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Abstract

Synthetic power grid models play a pivotal role
in algorithmic benchmarking and techno-economic
policy analysis. Existing synthetic grid research has
primarily focused on regions in the United States
and Europe using methods based on these regions’
characteristics. This paper examines these methods’
suitability for creating representative models for other
regions. Differing data availability, power consumption
behaviors, and applicability of various modeling
assumptions challenge the suitability of existing
synthetic grid methods for non-Western countries. Our
analysis focuses on the West African country of Ghana.
We evaluate methods for estimating electric demand
and transmission network topologies by benchmarking
them against a representation of Ghana developed in
our previous work that is based on an accurate network
topology and public reports. Our results indicate that
existing population-based demand assumptions may
be inapplicable. Transmission topology methods can
vield reasonable results when aggregate characteristics
match those of the real system, but they do not capture
the centralization of Ghana’s grid.

Keywords: Synthetic grids, Delaunay triangulation,
minimum spanning tree, per capita power consumption.

1. Introduction

By allowing researchers to benchmark algorithmic
innovations and perform techno-economic policy
analyses using realistic power grid models that only
rely on publicly available information, synthetic grid
development is a crucial enabler of power systems
research [[1]-[4]. Synthetic grids provide realistic test
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cases for testing new algorithms and are also useful for
educational and training purposes [S[]. Synthetic test
cases are especially valuable for addressing problems
that are strongly influenced by regional characteristics,
e.g., wildfire risk mitigation, expansion planning, etc.

Nearly all synthetic grid research has focused on
the United States and Europe, e.g. [6]-[9], with few
synthetic grids available for other parts of the world.
To our knowledge, the few exceptions include regions
of South Korea [10], Singapore [I1], and Saudi
Arabia [[12]. There is a notable absence of synthetic
grids for developing countries in Africa, Asia, and South
America. With researchers implicitly tailoring their
analyses to the characteristics of the available synthetic
grids, this lack of test cases for developing countries
may limit the geographic applicability of emerging
algorithms as well as the accuracy of techno-economic
policy assessments in an international context.

Beyond the models themselves, most methods
for creating synthetic power grids (e.g., Delaunay
Triangulation and population-based demand estimates)
and validation metrics (e.g., average nodal degree) have
been developed based on grids in the United States
and Europe, e.g., (1], [2], [13]. It is unclear whether
these methods can be directly applied to African,
Asian, and South American countries, especially those
with significantly different characteristics in terms
of population distribution, economic development,
electricity access, and urbanization rates.

Building on our prior work in [14], this paper
investigates the applicability of existing synthetic grid
creation methods for countries in Africa, using Ghana as
a case study. In [[14]], we combined public information
on the actual transmission topology with field reports,
utility company statements, and online databases from
economic development organizations to create a detailed
synthetic model that accurately represents the demand,
generation, and transmission network characteristics
of Ghana’s power system. The approach described



in [14] required extensive manual effort and the public
availability of various datasets. Repeating this approach
to create realistic synthetic models for many developing
countries would thus be challenging, motivating the
application of existing methods that automate the
creation of synthetic grids. However, it is not clear
whether existing methods produce reasonably accurate
synthetic models for non-Western countries.

Ghana’s grid, in particular, is highly centralized,
relying heavily on a small number of generators—notably
the Akosombo Dam-and key transmission nodes such
as the Kumasi substation [14]]. This contrasts with
typical characteristics of other power systems studied
in [15]], particularly that typical systems lack central
hubs with a high degree and instead follow an
exponential nodal degree distribution. As modeled
in [14]], Ghana’s network exhibits a few outlier buses
with disproportionately high degree, and such structural
differences could have significant implications for
overall network topology and behavior. These and other
distinctive characteristics raise concerns regarding the
applicability of existing synthetic grid creation methods.

