeling, Up-
per Confidence Bound

I. INTRODUCTION

Distributed Energy Resources (DERs) enhance the flexibil-
ity, efficiency, and resilience of modern power grids, support-
ing the broader transition to sustainable energy systems. DERs
encompass decentralized, small-scale generation and storage
technologies such as solar photovoltaics (PV), wind turbines,
and battery energy storage systems that are typically deployed
near the point of consumption, enabling localized energy
production and reducing reliance on centralized infrastructure.

Among the various DER technologies, solar photovoltaics
(PV) have experienced the most significant growth, driven
by rapid cost reductions, supportive policy measures, and the
global shift toward decarbonization. Rooftop PV installations,
in particular, have become increasingly prevalent in both
residential and commercial sectors [1]]. According to the U.S.
Energy Information Administration (EIA), the United States
added 26.3 GW of new PV capacity in 2023, raising the
cumulative installed capacity to approximately 137.5 GW [2].

Despite their operational benefit, DERs also introduce new
cybersecurity concerns, particularly as these systems become
increasingly integrated with communication and control net-
works [3]]. The National Institute for Standards and Technol-
ogy (NIST) has highlighted that the incorporation of advanced

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Cybersecurity, Energy Security, and
Emergency Response (CESER). The work of S. Talkington is supported by
the National Science Foundation Graduate Research Fellowship.

Reproducibility: The code for this paper is publicly available at this link.

technologies into the electric grid increases the system’s
exposure to cyber threats [4].

One potential vulnerability arises from the Direct Load
Control (DLC) infrastructure widely implemented in demand
response programs. Through DLC, utilities or aggregators re-
motely manage customer loads such as air conditioning units,
water heaters, and pool pumps to balance supply and demand
during peak periods. Although designed to enhance flexibility,
this control mechanism presents a potential entry point for
adversaries. By compromising DLC command signals, an
attacker can selectively disconnect downstream loads [5]—
[8]. When this occurs during periods of increased levels of
PV generation, local demand is significantly reduced, forcing
surplus solar power to flow upstream. Such reverse power flow
can exceed transformer ratings, potentially causing equipment
overloads and service interruptions [9]-[13]].

A substantial body of research has explored the operational
impacts of photovoltaic (PV) systems on distribution networks.
For instance, Walling et al. [[14] examined how rooftop PV
influences local power flows and voltage profiles. Manito et
al. [15]] demonstrated that high levels of PV penetration exac-
erbate thermal stress and accelerate degradation in distribution
transformers. Sharma et al. [16] and Hajeforosh et al. [17]]
investigated the conditions under which reverse power flow
resulting from PV generation can lead to transformer overload-
ing. Other research has focused on load-altering attacks, where
adversaries manipulate control commands to disrupt demand
profiles [18].

While these studies provide valuable insights into the phys-
ical and operational effects of PV integration, they often rely
on deterministic assumptions that do not fully capture the
stochastic nature of real-world grid conditions. In particular,
few works address the joint uncertainties in PV generation and
load demand during adversarial events [[19].

To bridge this gap, this paper contributes a probabilis-
tic modeling framework for load-tripping attacks in DER-
integrated distribution networks. Our approach represents both
PV output and load demand as correlated multivariate Gaus-
sian random variables, enabling the analysis of variability
across time and location. We define a probabilistic overload
condition to estimate the likelihood that reverse power flow
exceeds transformer capacity. To further guide effective attack
strategy selection under uncertainty, we adopt a multi-armed
bandit formulation using the Upper Confidence Bound (UCB)
algorithm [20[]-[22].

The rest of this paper is organized as follows. Section
formulates the adversarial load-tripping problem, introducing
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a probabilistic framework that jointly models the variability
in photovoltaic output and load demand. This section also
outlines the design of a data-driven attack strategy based on
the Upper Confidence Bound (UCB) algorithm, which system-
atically identifies high-impact load disconnections. Section
describes the simulation setup based on a modified IEEE 13-
bus test feeder, incorporating load and solar PV data from
the SMART-DS Greensboro Area dataset. Section [[V| presents
and interprets the numerical results, highlighting the conditions
under which reverse power flow and transformer overloading
are most likely to occur. Finally, Section [V]concludes the paper
and discusses directions for future research.

