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Abstract—Machine learning models have been developed for
a wide variety of power system applications. The accuracy of a
machine learning model strongly depends on the selection of
training data. In many settings where real data are limited
or unavailable, machine learning models are trained using
synthetic data sampled via different strategies. Using the task of
approximating the voltage magnitudes associated with specified
complex power injections as an illustrative application, this paper
compares the performance of neural networks trained on four
different sampling strategies: (i) correlated loads at fixed power
factor, (ii) correlated loads at varying power factor, (iii) uncor-
related loads at fixed power factor, and (iv) uncorrelated loads
at varying power factor. A new sampling strategy that combines
these four strategies into one training dataset is also introduced
and assessed. Results from transmission and distribution test
cases of varying sizes show that these strategies for creating
synthetic training data yield varied neural network accuracy. The
accuracy differences across the various strategies vary by up to a
factor of four. While none of the first four strategies outperform
the others across all test cases, neural networks trained with the
combined dataset perform the best overall, maintaining a high
accuracy and low error spreads.

Index Terms—Neural Network, Power Flow, Sampling.

I. INTRODUCTION

Recently, the application of Machine Learning (ML) meth-
ods to power systems physics has gained significant atten-
tion. These methods can address the inherent non-linearity of
power systems and reduce computational complexity through
application-specific training. These applications are surveyed
in [1]-[3] and include power flow analysis [4], state estima-
tion [5], [6], optimal power flow [4], [7], voltage control [8],
and topology reconfiguration [9], [10], among others.

Neural Network (NN)-based methods have received notable
interest, especially in solving the power flow equations. These
methods mitigate the online computational burden associated
with AC power flow analysis by employing models trained of-
fline. NN methods utilize training data to infer the power flow
relationships. The selected training data greatly influences the
model’s ability to predict unseen conditions accurately. Many
references, such as [11]-[14], suggest using previous/historical
data when training neural networks. While using historical
data from measurements eliminates the need for an explicit
power system model, sufficient historical data may not always
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be available to train a neural network effectively due to
limited sensor availability and data confidentiality. Moreover,
historical data may not necessarily represent future system
operations, especially during extreme events or contingencies.
Thus, it is often necessary to generate synthetic training data.

Different strategies have been used in literature to generate
synthetic training data. For example, [10], [15]-[19] use
independent Gaussian sampling, while [20], [21] use spatially
correlated sampling. The biggest argument for the latter is that
real-time load variations are often driven by common factors
(e.g., a common ambient temperature across a region strongly
influences air conditioner load), making correlated sampling
appropriate. At the same time, the former could improve the
generalizability to wider ranges of power injection variability.

To better understand the implications of various sampling
strategies for generating training data, this paper characterizes
how different data sampling choices affect neural network
accuracy. Using a fully connected neural network for approx-
imating voltage magnitudes as an illustrative application, we
compare four sampling strategies: (i) correlated load demands
at fixed power factor, (ii) correlated load demands at varying
power factor, (iii) uncorrelated load demands at fixed power
factor, and (iv) uncorrelated load demands at varying power
factor. We evaluate the performance of neural networks trained
with each strategy for unseen test data that may be correlated
or uncorrelated and exhibit either a constant or varying power
factor. We also evaluate their performance for different loading
conditions, including actual time-series measurements. Thus,
this paper’s key contribution is a detailed performance assess-
ment of a simple NN model’s voltage approximation accuracy
with respect to different training data sampling strategies
considering comparisons across different loading conditions.

The paper is organized as follows. Section II presents
notation, background regarding the power flow equations, and
a neural network model for predicting voltage magnitudes.
Section III presents different strategies for synthetic training
data generation. Section IV presents our numerical results and
key findings. Section V concludes the paper.

II. BACKGROUND

We first present notation and background material regarding
the power flow equations and the neural network model we



use as an illustrative application.

A. AC power flow model

Consider an n-bus power system with sets of buses B and
branches £. Each bus i € B has active and reactive power
injections P; and (); and voltage magnitude and angle, V; and
0;. The vector of active and reactive load demands at all buses
is denoted as Pp and Qp. The network admittance matrix
is Y = G + jB, where j = /—1. Define 0, = 6; — 6,
for all branches (i,k) € L. Given these definitions, the AC
power flow equations relating the power injections and voltage
phasors are:

Pi=V; ) Vi (Gikcos(0ix) + Bigsin(0i)),  (la)
k=1

Qi =Vi Yy Vi (Girsin(0ir) — Bircos(0ix)) . (Ib)
k=1

The AC power flow equations (1) are usually solved by
numerical methods such as Newton-Raphson to obtain the
grid states, i.e., the voltage magnitudes and angles. However,
such computations are computationally demanding if they
need to be carried out multiple times (e.g., for Monte Carlo
simulations). ML models have recently been proposed to
address this challenge, e.g., [22], [23]. Next, we describe one
such model that uses a neural network architecture.