To help address this question, we assess the validity
of applying existing synthetic grid methods to Ghana’s
power system. We specifically compare our most
accurate model from [|14]] with alternatives that estimate
the demands and transmission network topology using
population-based methods and Delaunay triangulation
techniques, as in prior literature. Our results show
that population-based demand estimates can work well
in aggregate but may fail to produce accurate spatial
distributions. Conversely, prior transmission topology
techniques can provide realistic results, especially when
the average nodal degree is known. In summary, this
paper makes the following primary contributions:

* By applying existing grid estimation methods, we
identify data shortcomings that limit the direct
application of these methods in the Ghanaian power
system context and modify how they are applied to
make these methods more suitable.

* We compare models developed with existing
estimation methods to the realistic model created
in [14] that uses actual data for the network
topology and other power grid characteristics.
These comparisons assess differences in demand
distribution, Delaunay separation of lines, and DC
optimal power flow (OPF) solutions.

The remainder of the paper is organized as follows.
Section [2] describes the Ghana grid from our prior
work [14]. Section [3|discusses synthetic grid estimation
methods and explains our implementations. Section ]
presents and analyzes our results for the comparison.
Section[5]concludes the paper and discusses future work.

2. Modeling the Ghana Grid

Using publicly available data, our previous work
in [14] developed a realistic synthetic model of
Ghana’s electric grid in the MATPOWER [16] format
This section describes our Ghanaian grid model and
summarizes our development approach; see [14] for
further details. Note that creating this model required
significant manual effort to combine and cross-check
various data sources, and prior knowledge regarding the
local context was employed. This is a key motivation for
investigating the use of automated estimation techniques
to develop realistic synthetic networks, especially for
cases like Ghana that lack centralized, complete data
sources for the overall power system.

2.1. Generation

Ghana’s power system includes hydropower, natural
gas, and solar generators. We modeled these generators
using data on capacities and operating costs from
multiple sources, including the Ghana Grid Company’s
2022 Annual Report [[I7] and a Japan International
Cooperation Agency report [[18]. To estimate the
generators’ reactive limits, we used the method from [/1]].

2.2. Demand

The Ghana Energy Commission provides data on the
power consumption in all Ghanaian districts [[19]]. Using
this data and the total national electricity consumption
from the Ghana Grid Company [17]], we computed the
average consumption for each district in Ghana. To
determine the substations’ power demands, we spatially
assigned each district to the closest substation. The
power factor for the demand is set to 0.95, consistent
with the Ghanaian Renewable Energy Grid Code [20].

2.3. Transmission

Detailed data on the network topology and electrical
parameters, including nominal voltage, resistance,
reactance, and flow limits, are needed to create a
realistic representation of the Ghanaian transmission
network. The Economic Community of West African
States (ECOWAS) Center for Renewable Energy and
Energy Efficiency (ECREEE) provides a database of
transmission lines in the West African region [21]]. This
ECOWAS database formed the basis of our transmission
network model, providing information on the length of
each line, its connected substations, and the voltage level
at which it operates. Our original model [14] represents
each substation as a single bus to create the initial

'The model data is available at https://doi.org/10.
5281/zenodo.15557023,
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topological skeleton upon which the rest of the network
is built. We extended this model to incorporate multiple
buses with transformer connections in substations that
connect different nominal voltages.

Several sources were used to determine the electrical
parameters. First, field reports from the Japan
International Cooperation Agency and the World Bank
provided parameter values for all transmission lines in
the Greater Accra region [18]], [22]—[25]|. For lines that
do not appear in any field reports, and thus lack detailed
parameter data, we estimated resistances, reactances,
susceptances, and flow limits using line length and
voltage level data obtained from ECOWAS, following
techniques similar to those in El This provided a
realistic representation of the Ghanaian transmission
grid network, as shown in Fig. [3a]

3. Automated Estimation Methods

Creating the Ghanaian power system model
described in Section P]involved extensive manual effort
and relied on the public availability of various data.
Repeating this approach for other developing countries
is thus challenging and may not be possible, depending
on data availability. Thus, using automated synthetic
grid creation techniques from prior literature would
be particularly valuable in the context of non-Western
countries.  To assess whether prior synthetic grid
modeling techniques yield acceptable results, this
section describes these prior techniques in the context
of Ghana to develop alternative models that we will
subsequently numerically compare in Section 4]

Note that we assume the locations of all substations
and generators are known, as this information can be
found using publicly available satellite imagery [26].
Demand information is not extractable from such
software, and transmission line topology, where
available, is not as reliable or easy to obtain [27].