II. PROBLEM FORMULATION

We consider an adversary who trips downstream loads
to force excess DER generation back into the substation
transformer, in order to induce overload or equipment failure.
The adversary’s strategy is defined by two principal decisions:
the selection of loads to disconnect and the timing of their
disconnection. Rather than shedding all loads, we assume that
the adversary incurs some cost when compromising individual
loads, or alternatively, seeks to avoid revealing the full extent
of their capabilities for potential use in future attacks. Tripping
the entire set of controllable loads at once would result in a
sudden, large-scale disruption that would likely immediately
trigger alarms and attract operator attention, undermining the
attack’s stealth.

Instead, the adversary strategically selects a subset of at
most k£ < n loads whose disconnection maximizes the net sur-
plus of DER generation over the remaining demand, thereby
inducing the greatest reverse power flow toward the substation
transformer. The adversary does this carefully at discrete,
spaced out time intervals, or rounds, to maintain a level of
subtlety that delays detection. Equally important is the decision
of when to act: the attacker schedules their load tripping at
strategically chosen times based on the underlying stochastic
process that governs the solar output and the demand.

Concretely, the attacker wishes to learn the underlying
distribution of the customers’ behavior and strategically time a
select, potentially very small number of power outages. This
targeted load selection coupled with precise timing enables
the adversary to impose maximum stress on the substation
transformer while minimizing the number of curtailed loads,
and avoiding detection. This natural threat model is described
very naturally as a multi-armed bandit algorithm.

A. Uncertainty model

Let g,d € R", be random active power generation and
demand vectors in a lossless n-bus distribution network model
with a single transformer. We emphasize that the entries of
these vectors do not need to be independent, nor do they need
to be identically distributed. The first and second moments of
the random demand and generation vectors are

Eld] == pg,
Elg] == ny,

E [ddT] =%,

E [ggT] =3,

respectively. We analyze the difference between these two
vector-valued stochastic processes—the random net power
injection vector, defined as p := g — d. Under the lossless
assumption, the flow through the transformer is S := 17 p.
For simplicity, we adopt the simplifications of Assumption [I]

Assumption 1. The attacker has compromised all devices in
the network, the power factors of all nodes are unity (i.e.,
reactive power is invariably zero), the network is lossless, and
the random active power demands are bounded as 0 < d < d,
almost surely.

Under Assumption |1} it can be shown that the net power
injection vector is a sub-Gaussian random vector, allowing us
to readily apply the theory of multi-armed bandits.

B. Threat model

The set of all attack strategies available to the adversary,
or action space, is the set of all possible ways the adversary
can trip off at most k£ loads. We can rigorously describe this
action space as the n-dimensional hyper-simplex of radius k:

A:={aec{0,1}" : [|a]|, <k}. (1)

The action space of the attacker, @), is equivalent to the set
of all binary vectors with at most k& non-zero entries.

Suppose the attacker has compromised all devices in the
network, and wishes to carefully choose a configuration of load
tripping configurations over the course of a finite sequence of
attack times. At each attack time, or round t = 1,...,T, the
attacker chooses a load tripping attack a; € A, and observes
the flow through the transformer S : A — R, which takes the
form

S(ay) == 1’ (9; — Avdy) = thi —dy - 1{ay =1} .
i=1

Here, A; := diag(1 — a;) € {0,1}""" is a binary diagonal
matrix encoding the attack strategy at time ¢, where

2)

0, i€ A; (tripped),
(A =1 (ar); = t-< pped)
1, otherwise.

In the attack matrix (), we set A; C {1,...,n} to be the set
of all loads that the attacker chooses to trip at time ¢.