B. NN-based Voltage Prediction Model

Given the AC power flow equations (1), we focus on the
task of approximating the voltage magnitudes given the buses’
active and reactive power injections. To do so, we use a simple,
fully connected neural network with one hidden layer of ReLU
activation functions. Fig. 1 shows the architecture, where the
inputs to the network are vectors of the real and reactive
power injections and the output is the vector of approximated
voltage magnitudes, denoted as V. The system determines
the size of the input and output layers: the input layer has
size 2 x |B| corresponding to the active and reactive power
injections at every bus, and the output layer has size |B]
corresponding to the voltages approximated at every bus. The
size of the hidden layer (number of neurons) is determined
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Fig. 1: A simple neural network with one hidden layer. The
network is trained to approximate the voltage magnitudes
based on the power injections at each bus.

by hyperparameter tuning and is set at 100 neurons for
all experiments in this paper. Using training data sampled
according to the strategies discussed in Section III, we train
neural networks to approximate the nonlinear AC power flow
equations using the Adam optimizer set at a learning rate of
0.001 [24]. The loss function sums, across all samples, the
Mean Absolute Error (MAE) in the voltage approximations
across all buses:

8]
The datasets are split into 80% training and 20% testing. An

early stopping criterion is used to prevent overfitting to the
training set, using a patience value of ten epochs.

MAE = )

III. SYNTHETIC DATASET CREATION

This paper’s key contribution is a comparative analysis of
different strategies to generate synthetic datasets for voltage
prediction using the NN model described in Section II. To
sample the power injections, we vary the load demand at every
bus while keeping the generator outputs at all buses fixed,
except for the slack bus, which balances power as needed to
satisfy the power flow equations. We consider five strategies:

(i) Correlated load, same power factor (CS): All loads
are assumed to be perfectly correlated. To generate a
wide range of the data for different loading conditions,
we multiply all the load demands by a common factor
a € R sampled from a 4+50% uniform distribution
a ~U(0.5,1.5), i.e., the new load data point is calculated
as Pp = aP7,, where P}, denotes the nominal active
power load. For the reactive power, we assume a constant
power factor, i.e., the reactive loads are obtained by
multiplying the nominal reactive power demand Q7, by
the same value of a, that is, Qp = a Q7.

(ii) Correlated load, varying power factor (CV): The active
loads are modified in the same manner as in CS, but the
reactive power is sampled independently of the active
power. This is done by sampling a new value of the
multiplying factor, ag € R, from the +50% uniform
distribution ag ~ U(0.5,1.5) and applying this factor as
Q.p = agQp.

(iii) Uncorrelated load, same power factor (US): The active
loads are multiplied by unique multiplicative factors,
a € RIBl Each load Pp;, Vi € B, is perturbed from
the corresponding nominal load as Pp; = «;Pp,;. The
reactive power is created similarly to CS, i.e., with a
constant power factor, that is, Q@ p; = o; Q7.

(iv) Uncorrelated load, varying power factor (UV): All
the active and reactive loads are uncorrelated and are
obtained by multiplying with separate factors, a; and
a@;, sampled from the +50% uniform distribution, i.e.,
a;, ag; ~ U(0.5,1.5). Thus, for all i € B, Pp; = o, Pf;
and Qp; = agiQp;-

(v) Combined Dataset: This dataset combines the different
strategies in equal proportion. We equally combine strate-
gies (i)—(iv) to generate a new dataset that encompasses



all load variations, i.e., correlated versus uncorrelated
load, as well as varying and constant power factors.
For example, a dataset of 100 data points contains 25
instances of (i), 25 instances of (ii), etc.

We also consider three loading levels for each dataset to
represent the demand variation observed in electricity grids:

« Nominal loading: Active and reactive loads are varied
between 95% and 105% of the nominal value.

o Overloading: Active and reactive loads are varied be-
tween 130% and 150% of the nominal value.

« Underloading: Active and reactive loads are varied be-
tween 50% and 70% of the nominal value.

o Time-series: We also test the trained models using time
series data obtained from real grid measurements using
the setup described in [25].

