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Abstract—Various types of reactive power control laws are
heterogeneously used for inverter-based resources (IBRs) in
distribution grids. As a result, grid operators may not be aware of
which type of control law is used by a particular IBR. Different
control laws imply different voltage support behaviors, which
need to be known for the development of accurate computational
models for power system analyses. To help mitigate this challenge,
this paper develops two classification algorithms to identify which
type of control law governs the reactive power output of a behind-
the-meter solar photovoltaic inverter when the specific control
law selected by the IBR owner is unknown. In particular, the two
algorithms require only aggregated smart meter measurements
to identify candidate reactive power control laws (constant power
factor or volt-var control) for distribution network inverters. We
present a case study to assess their classification accuracy and
evaluate the algorithms’ performance in the context of noisy
measurements. Our neural network-based classifier is shown to
have a higher classification accuracy and performs better under
varying levels of noise.

Index Terms—Reactive power control, inverters, classification,
neural networks, distribution networks, system identification

I. INTRODUCTION

Reactive power control of inverter-based assets is a cru-
cial feature for advanced distribution management systems.
Thus, there is significant research interest in the design [1],
[2] and analysis [3], [4] of inverter control characteristics,
as well as their stability assessment [5]. Historically, solar
photovoltaic (PV) inverters were often operated in constant
power factor mode (lagging to mitigate voltage rise). How-
ever, more recently, piece-wise linear volt-var control with a
deadband has gained popularity, as it is superior at mitigating
extreme voltage swings while avoiding unnecessary reactive
flows at normal voltages. In practice, standards such as IEEE
1547-2018 [6] provide references for utilities to shape their
interconnection requirements (see, e.g., the Hawaiian Rule
14H [7]). In Australia and New Zealand, the AS/NZS 4777.2
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standard [8] specifies the requirements for inverters in low-
voltage networks.

However, it is common for network operators to be unaware
of the control laws selected for individual PV inverters; these
are usually set by inverter control designers, installers, and
field engineers and are not reported or logged by the distri-
bution utility. The decentralized nature of these activities and
responsibilities, in addition to the loss of system information,
may ultimately lead to violations of grid connection standards
(e.g., voltage requirements). This concern was evidenced in
an analysis by the Australian Energy Market Operator, which
showed that only a minority of the many examined inverters
comply with the AS/NZS 4777.2 requirements [9].

Poor standard compliance levels can have significant im-
plications, such as increased PV curtailment and reduced
network stability limits [9]. Furthermore, the lack of knowl-
edge of inverter control capabilities makes the results of
optimal power flow [10] (or any “digital twin” functionality
that aims to capture actual network behavior) untrustworthy,
often precisely when it matters most, e.g., near the statutory
limit of overvoltage. Incorrect assumptions on control settings
could impact digital twins similarly to erroneous network
models [11].

While it is unclear from public information how often
IBR settings are changed in practice, the IEEE 1547-2018
standard mandates that IBRs have the ability to have their
control settings “remotely programmed” by their “managing
entities” [6]. As this feature becomes deployed in practice, grid
operators will need to be aware of evolving control conditions
across a portfolio of interconnected IBRs.

A. Related work

While extensive research has been performed on the data-
driven estimation of network properties (impedances, connec-
tivity, etc.), e.g., [12], [13], there is limited work on the identi-
fication of inverter control settings. Although increased teleme-
try in distribution networks facilitates system identification,
PV systems are usually installed behind the meter (BTM) and
utilities do not always have access to separate PV generation
measurements, but only to net grid injection/demand. While
this depends on the location and jurisdiction, if only net power



measurements are available, disaggregation of the PV injection
from the net load is necessary [14]. Furthermore, as these
are privately owned assets, operators may lack knowledge of
other PV system properties, e.g., their rating, tilt, and azimuth.
Estimation of these properties can be beneficial for operators,
e.g., to improve generation forecasts [15].