C. Confidence bound analysis

To identify the most impactful combinations of load dis-
connections and time intervals for inducing reverse power
flow toward the substation transformer, we employ the Upper
Confidence Bound (UCB) algorithm; for a detailed description,
see [22, Ch. 7].

Note that the net generation term 1'g, is independent
of the attack term A;d;. Thus, maximizing the reward is
equivalent to choosing the k loads with the highest demand (in
expectation) to trip. Each load 7 can therefore be treated as an
independent “arm” with unknown mean demand p; := E[d;].
A standard upper confidence bound (UCB) rule for each arm,
followed by selecting the TopK UCB scores, gives an optimal
strategy.



Thus, at each time step ¢, the attack strategy A; := TopK, C
{1,...,n} is the indices of the k largest UCBs. Let N; be the
number of times the attacker has tripped load 7, and define the
attacker’s sample mean estimator for each load i:

. 1 )
fis ;:M%‘;}dn-n{zeAT}. 3)

Appealing to Hoeffding’s inequality, the UCB score of load @
at time step ¢ is then

2log(t)

max (1, N;)’ @

UCB{»(Z) = ﬂi + ¢t -
where c; > 0 is some time-varying exploration coefficient.

D. Algorithm

The covert load tripping strategy employed by the attacker
is described in Alg. [T} This online UCB algorithm seeks to
estimate the first moment of the loads E [d] and maximizes
the flow through the transformer by picking the K largest of
them.

Algorithm 1 Covert Load Tripping Attack
Require: Attack horizon 7', attack budget K

1: Initialize: @  0,,, N; <0, ;<0 i=1,...,n.
2: for each round t =1 to 7" do

3 UCBY(i) ¢ fii + o/ sy

4: Select: A; «+— TopK(UCB4(i), i =1,...,n)

5: Execute attack: (a), = 0 for all ¢ € A,

6: for each tripped node i € A; do

7: Update trip count: N; <— N; + 1, R

8: Update sample estimator: fi; < fi; + d’N;“
9: end for '

10: Observe imbalance: S(a;) Siax 17 (g, —a; 0d;)
11: end for

12: return Optimal configuration: a, < ar

III. EXPERIMENTAL DESCRIPTION
A. Regret analysis

Throughout our experiments, we analyze the cumulative
regret, which is a common metric used to analyze online
learning algorithms. Given a sequence of load tripping actions
at time ¢, {aT}tT=1 C A, we define the cumulative regret of
the adversary at time ¢ as

Ry :=E | max Y Sr(a) = Sr(ar) | ®)

TE[t]

where [t] ;= {1,...,7,...,t}. In words, the regret (3) mea-
sures the average difference between how large the attacker
could have caused the power flow to be, and what was actually
done by the sequence of actions taken by the attacker.

B. Dataset description

We use a lossless formulation for a modified IEEE
13-bus test case [23|] integrated with the open-source
SMART-DS Greensboro Area synthetic dataset [24], which
is available at [25]. In particular, our simulations use
load and solar PV time-series data selected from the
urban_suburban feeder, and we select the solar
high_batteries_none_timeseries scenario, which
represents a high-penetration solar deployment without bat-
tery storage. This choice allows us to isolate the effects of
solar generation on feeder dynamics without the confounding
influence of local energy storage.

The time-series data in the SMART-DS dataset includes
real power consumption at 15-minute resolution. Load profiles
are drawn from the NREL ResStock model for residential
buildings. PV generation data is derived from the National
Solar Radiation Database (NSRDB) and similarly interpolated
to 15-minute intervals. Each PV unit is associated with a
time-series file indicating power output scaled to its inverter
capacity.

This setup reflects a realistic urban feeder with temporal
variability in both demand and generation. It enables us
to evaluate the system’s response to targeted cyber-physical
disruptions under high DER penetration, particularly under
peak solar generation conditions.

IV. RESULTS

For the exploratory work described in this paper, we im-
plemented the Upper Confidence Bound (UCB). While the
attacker is theoretically capable of exploring all 213 —1 = 8191
feasible load combinations, we adopt a key simplification: the
attacker’s action space is constrained to shutting off at most &
loads at each time step.