3.1. Estimation of electricity demand

Population is often a good indicator of power
consumption.  Previous studies use the population
data for various regions and the respective power
consumption per capita to estimate load demands at all
substations [[I]], [9], (13], [15]l, [28]]. Some synthetic
grid papers that focus on more precise load modeling
enhance demand estimation accuracy by considering the
ratio of residential, commercial, and industrial loads at
each substation [8]], [29]. For Ghana, however, this is
constrained by the lack of publicly available data.

The wide geographic variation in Ghana’s electricity

2Note that some line flow limits had to be relaxed as discussed in
Section 3.2]to obtain a feasible DC OPF problem.
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Figure 1: Share of the Ghanaian population per region
with access to electricity [30].
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Figure 2: Ghanaian population distribution by region [31].

access rates poses a key challenge for load modeling
using population-based methods. Unlike most Western
countries, many towns and villages in developing
countries remain largely un-electrified. Although the
percentage of the Ghanaian population with access
to electricity continues to grow, many regions lack
full electrification, as shown in Fig. m As of 2022,
85.1% of the population had access to electricity [19].
These disparities suggest that population-based load
modeling could lead to inaccurate results. To assess
this, we used the available data to develop an alternative
population-based model, as described next.

The most recent census in Ghana, the 2021
Population and Housing Census [31]], reports a total
population of 30.8 million and provides the numbers
for the various administrative regions and districts; see
Fig.[2] For the annual per capita electricity consumption,



we use the value of 0.66 MWh as reported by the Ember
Group report in [32] to compute the average active
power consumption at each bus:

0.66 MWh x Population

Active Power Demand =
8760 hours/year

We use a power factor of 0.95 for the reactive demands
as per the Ghanaian renewable energy code [20].
Section [] presents results from these computations
and compares with accurate demand data from Ghana’s
Energy Commission [[19] and Grid Company [|17].

3.2. Estimation of transmission lines

The transmission system is characterized by the
topology and line parameters. Instead of relying
on publicly available utility maps and economic
development databases, as in our prior work [14f], we
develop alternate models that estimate the grid topology
using automated methods from the previous literature.
To calculate the line parameters, we apply estimation
methods from [[1]], [15]], [33]], [34] (as described in [14])
which 1) assign resistance, reactance, susceptance, and
flow limit values based on line voltage level and length,
and 2) calculate minimal line flow limit relaxations to
obtain a feasible DC OPF solution. As described in [|14],
we compute these relaxations of the flow limits using
a variant of the DC OPF problem where the line flow
constraints include penalized slack variables. We also
obtain bus name and voltage level information for all 99
buses using ECOWAS data as in [[14].

Prior literature uses Delaunay triangulation as a
geometric approximation for power grid topology, as
it connects nearby neighbors and maintains a constant
average nodal degree, both traits characteristic of
real-world networks [[1], [13]], [15]. However, Delaunay
triangulation tends to overestimate the average nodal
degree, defined as (k) = sz (where m and n
are the numbers of lines and buses, respectively), as
around 6 [15]], while real networks are typically less
densely connected. For example, power grids in the
western United States have (k) values from 2.5 to 3 [35].
With 99 buses and 160 lines, Ghana’s actual grid
topology used in [14] has (k) = 3.232.