Notably, the overloading and underloading datasets present
unusual loading conditions that may be underrepresented in
historical data but are becoming increasingly common in the
advent of extreme weather conditions [26]. Their uncommon
nature makes them more challenging to manage [27], [28].

IV. NUMERICAL RESULTS

This section presents a performance comparison of the
training data sampling strategies described in Section III for
voltage magnitude prediction using the NN model reviewed
in Section II. The neural network accuracies achieved with
different training data strategies are evaluated based on the
Percentage of In-Tolerance Predictions (PTol):

ZjeT ZiEB ]I(Wj - Vj| <€)

BIxT x 100%,  (3)

PTol(e) =

where V is the vector of approximated voltage magnitudes,
V is the vector of actual voltage magnitudes obtained from
computing the power flow, I denotes the indicator function, T
is the size of the testing dataset, and € indicates the tolerance
level for the PTol metric. The e value is given in per unit (pu).
Higher values of PTol indicate better accuracy since a larger
percentage of predictions are within the specified tolerance.
Additionally, higher PTol values for smaller tolerance levels e
also indicate better accuracy.

A. Test-case and implementation

We perform numerical tests using five networks of varying
sizes: the IEEE 14-bus and 118-bus test systems, a radial 33-
bus distribution grid [29], and two models representative of
real grids: the Swedish 503-bus system [30] and the European
906-bus system [31].

We vary the active and reactive power demands via the five
strategies described in Section III. Using the Julia program-
ming language [32], the power flow problems were solved
using the PowerModels [33] package with the nonlinear solver
IPOPT [34]. The neural network training was conducted using
the Flux package [35] on a computer with an 8-core Mac-M2
chip at 3.2GHz and 16 GB of RAM.

B. Results from Testing Datasets

For each sampling strategy and the same neural network
structure, the neural networks’ accuracies in predicting nodal
voltages are adjudged by comparing the approximated voltages
to the actual voltage magnitude values obtained by solving
the AC power flow equations (1). We assess the ability of
the different strategies to approximate voltage magnitudes
within acceptable tolerance levels for nominal, overloaded,
and underloaded conditions. For each sampling method, we
show the PTol values for the specified e values over T = 250
testing samples. We evaluate the accuracy of the NN when
trained using the different sampling strategies by testing on
validation datasets generated using other strategies under each
range of loading conditions. Fig. 2 details the results of this
evaluation.

The results show that the combined dataset performs the
best overall. While none of the first four strategies maintained
consistency in the results in all the test cases, the combined
dataset displays a much more undeviating pattern. For all the
test cases, NNs trained with the combined dataset maintained
a consistently good performance by reaching a PTol value of
100% with the ¢ value set at 0.01 pu.

The same cannot be said for any of the first four methods.
For instance, the UV and US sampling strategies performed
best for the IEEE 14-bus system, with all approximated
voltages within 0.001 pu of the actual values. However,
these strategies perform poorly for the Swedish 503-bus and
European 906-bus test cases, especially under extreme loading
conditions. Conversely, CS and CV show the best performance
for the Swedish 503-bus test case, but they are the worst-
performing strategies for the IEEE 14-bus and radial 33-bus
test cases.

The combined dataset, on the other hand, is consistent in
providing good accuracy. The combined dataset performs at
least as well as, if not better, than any of the first four strategies
for all loading conditions. The combined strategy performs just
as well as CS and CV strategies for the IEEE 118-bus case
and equally as well as US and UV strategies for the IEEE
14-bus and radial 33-bus cases. This indicates a consistency
in the positive results obtained from the combined dataset.

C. Comparison using Time-Series Data

To further assess the performance abilities of the different
data generation methods, we test the accuracy of the various
sampling strategies on the real-time-series data from [25].
For a 24-hour period, we make predictions of the voltage
magnitudes at every bus and compute the absolute value of
the approximation error. The error spread for each method in
the various test networks is shown in Fig. 3.

For all the networks, the combined dataset produced the
best results with the smallest spread of errors and, in most
cases, had the average error closest to zero. Again, similar to
results in Fig. 2, none of the four commonly used strategies
demonstrated consistency in the prediction results. UV and US
performed very well for the smaller test cases but significantly
underperformed for the larger test cases. Similarly, while