An important consideration is the statistical correlation
between local PV generation and customer load consumption.
Due to this correlation, the impact of disconnecting specific
loads varies significantly. Loads closely aligned with PV pro-
duction contribute disproportionately to net surplus injections
at the substation and thus represent strategic targets for the
adversary.

Under baseline (non-attacked) conditions, the power imbal-
ance at the substation modeled as a Gaussian random variable
exhibits a mean of E[S] = —1.50 p.u. and a standard deviation
of o[S] = 3.426 p.u.. The negative mean indicates that, on
average, the substation draws power from the upstream grid
to meet local demand, confirming its role as a net importer
of energy. The standard deviation reflects natural fluctuations
in net demand arising from temporal variability in both load
consumption and PV generation.

The UCB algorithm identified an optimal strategy involving
the simultaneous disconnection of different residential loads.
This targeted action resulted in a significant net power surplus
of |S(kt)] = 5.0605 p.u., reversing power flow direction
and marginally exceeding the transformer’s rated capacity.
Specifically, this induced an overload of approximately 1.2%
above its rated limit.
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Fig. 1. Performance of Algorithmmon the proposed random test dataset with
n = 100 nodes, and 10 nodes 7 that follow the vulnerable distribution. We
show the results output by Alg. |l| with tripping budgets k € {5, 10,15, 20}.

A. Synthetic data

We first demonstrate the results of the covert load tripping
algorithm on synthetic data. The experiments depicted in this
section are fully reproducible and are publicly available at the
following link:

Link to reproducible Julia code

Fig. [T] shows the results of the load tripping Alg. [Tjon ¢ =

1 ,T" = 1000 iid copies of the following random vectors:

1) generation: (g,); ~ N (p, 1), and
2) demand: d;, where each entry is one of the following
Gaussian random variables: d¥P or d"'", where
o d¥ ~ N (3p,1) is a “typical” load and
o " ~ N ((3+8) 1), &~ Uniform(0,1) is a
“vulnerable” demand, with a potentially much larger
mean, making these nodes ripe for a cyberattack.

The results on the synthetic data in Fig. [I] demonstrate the
typical logarithmic regret behaviors for UCB algorithms. In
fact, it is possible to show that UCB is provably good for this
problem, and that it is not possible to do better.

Although quantitatively small, the observed overload un-
derscores a critical finding: strategically timed, minimal in-
terventions such as the disconnection of a carefully selected
subset of residential loads can effectively challenge, and even
momentarily surpass, the operational thresholds of distribution
infrastructure. This highlights the disproportionate impacts that
low-effort, targeted actions can have on device overloads.

Fig. [2shows the total power flow (in p.u.) under coordinated
attacks. The colored lines correspond to the attack strategy in
Algorithm [T] which selects and trips k loads at each time step,
where k£ denotes the number of loads tripped by the attacker.
As k increases, the magnitude of the reverse power flow
becomes more significant, particularly during midday hours
when the solar generation is high.

Total Flow Over Time
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Fig. 2. Flow through the transformer vs. time when applying the load tripping
strategy in Alg. [T]to realistic data. The data are sourced 13 nodes taken from
urban-suburban feeder within the SMART-DS Greensboro test case [25]] with
attack budgets k € {1, 2,4, 8}.
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Fig. 3. Cumulative regret vs. time when applying the load tripping strategy
in Alg. |I| to realistic data. The data are sourced 13 nodes taken from urban-
suburban feeder within the SMART-DS Greensboro test case [25]] with attack
budgets k € {1,2,4,8}.

Fig. 3] presents the cumulative regret over time for different
values of k. As shown, smaller values of k£ result in higher
cumulative regret, indicating that the attack policy is less ef-
fective at approximating the most extreme impact. In contrast,
larger values such as k = 8 achieve much lower cumulative
regret, which shows that the attack strategy in Alg. [T] more
closely approximates the optimal tripping policy as more loads
are allowed to be compromised.