To create transmission topologies that better reflect
Ghana’s actual network, we adopt a combination
of minimum spanning trees (MSTs) and Delaunay
triangulation. Earlier work (e.g., [1]]) primarily relies
on Delaunay triangulation alone while more recent
studies (e.g., [[15]) introduce a more practical method
that combines MST and Delaunay to produce a
realistic topology that ensures connectivity of all buses
while also achieving a desired average nodal degree.
This process is described below in Sections

and Ultimately, we create two alternate
transmission topologies for sensitivity analysis and
comparison purposes: a topology with an average nodal
degree similar to the Eastern Interconnect in the United
States [15] and a topology whose average nodal degree
matches the actual Ghana network as used in [14].
Each bus is geolocated using latitude and
longitude values estimated using Google Maps
and OpenStreetMap. Buses at different voltage levels
within the same substation share the same coordinates.

3.2.1. Minimum spanning tree generation For
each of Ghana’s standard transmission voltages (69,
161, and 330 kV), we created MSTs for all buses
within Ghana [30]]. Existing cross-border connections
to substations outside Ghana were then added using
the same connections as in the ECOWAS database.
Additionally, since only three 225 kV substations are
located within Ghana, as per [21], with most others
at this voltage level being in neighboring countries,
all existing 225 kV connections were included directly
from the ECOWAS database, as with other non-standard
transmission voltage levels.

The complete MST representation of Ghana’s
grid—consisting of one MST for each nominal voltage
level (69, 161, and 330 kV)—has average nodal degrees
(k) of 1.60, 2.00, 1.87, respectively, and an average
(ky = 1.91. While (k) ~ 2, as expected for
MSTs, the final MST representation also includes all
existing 225 and 30 kV lines, as well as cross-border
connections. MST algorithms were not used to estimate
30 and 225 kV networks, as few lines and substations
are operating at these voltage levels within Ghana.

The MSTs are then augmented with selected lines
from the Delaunay triangulation, as described below.

3.2.2. Delaunay candidate line selection The
Delaunay triangulation gives a set of candidate lines for
each voltage level. We then use a DC OPF formulation
to calculate voltage angles 6 using the same generation
and demand parameters as our Ghana model from [14]].
Additional lines are selected from the candidates using
an iterative method similar to [15]], prioritizing lines
with higher estimated power flow Py, ;;:

6, — 0,
Pewp,ij = g (1)

b
T1ij - di

where ¢ and j denote the line’s terminal buses, x; ;; is
the per-distance reactance of the line, and d;; is the line
length. Following [15] and [9]], long-distance lines and
lines parallel to existing lines at other voltage levels or
increasing radial load are penalized. As per [36], select
lines were penalized to reflect geographic constraints



posed by the large Volta Lake in the central eastern
region of the country. This Delaunay candidate selection
process is intended to reflect the real iterative power flow
analyses that grid planners use in expansion planning,
balancing reliability and geographic constraints [[15].

We created two alternate network topologies with
differing average nodal degrees to assess how this
quantity impacts accuracy. For our first alternate
topology, we assume limited knowledge of Ghana’s
actual transmission system and hence seek to model
the Ghanaian transmission system similarly to that of
the United States. Accordingly, we added 2, 14,
and 4 lines to the 69, 161, and 330 kV networks,
respectively, to match with US network characteristics
of (k) = 2.43 [15]]. This network is shown in Fig.[3b]

For our second alternate topology, we assume
knowledge of the nodal degree distribution for the
accurate Ghana network topology from [21] (used
in [14]). To obtain the same nodal degree distribution for
the various voltage levels, we add 64 lines to the 161 kV
MST and 2 lines to the 330 kV MST; see Fig.

4. Numerical Results

This section empirically compares the synthetic
models for Ghana’s transmission system created using
the automated methods discussed in Section 3] with the
more accurate model from [[14]).

4.1. Change in electric demand

We first report the differences in the power demand
between the two cases: the actual demands obtained
from publicly available reports, as used in [[14], and the
population-based estimates discussed in Section 3.1}

The total demand between the two cases is relatively
similar. According to publicly available reports [17],
[19], the actual demand for the entire Ghanaian power
system, at 2.648 GW, differs by 5% compared to the
2.516 GW obtained from the population-based estimate.