TRAINED WITH
CS | cv | US | UV [ Combined| €S | €V | US [ UV | Combined | CS [ CV [ US| UV | Combined
[ 18.68 | 38.74 3095 23.08 | 38.46 3077 [1542] 2452 1751 ] 49.82 22.80
cv 1246 | 4025 3108 2240 | 4123 3077 |17.85]2545] 855 | 49.26 23.94
US 1354 | 1655 3166 2145 | 3225 2769 |16.62[2077] 1.11 [ 5049 2440 £=0.001
uv 1049 | 1698 | 36.77 28.83 2018 | 3351 2751 |12.31]18.77] 151 | 5058 2289
Combined | 13.08 | 2855 3049 21.66 | 37.17 2932 [1572]2289] 6.83 | 4991 2323
[ 18.68 | 38.74 3095 23.08 | 38.46 3077 |1542] 24521751 | 49.82 2280
CcV 1246 | 4025 31.08 2240 | 4123 3077 [17.85] 25.45] 8.55 | 49.26 2394
E US 1354 | 1655 3166 2145 | 3225 2769 |1662]2077] 1.11 | 5049 24.40 £=0.002
= uv 1049 | 1698 | 36.77 28.83 20.18 | 3351 2751 [12.31]1877] 151 | 5058 22.89
= Combined | 13.08 | 2855 30.49 21.66 | 37.17 2932 [1572]2289] 6.83 | 4991 2323
% [ 2757 48.71
& CcV 3323 4108 17.88 49.08
=1 Us 33.35 | 4037 54.65 4148 4674 428 5526 | ¢=0.005
uv 25.69 | 39.82 5274 3132 4618 6.40
Combined | 38.83 42.80 1532 51.32
[ 4065
CcV 3631
Us 3151 £=0.01
uv 4825 3332
Combined 35.78
UNDERLOADING NOMINAL LOADING OVERLOADING
(a) IEEE 14-bus system
| TRAINED WITH |
CS | cv] us [ UV [ Combined | ¢S | ¢V | US | UV | Combined | CS | CV | US [ UV | Combined
[ 60.30 58.78] 31.64[ 29.11] 5921
Ccv 57.96 5824 31.62 26.97 | 57.35
us 62.05 | 43.54 54.6429.8126.70 | 56.78 £=0.001
uv 65.08 | 43.64 54.70] 30.46| 27.34| 56.61
Combined 51.75 55.64| 30.81] 27.31] 57.03
[ 60.30 58.78] 31.64[ 29.11 5921
Ccv 57.96 5824 31.62 26.97| 57.35
E US 62.05 [43.54 54.64] 29.81] 26.70 | 56.78 £=0.002
I~ uv 65.08 | 43.64 54.70] 30.46| 27.34| 56.61
E Combined 51.75 55.64| 30.81] 27.31] 57.03
= [ 51.51] 50.91
& Ccv 52.25| 4831
B _us 51.96| 41.84 €=0.005
uv 51.34] 42.06
Combined 51.28] 45.71
CS
Ccv
us £=0.01
uv
Combined
UNDERLOADING NOMINAL LOADING OVERLOADING
(b) Radial 33-bus system
TRAINED WITH
CS[CV|US|UV]| Combined | CS |CV| US UV Combined | CS [ CV[US|UV| Combined
CS 18.97| 0.01 [25.99] 1.5 16.00 18.10] 0.00 | 12.07 9.56 12.67 13.79] 1.73 | 0.00] 0.00 0.19
CV 1059] 0.00 | 1435] 0.76 17.17 16.55] 0.00 [ 19.69 1349 12.50 929 [ 1.63 [ 1.08[ 0.00 0.28
UsS 429 [ 334 |16,50] 0.00 11.66 11.00] 1.30| 0.00 0.06 1471 5.08 [ 3.06 | 0.00] 0.00 238 €=0.001
uv 4.9 | 359 [ 11.51] 0.00 10.15 1126 1.20 [ 2277 0.00 15.03 5.6 | 323 | 1.07] 0.00 283
Combined | 9.24 [ 1.50 [17.50] 0.50 13.80 1394 0.79 | 13.65 391 1336 856 | 2.30 | 053] 0.00 1.44
Cs 18.97] 0.01 [ 25.99] 1.59 16.00 18.10] 0.00 | 12.07 9.56 12.67 13.79] 1.73 | 0.00] 0.00 0.19
jan CV 10.59 1717 16.55] 0.00 | 19.69 13.49 12.50 929 | 1.63 | 1.08] 0.00 028
b US 429 11.66 11.00{ 130 [ 0.00 0.06 14.71 5.08 [ 3.06 | 0.00] 0.00 238 €=0.002
£ uv 4.19 10.15 1126[ 1.20| 22.77 0.00 15.03 546 [ 3.23 [ 1.07 0.00 2.83
Combined | 924 13.80 13.94] 0.79| 13.65 391 13.36 856 | 2.30 | 053] 0.00 1.44
B (] 48.05 50.84 4230 0.00 2627 37.69 25.62| 4.45 | 0.02] 0.00 2.79
= CcV 24.19 50.87 36.86| 0.00 3554 37.83 22.21| 4.12 | 291 0.00 321
Eﬂ) us 11.23 2855 26.57| 3.33 18.36 38.04 13.01| 7.65 | 0.00] 0.00 6.15 €=0.005
= uv 10.99 25.34 27.72| 3.21 16.43 38.11 13.44| 8.04 | 2.76] 0.00 7.58
Combined |23.15| 4.04 | 45.95( 0.85 39.22 3224] 1.92 22.71 37.12 18.95[ 5.90 | 1.54] 0.00 4.93
CS 210 7.16 0.00 53.19] 10.00] 0.05] 0.00 1256
CcVv 44.03] 2.09 1.20 0.00 39.81] 9.00 [ 7.48] 0.00 13.40
us 22.78] 16.77 0.00 54.23 5041 7.79 25,86 15.29] 0.00] 0.00 1495 £=0.01
UV 2187 17.27[ 53.65] 0.00 4835 51.82 8.23 26.52] 16.55] 7.65] 0.00 16.99
Combined [40.15] 8.93 225 441 3698 12.43] 3.95] 0.00 14.34
UNDERLOADING NOMINAL LOADING OVERLOADING