To the authors’ knowledge (and as per the review in [11]),
the only prior research paper on inverter control settings
estimation is reference [16]. However, [16] assumes prior
knowledge of the control law (i.e., constant power factor vs.
volt-var), whereas even the latter is often unknown in practice.

B. Contributions

This paper fills this gap in the literature by developing
methods to classify the type of reactive power control law
that governs the behavior of a BTM inverter-based resource
(IBR), particularly focusing on solar photovoltaic inverters.
The candidate laws we consider are volt-var (vv) and fixed
power factor (pf), the most common reactive power control
modes. The data input to these classification methods are
15-minute-granularity advanced metering infrastructure (AMI)
data, the most common data available to utilities [17].

We develop two methods: an intuitive method using the
nearest centroid classifier and another method using a fully
connected neural network (FCNN). Our numerical experi-
ments with varying noise levels demonstrate both methods’
performance. The results in this paper indicate that the neural
network-based method achieves significantly higher accuracy.

The remainder of the paper is organized as follows. First,
in Section II, we propose the two methods for classifying the
control laws governing solar inverters based on smart meter
data. In Section III, we present and analyze our results. In
Section IV, we conclude the paper and provide future research
directions.

II. METHODOLOGY

This section introduces two methods for addressing the
reactive power control law classification problem. Relying on
data-driven techniques, both methods require the availability
of synthetic timeseries smart meter data associated with nodes
where the governing control laws are correctly labeled as either
volt-var, fixed power factor, or no solar inverter present. As
we will discuss further in Section III-A, our numerical studies
use data from a timeseries simulation of the 1379-node Ckt. 5
model in OpenDSS [18] with 701 solar PV inverters that have
a mix of volt-var and fixed power factor control laws.

A. Nearest Centroid Classifier Method

At a conceptual level, our first proposed method is a
clustering-style heuristic that classifies each recorded time-
series power injection profile according to its closeness to the
mean profiles (“centroid”) for each control law obtained from
labeled timeseries data, after appropriate data normalization.
This method relies on the assumption that nodes where the net
injection is always negative (consistent net power consump-
tion) do not have a solar generator present. While relatively
simplistic, this method serves as a baseline for assessing the

possible performance improvements that may be achieved via
more sophisticated methods, such as our second method based
on neural networks discussed later in this section.

The intuition for this clustering heuristic is based on the
fact that the measurements obtained for the active and reactive
power at a node are significantly impacted by the PV inverter’s
control law. More specifically, the reactive power output from a
PV inverter is determined by the active power when set in fixed
power factor control whereas the nodal voltage determines the
reactive power output when volt-var control is employed. The
relationships between the different quantities are given by the
control laws’ characteristic curves as discussed in [19], [20].

With this knowledge, we develop simulated, empirical sam-
ple estimates of the sample mean profiles for the active and
reactive power injections associated with different control laws
to estimate expected behaviors. Define N = {1, . . . , N} as the
set of nodes for an N -bus system and T = {1, . . . , T} the set
of T time periods. Let P ∗

n,t and Q∗
n,t denote the measured

values for active and reactive power injections at node n ∈ N
and time t ∈ T . To compute sample mean profiles that are
meaningful across nodes with differing demands and solar
PV inverter sizes, we first normalize the timeseries profiles
of active and reactive power injection data, P ∗ and Q∗, by
their maximum values to obtain normalized power injection
profiles Pn,t and Qn,t:

Pn,t =
P ∗
n,t

maxτ∈T P ∗
n,τ

, Qn,t =
Q∗

n,t

maxτ∈T Q∗
n,τ

, n ∈ N , t ∈ T .