Despite the similarity in total demand, the spatial
load distribution shown in Fig. [] indicates more
significant differences. The population-based demand
estimate does not account for a large portion of the
load demand from substations in the Greater Accra
and Ashanti regions. This is possibly due to large
industrial and commercial loads in these areas, which
purely population-based modeling neglects.

These spatial differences can substantially impact
the results of power system simulations. For instance,
Table E] shows the optimal costs for DC OPF solutions,
with the population-based demand estimates yielding
a 16.58% lower objective value due to differences in
the generators dispatched. For example, approximately

Actual | Estimated | Difference (%)
Load (GW) 2.648 2.516 4.98%
Cost ($/hour) | 66, 760 57,266 16.58%

Table 1: Change in demand between the report-based
actual and the population-based estimates.

130 MW less power is dispatched from the Asogli
330 MW natural gas power plant in the population-based
demand case versus the report-based actual demand.

4.2. Change in transmission network topology

We next compare the actual grid topology of Ghana
from the ECOWAS database [21]], as used in [14],
with the alternate topologies created via the MST and
Delaunay triangulation methods discussed in Section[3.2]

Note that the voltages in the Ghana transmission map
from [[17]], [21] imply the presence of 14 transformers
connecting buses at different voltages in substations
when assuming one bus for every voltage level in a
substation. The original version of the Ghana model,
as described in [14], did not include these transformers;
however, we subsequently added them, increasing the
number of buses from 84 to 99. The following
topological analyses focus solely on the transmission
lines, excluding branches that represent transformers.

In Fig. [3] the ECOWAS network and the alternate
networks largely resemble each other visually, with
higher density in the south and sparse connections
in the north. However, the alternate networks do
not reflect the level of skewed connectivity present in
the ECOWAS network as discussed in Section {£.2.2
Despite matching the overall connectivity of Ghana’s
network as represented by the average nodal degree
(k) = 3.23, the Delaunay candidate selection produces
a less centralized network that does not have a high
density of transmission lines between the Akosombo
Dam and the Greater Accra Region in the southeast of
Ghana, a characteristic present in the ECOWAS model
and [|17]]. One possibility for this could be that Delaunay
triangulation and candidate line selection do not allow
for repeated selection of the same line. This does not
reflect the ECOWAS test case, which has parallel lines
at the same voltage level between pairs of buses.

4.2.1. Distribution of line flow limit relaxations
As discussed in Section when we lacked public
reports that provided more accurate values, we estimated
line flow limits using techniques from [1f], [15]], [33],
[34]. To avoid infeasibility in the DC OPF problem
when using these flow limits, our prior work in [14]]
employed an optimization formulation to compute
minimum-size relaxations of the flow limits, ensuring
the DC OPF problem remains feasible. We next analyze
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Figure 3: Comparison of Ghana’s actual transmission topology from [|17]] versus algorithmically created networks.

the flow limit relaxations needed for various models.

Figure [5] shows the number of lines that require
specific percentage relaxations to obtain feasibility. All
three graphs indicate that the majority of the lines
require less than 5% relaxation to obtain a feasible
solution to the DC optimal flow problem. However,
the specific relaxation varies for the different scenarios.
With fewer lines in total, the flow limit relaxations
for the (k) = 2.43 model (Fig. are higher
than the relaxations applied to the (k) = 3.23
model (Fig. 3c), as shown in Fig. 5] However,
both alternate models required less relaxation than
the ECOWAS-based model from [14], with maximum
relaxation just exceeding 50% instead of 100%. This is
attributed to our line selection method, where Delaunay
candidate lines were added iteratively based on expected
power flow [15]. Consequently, we select lines with
the highest power flowing through them, reducing the
relaxation needed. Additionally, all lines in the alternate
networks are idealized as shortest-distance connections
between buses, regardless of local geography, while
the realistic topology from ECOWAS models the actual
winding of lines, resulting in longer lines on average.
Nevertheless, all three networks have similar overall
distributions of flow limit relaxations, with the vast
majority of lines relaxed by less than 5%.