V. CONCLUSION

We analyzed an online attack algorithm that exposes vul-
nerabilities in power distribution networks by strategically
disconnecting downstream loads, thereby inducing reverse
power flow and potentially overloading substation transform-
ers. Operating under uncertainty, the adversary employs a
Gaussian statistical model capturing the variability of solar
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PV generation and customer load demand. By leveraging
the Upper Confidence Bound (UCB) algorithm, the attacker
identifies an optimal subset of loads to disconnect at carefully
selected times, maximizing stress on the substation transformer
with minimal and targeted intervention.

Our findings demonstrate that this type of attack is both
plausible and effective. Even under conservative assumptions,
strategically timed, limited-scale load disconnections can trig-
ger transformer overloads, highlighting a significant vulner-
ability in feeders with high DER penetration. Although our
analysis adopts an adversarial perspective, the insights gained
can directly inform the development of proactive detection
methods and mitigation strategies, underscoring the critical
need for enhanced situational awareness and resilience plan-
ning in DER-integrated grids.

Future work will extend this framework by integrating
models of the power flow equations and empirical variance
estimates, thereby providing a more detailed assessment of
voltage violations and potential cascading effects under attack
scenarios. In addition, we will focus on developing real-time
detection algorithms capable of identifying anomalous shifts
in power flows and load patterns consistent with adversarial
activities, even with limited observability and uncertainty in
DER outputs. To support broader applicability, future work
will also address the scalability of the proposed approach to
accommodate larger distribution networks.

REFERENCES

[1] P. Jahangiri and D. C. Aliprantis, “Distributed volt/var control by PV
inverters,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp.
3429-3439, 2013.

[2] National Renewable Energy Laboratory (NREL), “Spring 2024 solar
industry update,” U.S. Department of Energy, Tech. Rep. NREL/PR-
6A20-90042, 2024. [Online]. Available: https://www.nrel.gov/docs/
fy240st1/90042.pdf]

[3] M. R. Maghami, A. G. O. Mutambara, and C. Gomes, “Assessing
cyber attack vulnerabilities of distributed generation in grid-connected
systems,” Environment, Development and Sustainability, pp. 1-27, 2025.

[4] V. Pillitteri and T. Brewer, “Guidelines for smart grid cybersecurity,”
NIST Interagency/Internal Report (NISTIR 7628 Revision 1), Tech.
Rep., September 2014.

[5] A.-H. Mohsenian-Rad and A. Leon-Garcia, “Distributed internet-based
load altering attacks against smart power grids,” IEEE Transactions on
Smart Grid, vol. 2, no. 4, pp. 667-674, 2011.

[6] P. Xun, P. dong Zhu, S. Maharjan, and P. Cui, “Successive direct load
altering attack in smart grid,” Computers & Security, vol. 77, pp. 79-93,
2018.

[71 E.-N. S. Youssef, F. Labeau, and M. Kassouf, “Adversarial dynamic
load-altering cyberattacks against peak shaving using residential electric
water heaters,” IEEE Transactions on Smart Grid, vol. 15, no. 2, pp.
2073-2088, 2023.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Ebtia, D. E. Rebbah, M. Debbabi, M. Kassouf, M. Ghafouri,
A. Mohammadi, and A. Soeanu, “Spatial-temporal data-driven model
for load altering attack detection in smart power distribution networks,”
IEEE Transactions on Industrial Informatics, vol. 20, no. 5, pp. 7414—
7427, 2024.

Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” ACM Transactions on Informa-
tion and System Security (TISSEC), vol. 14, no. 1, pp. 1-33, 2011.

A. Hahn, A. Ashok, S. Sridhar, and M. Govindarasu, “Cyber-physical
security testbeds: Architecture, application, and evaluation for smart
grid,” IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 847-855,
2013.