(c) IEEE 118-bus system

CS and CV perform well on the Sweden 503-bus system,
this method underperforms on all other test cases, especially
on the European 906-bus system, where the error spread is
comparable to that of US and UV.

V. CONCLUSIONS

Recognizing that the accuracy of machine learning models
strongly depends on the training data, this paper has explored

four common strategies for sampling power injections for
training neural networks that approximate voltage magnitudes.
The paper also introduces a new sampling strategy that com-
bines the four strategies into one dataset.

Extensive numerical results characterize how the NN predic-
tion accuracy varies with the choice of training data sampling
strategies. The results show that combining the four previously
used data sampling strategies into one yields the best accuracy



TRAINED WITH

CS | CV | US| UV | Combined

UV_ | Combined| CS CV US | UV | Combined

CS 56.66 | 0.75 | 0.78

2226 | 2859 | 0.00 | 0.00 24.63

(9% 5420 | 0.76 | 0.77

21.86 | 28.62 0.00 | 0.00 24.08

uUs 53.24 | 48.04 | 0.00 | 0.00

2142 | 2751 [ 0.00 [ 0.00 2343 &=0.001

uv 52.47 | 47.42 | 0.00 | 0.00

21.79 | 27.96 0.00 | 0.00 23.57

0.18 | 0.19

21.72 | 27.78 | 0.00 | 0.00 23.82

0.75 | 0.78

22.26 | 2859 0.00 | 0.00 24.63

0.76 | 0.77

21.86 | 28.62 0.00 | 0.00 24.08

us 53.24 | 48.04 | 0.00 | 0.00

2142 | 2751 | 0.00 | 0.00 2343 €=0.002

0.00 | 0.00

21.79 | 27.96 0.00 | 0.00 23.57

0.18
1.78
2.05
0.00
0.00
0.43
3.35
4.36
0.00
0.00
Combined 1.15 | 125

TESTED WITH

UNDERLOADING NOMINAL

LOADING OVERLOADING

23.82

€=0.005

£=0.01

0.00 | 0.00

(d) Swedish 503-bus system

TRAINED WITH

TESTED WITH

Combined

UV | Combined | CS [ CV | US [ UV | Combined | CS Combined

33.40
3247
2948

UNDERLOADING NOMINAL LOADING OVERLOADING

(e) European 906-bus system

Fig. 2: Heatmaps of the PTol metric for different tolerance levels, ¢ = 0.01,0.005,0.002,0.001 across different datasets. Darker
colors represent higher values of PTol and indicate better approximation accuracy. The columns indicate the training set, and
the rows indicate the test set. Results along the main diagonal of the table show approximation accuracy when the neural
network is trained and tested on the same dataset. Off-diagonal entries correspond to testing on datasets that use different
sampling strategies than used during training to assess generalizability.

and least spread in error. This combined strategy outperformed
the other four strategies in both nominal and extreme loading
conditions. When tested with time series data, the combined
strategy again produced a minimal approximation error com-
pared to each other strategy individually.

Future work will investigate the best sampling methods for
other applications in power systems beyond voltage magnitude
predictions, including optimal power flow and unit commit-
ment problems.
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