Define the sets of nodes with volt-var and constant power
factor control laws and no PV inverter present as Nvv, Npf ,
and Nno, respectively. From the normalized data P and Q,
we obtain the empirical average of the normalized active
and reactive power injections, P̂ and Q̂, across nodes with
a particular control law at each time t ∈ T :

P̂vv,t =
1

|Nvv|
∑

n∈Nvv

Pn,t, Q̂vv,t =
1

|Nvv|
∑

n∈Nvv

Qn,t,

P̂pf,t =
1

|Npf |
∑

n∈Npf

Pn,t, Q̂pf,t =
1

|Npf |
∑

n∈Npf

Qn,t,

P̂no,t =
1

|Nno|
∑

n∈Nno

Pn,t, Q̂no,t =
1

|Nno|
∑

n∈Nno

Qn,t,

where | · | denotes the number of elements in a set. We thus
have three sample mean profiles for active power, P̂pf , P̂vv, and
P̂no, and three sets for reactive power, Q̂pf , Q̂vv, and Q̂no. A
timeseries simulation of the Ckt. 5 model using OpenDSS [18]
yields the sample mean curves shown in Fig. 1.

After establishing the mean profile for each of our three
cases, we proceed with the classification. Given a timeseries
of measured points P ∗

n,t and Q∗
n,t, t ∈ T , from a smart meter

at node n, the control law for the associated node is found by
calculating the Euclidean norm between the normalized points
and the sample mean profiles for the three different cases
(vv, pf, and no). The input measurements are sampled over
24 hours at 15-minute granularity, although we note that any
sufficiently long period could work. The nearest centroid for



(a) Sample mean profile for volt-var con-
trol

(b) Sample mean profile for power factor
control

(c) Sample mean profile for no control (no
inverter present)

Fig. 1: Sample mean curve for the different control laws.

the solar PV inverter at node n ∈ N is obtained by determining
which sample mean profile (Q̂vv or Q̂pf ) has smallest squared
Euclidean distance in the reactive power injections across time:

ĥn = argmin
h∈{vv,pf}

∑
t∈T

(
Qn,t − Q̂h,t

)2

. (1)

Only computing the distances for Q with respect to volt-var
and power factor control is required in (1) because we perform
a heuristic rejection step for nodes that never achieve a net
positive active power injection, i.e., we assume that nodes
where the net active power injections are always negative do
not have solar PV inverters. This leads to the method shown
in Algorithm 1.

Algorithm 1: Nearest Centroid Classifier
Input: P ∗, Q∗ ▷ Sets of measurement values
Output: Classifications for each node

1 Normalize: P ∗ → P, Q∗ → Q
2 foreach node n ∈ N do
3 if mint∈T (Pn,t) ≤ 0 then

4 if
∑
t∈T

(
Qn,t − Q̂pf,t

)2

≤
∑
t∈T

(
Qn,t − Q̂vv,t

)2

then
5 Classify node n as power factor controlled;
6 else
7 Classify node n as volt-var controlled;

8 else
9 Classify node n as no control (no inverter

present);

B. Neural Network Based Method
The varying nature of smart meter measurements makes

neural-network-based techniques viable candidates for classi-
fying inverter control laws. In a supervised learning approach,
we train a fully connected neural network (FCNN) that takes
the timeseries of active and reactive power injections and
voltage magnitudes at node n ∈ N as inputs to estimate a
classification for the control law at this node.

The size of the input layer is an n × 3 matrix, where n is
the length of the time series measurement fed into the FCNN.

Fig. 2: The architecture of the fully connected neural network
model for classifying a solar inverter’s control law.

The output is a 3 × 1 vector representing the three possible
classes. The output is modeled as a one-hot classifier, which
produces 1 for the predicted/classified control law and 0 for
the other outputs, as shown in Fig. 2. We design the FCNN to
have two hidden layers, each with a ReLU activation function,
while the output has the softmax activation function [21].
The number of neurons in the hidden layers is scaled by the
size of the input matrix.

III. NUMERICAL RESULTS

In this section, we investigate how well the methods de-
scribed in Section II perform the classification task and analyze
the results obtained.