F. Ebe, B. Idlbi, J. Morris, G. Heilscher, and F. Meier, “Evaluation of
PV hosting capacities of distribution grids with utilisation of solar roof
potential analyses,” CIRED 24, vol. 2017, no. 1, pp. 2265-2269, 2017.
I. B. Majeed and N. I. Nwulu, “Impact of reverse power flow on
distributed transformers in a solar-photovoltaic-integrated low-voltage
network,” Energies, vol. 15, no. 23, p. 9238, 2022.

W. A. Jabbar, S. Annathurai, T. A. A. Rahim, and M. F. M. Fauzi,
“Smart energy meter based on a long-range wide-area network for a
stand-alone photovoltaic system,” Expert Systems with Applications, vol.
197, p. 116703, 2022.

R. Walling, R. Saint, R. C. Dugan, J. Burke, and L. A. Kojovic,
“Summary of distributed resources impact on power delivery systems,”
IEEE Transactions on Power Delivery, vol. 23, no. 3, pp. 1636-1644,
2008.

A. R. Manito, A. Pinto, and R. Zilles, “Evaluation of utility transformers’
lifespan with different levels of grid-connected photovoltaic systems
penetration,” Renewable Energy, vol. 96, pp. 700-714, 2016.

V. Sharma, S. M. Aziz, M. H. Haque, and T. Kauschke, “Effects
of high solar photovoltaic penetration on distribution feeders and the
economic impact,” Renewable and Sustainable Energy Reviews, vol.
131, p. 110021, 2020.

S. Hajeforosh, A. Khatun, and M. Bollen, “Enhancing the hosting
capacity of distribution transformers for using dynamic component
rating,” International Journal of Electrical Power & Energy Systems,
vol. 142, p. 108130, 2022.

S. Maleki, S. Pan, S. Lakshminarayana, and C. Konstantinou, “Survey of
load-altering attacks against power grids: Attack impact, detection and
mitigation,” IEEE Open Access Journal of Power and Energy, 2025.

S. Amini, H. Mohsenian-Rad, and F. Pasqualetti, “Dynamic load altering
attacks in smart grid,” in I[EEE Power & Energy Society Innovative Smart
Grid Technologies Conference (ISGT), 2015.

W. Macready and D. Wolpert, “Bandit problems and the explo-
ration/exploitation tradeoff,” IEEE Transactions on Evolutionary Com-
putation, vol. 2, no. 1, pp. 2-22, 1998.

P. Auer, “Using confidence bounds for exploitation-exploration trade-
offs,” Journal of Machine Learning Research, vol. 3, pp. 397422,
November 2002.

T. Lattimore and C. Szepesvari, Bandit Algorithms.
University Press, July 2020.

D. M. Fobes, S. Claeys, F. Geth, and C. Coffrin, “PowerModels-
Distribution.jl: An open-source framework for exploring distribution
power flow formulations,” Electric Power Systems Research, vol. 189,
no. C, November 2020, presented at 21st Power Systems Computation
Conference (PSCC), June 2020.

B. Palmintier, T. Elgindy, C. Mateo, F. Postigo, T. Gémez, F. de Cuadra,
and P. D. Martinez, “Experiences developing large-scale synthetic US-
style distribution test systems,” Electric Power Systems Research, vol.
190, p. 106665, November 2021, presented at 21st Power Systems
Computation Conference (PSCC), June 2020.

B. Palmintier, C. Mateo Domingo, F. E. Postigo Marcos, T. Gomez
San Roman, F. de Cuadra, N. Gensollen, T. Elgindy, and P. Duenas,
“SMART-DS Synthetic Electrical Network Data OpenDSS Models
for SFO, GSO, and AUS,” 2020. [Online]. Available: https:
//data.openei.org/submissions/2981

Cambridge


https://www.nrel.gov/docs/fy24osti/90042.pdf
https://www.nrel.gov/docs/fy24osti/90042.pdf
https://data.openei.org/submissions/2981
https://data.openei.org/submissions/2981

	Introduction
	Problem formulation
	Uncertainty model
	Threat model
	Confidence bound analysis
	Algorithm

	Experimental Description
	Regret analysis
	Dataset description

	Results
	Synthetic data

	Conclusion
	References