4.2.2. Nodal degree distributions As shown in
Fig. [6] all three networks’ nodal degree distributions
exhibit a general downward exponential trend,
consistent with real power networks [15], [35].
However, the skew in Fig. [6a] reveals three highly
connected outliers that are not typical in power
network behavior observed in [15]—the Akosombo,

Smelter II, and Volta substations are connected to
14, 17, and 22 lines, respectively. This reflects these
substations’ critical roles: the Akosombo Dam is
a major hydroelectric power source in Ghana [30],
while Smelter II and Volta—both located in Tema, an
industrial hub in the Greater Accra region—serve areas
with the country’s highest electricity access rates [17],
as shown in Fig.[I] These outlier cases cannot be easily
accounted for in automated methods, such as MST
generation and Delaunay candidate selection. However,
the connectivity of these buses may be overestimated
in Fig. as we modeled one bus for each voltage
level within a substation, which may not be the case in
reality. For example, the Volta substation contains more
than two buses and one 161/330 kV transformer for its
330 kV and 161 kV voltage levels [17].

Furthermore, both the actual network topology
from [[14] and the (k) = 2.43 alternate topology exhibit
peak nodal degree values of around 2 to 3, which
is consistent with real power networks in the United
States [[I5]. Conversely, the (k) = 3.23 alternate
topology has a higher peak nodal degree of 4 in Fig.
This is interesting because although the average nodal
degree is the same in Figs. [6a and the actual
network’s average is skewed upward by outliers—its
peak nodal degree is only 2. As a result, using this
skewed-upwards average nodal degree for the (k) =
3.23 alternate network produced a degree distribution
that overestimates the system’s connectivity. This is
reflected by the clustering coefficient, (c), defined as the
average of all ¢;, the clustering coefficient for bus ¢ [[15]]:
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where k; is the number of neighbors of bus i and e;
is the number of lines between these neighbors. This
metric characterizes the likelihood that two neighbors
of a bus are also neighbors of each other, illustrating
connectivity. The (c) of our realistic case, with 99
buses, is 13%, the higher end of the 1 to 15% expected
for networks with more than 100 buses as reported in
prior literature [[15]. The (c) value for our (k) = 2.43
alternate model is slightly higher, at 14%, still within the
expected range, but our (k) = 3.23 alternate model has
(c) = 21%, overestimating the network’s connectivity.

4.2.3. Delaunay separation of lines Another metric
for assessing the similarity between networks is the
degree of Delaunay separation. A line with Delaunay
separation of one appears in both the actual and
Delaunay network topologies. A separation of two
indicates that two lines in the Delaunay model connect
the actual line’s endpoint buses.

In Fig.[/] the (k) = 3.23 alternate network appears to
be a better representation of the actual network topology
used in [[14] than the (k) = 2.43 alternate network.
69.3% of the lines in the (k) = 3.23 alternate network
have a separation of one [14]. 98% of the lines have
a separation of three or less, meaning a path of three
or less edges in the alternate network connects 98%
of each actual transmission line’s endpoints—consistent
with the average network behavior reported in [15],
where this separation similarly reflects the geographic
constraints of transmission system planning. In contrast,
only 87.3% of the lines in the (k) = 2.43 alternate
network have a separation of three or less, with some

Cost
Model from [|14]] $66,760/hour
Alternate model with (k) = 2.43 | $90,652/hour
Alternate model with (k) = 3.23 | $79,893/hour

Table 2: DC OPF results.

separations reaching 19 hops in Fig.[7al This suggests
that using the nodal degree trends of Western networks is
not as effective for modeling Ghana’s topology, whereas
incorporating knowledge about Ghana’s nodal degree
significantly improves the alternative network’s realism.