A. Setup and Dataset
To evaluate the performance of the methods, we uti-

lized synthetic data obtained from the Ckt. 5 model of
OpenDSS [18]. This dataset corresponds to a distribution
network of 1379 nodes, 701 (≈ 50%) of which have installed
solar PV generators. The dataset includes solar panels with
both power factor and volt-var control laws. The generated
synthetic data consists of the P , Q, and V measurement
values for all nodes and solar panels stemming from power
flow calculations at 15-minute intervals. The control laws are
correctly labeled for each solar panel, enabling them to be
used for all experiments. The labels are distributed as follows:
32.70% nodes with volt-var control, 18.13% nodes with power
factor control, and 49.17% nodes with no PV.



The main metric for assessing performance in our results
section is prediction accuracy, which is defined as the percent-
age of nodes for which the control law is correctly classified:

accuracy =
1

|N |
∑
n∈N

1{ŷn = yn} × 100 [%], (2)

where ŷi is the predicted label, yi is the true label, and 1{ŷi =
yi} is the indicator function (1 if ŷi = yi and 0 otherwise).

B. Nearest Centroid Classifier Results

We classify the measurements into three control laws using
the algorithm detailed in Algorithm 1. Out of the 1379 nodes in
our dataset, we generate our sample mean profiles using 1100
nodes (≈ 80%) and test on the remaining 279 nodes. We refer
to these as our training and testing datasets, respectively. For
the training dataset, we utilize all the data points to generate
the sample mean daily profiles for the active and reactive
power. The testing is done by applying Algorithm 1 to day-
long samples for each node in the test dataset, i.e., 96 samples
each day.

Due to the seasonal differences in the load profile and
changes in solar radiation, we present the results on a month-
by-month basis vs. a year-long basis to observe the difference.
We do this to investigate the effect of seasonally dependent
curves versus implementing a year-long analysis (seasonal
effects ignored). The results are given in Table I.

The results show that using a year-long estimate performs
better on average, despite some months having higher predic-
tion accuracies than the year-long dataset.

C. Neural Network-Based Classification Results

The flexibility of neural networks allows for variation in the
structure of the inputs. This subsection focuses on experiments
to find the FCNN structure in terms of the timeseries length
that gives the most accurate results.

Smart meter measurements come in abundance for different
electrical quantities. This raises the question of how many data
points are “enough” to predict the control laws correctly. To
answer this, we trained different FCNNs that receive varying
numbers of inputs for differing amounts of timeseries data and
applied these neural networks to classify the testing dataset.

TABLE I: Prediction accuracy of Nearest Centroid classifier

Month Prediction Accuracy (%)
January 86.18
February 86.37
March 86.68
April 85.17
May 82.99
June 69.73
July 66.73

August 66.83
September 70.91

October 84.62
November 83.49
December 81.50

Monthly Average 79.27
Yearly 83.22

Number of time periods

Fig. 3: Impact of the number of input time periods on the
neural network’s classification accuracy.

This allows us to assess how the number of time periods
affects the performance of the neural network classifier. The
fully connected neural network was built and trained using
TensorFlow [22] with the AdaMax Optimizer. For uniformity,
the batch size was set to 128, with a dropout of 0.25 and a
maximum number of epochs capped at 50 for all experiments.
Similar to Section III-B, the first 1100 nodes are used to train
neural networks, while the rest are reserved as testing datasets.

Fig. 3 shows that the accuracy of the neural network-based
classification increases with the length of the input time series,
which is expected. The steeper increases in accuracy occur
between eight and twenty-four time periods, and limited gains
are registered after forty-eight time periods (i.e., 12 hours).
Using the entire day yields a maximum accuracy of 92.75%.
Analyzing the effects of seasonal variation on our neural
network classifier will be investigated in our future work.

D. Comparing Methods

Finally, we present a detailed comparison of the two meth-
ods to assess their performance. We analyze the methods’
ability to accurately classify the control law used in a particular
inverter, given the set of smart meter measurements under the
same conditions. We add noise to the measurement to emulate
real-world conditions and assess how such measurement errors
affect the two methods.

As is conventional in the literature, measurement errors are
assumed to be independent and normally distributed, with
a standard deviation equal to one-third of the maximum
error [23]. The value of the measured quantity with error is
usually represented as

X ∼ N
(
X†,

0.005×X†

3

)
, (3)

where X† is the actual value of the quantity and the maximum
error is 0.5% of the true value (0.005 ×X†). Using this for-



Predicted scheme

NO PF VV
A

ct
ua

l
sc

he
m

e NO 51.97% 0.00% 0.00%

PF 0.77% 3.12% 12.60%

VV 1.20% 2.22% 28.13%

(a) Centroid-based classifier

Predicted scheme

NO PF VV

A
ct

ua
l

sc
he

m
e NO 49.08% 0.02% 0.08%

PF 0.21% 12.31% 5.71%

VV 0.42% 4.85% 27.33%

(b) Neural network classifier

TABLE II: Confusion matrices for the two classification
models. Diagonal entries represent correct predictions as a
percentage of the total predictions.

mulation for randomized error, we compare the two methods
and their ability to make accurate predictions.

The accuracy of the centroid classifier is 82.79%. In con-
trast, the neural network classifier has a classification accuracy
of 92.52%, i.e., a 10% accuracy advantage.

For further analysis, we investigate the estimates in more
detail. Tables II(a) and II(b) are two confusion matrices
showing the percentage of true positives and false negatives
in the predictions for the different methods.

For the centroid-based classifier results in Table IIa, we
observe a perfect prediction, with no false positives, for nodes
without PV inverters. This classifier tends to make more false
positive predictions of the volt-var control law, indicating a
bias towards this prediction. On the other hand, in addition to
being more accurate, the neural network classifier results in
Table IIb show a relatively more uniform distribution of false
predictions for the different control laws. Unlike the centroid
classifier, the neural network method had no clear propensity
towards any of the control laws.

Another metric for studying the performance of these meth-
ods is their receiver operating characteristic curve, which
describes the classifier’s performance under varying thresh-
old levels [24]. This is only relevant to the neural network
classifier. Fig. 4 shows the receiver operating characteristics
curve. The area under the curve (AUC) values are all near
one, indicating good classification performance.

Finally, we illustrate the robustness of the different methods
to varying levels of measurement noise. In (3), we model the
maximum error possible as 0.5% of the actual value. To assess
the performance of these methods in the presence of varying

Fig. 4: Receiver operating characteristic curve for the neural
network classifier.

Fig. 5: Variation of classification accuracy vs. smart meter
measurement error.

noise, Fig. 5 shows the classifier accuracy with maximum
errors ranging from 0% to 5%.

The figure shows that the neural network consistently out-
performs the centroid classifier. Interestingly, while the accu-
racies of both methods decrease with increasing measurement
noise, the rate of decline of the centroid classifier is steeper,
particularly in considerably noisy scenarios (≥ 3%).

IV. CONCLUSION

As distribution utilities face increasing installations of
inverter-based resources, identifying their control laws, which
are usually unknown, is essential for network safety and
efficient management.

This paper presents two data-driven methods to classify
reactive power control laws of solar PV inverters in distribution
networks from smart meter measurements. The first method
is based on a nearest centroid approach and the second on
a neural network. The results show that the methods can
accurately classify nodes as having an inverter with constant



power factor control, an inverter with volt-var control, or the
absence of an inverter. We compare the two methods, showing
their performance under varying levels of measurement noise,
and investigating their biases towards any of the control laws.
Our neural network-based method performs well even with
increasing levels of measurement noise and shows no biases
towards any of the control laws.

A primary limitation of the work conducted to date is
that we have only considered volt-var and fixed power factor
control laws. Several other control paradigms, such as volt-
watt control and frequency droop control, could be considered
in future work.

Furthermore, as this is, to our knowledge, the first paper
to address the problem of inverter control law identification,
we deem it of interest to develop and test additional methods.
A simple potential improvement, for instance, could combine
the two methods: using the nearest centroid classifier to detect
the nodes with no PV with high accuracy, and then applying
a neural network classifier to the remaining datasets.
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