4.24. DC optimal power flow results Finally, as
summarized in Table[2] we compare the DC OPF results
obtained from the different models. We maintain the
same generation and load parameters while changing
the transmission topology among the three models.
Using the (k) = 2.43 alternate topology results in a
35.8% increase in the objective function of the DC OPF
problem, while the (k) = 3.23 alternate topology
results in a less significant change in the objective
function, with an increase of 19.7%. The latter result
suggests that ensuring consistency in the average nodal
degree more accurately captures the behavior of the
actual Ghanaian transmission network. Conversely, the
(k) = 2.43 alternate topology (based on Western
average nodal degree trends) least accurately reflects
the actual Ghanaian network behavior. With Delaunay
separations as large as 19 hops, the (k) = 2.43
alternate topology exhibits poor spatial alignment with
Ghana’s actual transmission network. Due to sparser
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model (actual Ghana network’s average nodal degree).

Figure 5: Line flow limit relaxations for DC OPF
feasibility.

connectivity, power is likely forced through longer
and more congested paths, resulting in significant cost
increases in the DC OPF solution. Both alternate test
cases have shortcomings in that they do not reflect the
centralized nature of Ghana’s actual network, with many
parallel transmission lines to key locations. The absence
of central hubs of high degree within the alternate test
cases may contribute to the increase in the objective
value of the DC OPF solution.

4.2.5. Discussion of key findings To summarize, the
(k) = 3.23 alternate topology offers both topological
and operational realism, allowing it to closely match
the model in [14] with the actual network topology.
Conversely, the sparser (k) = 2.43 topology results
in significantly higher operational costs. This indicates
that with knowledge about broad statistics of a network,
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Figure 6: Logarithmic bus degree distributions
exhibiting varying degrees of exponential decline.

particularly a network’s average nodal degree, Delaunay
line selection can produce a significantly more realistic
network. With general information on the nodal degree
distribution and local geographic features, such as large
lakes, our results for Ghana suggest that the use of MST
and Delaunay-based line selection methods can produce
networks that generally preserve key topological and
operational characteristics for non-Western systems
where complete data is not publicly available.

5. Conclusion and Future Work

This paper investigates the ability of existing
synthetic grid estimation techniques to characterize
the performance of real grid models accurately and
efficiently. Using Ghana as a case study, we compare
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(a) Delaunay separation of the alternate (k) = 2.43 model
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Figure 7: Delaunay separation of transmission line
endpoints in the generated representations of Ghana’s
69, 161, and 330 kV network, in hops.

different methods for estimating power demand and
transmission topology with our realistic grid model.

Our results show that while per capita electricity
consumption provides a good estimate of the total
system load, it may fail to fully characterize the
spatial distribution of the load, resulting in inaccurate
simulation results. Additionally, using topology
estimation techniques such as the Minimum Spanning
Tree and Delaunay triangulation can provide a
reasonably accurate representation of the actual grid
topology, particularly when specific selected network
properties, such as average nodal degree, are available.
However, these topology estimation techniques, while
capable of matching the average nodal degree and
overall shape of the network, did not capture the skewed
nature of Ghana’s power network, one that has more
centralized hubs with high degree, rather than strictly
following an exponential nodal degree distribution like
other networks studied previously.

Our future work will investigate methods for

circumventing data limitation challenges by creating
more representative load distribution models that
account for industrial and commercial loads, as well
as examining how the electricity access rate may affect
regional per capita consumption. We also plan to
explore methods to allow multiple parallel transmission
lines where appropriate, reflecting cases such as Ghana’s
grid, where multiple lines of the same voltage connect
the same buses. Additionally, to further validate the
results in this paper, we plan to create other synthetic
grids to perform similar analyses. We present Ghana
as the first step in a series of possible case studies
to investigate the effectiveness of these estimation
techniques in a global context.
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