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Abstract—DC Optimal Power Flow (DCOPF) is widely utilized
in power system operations due to its simplicity and computational
efficiency. However, its lossless, reactive power—agnostic model
often yields dispatches that are infeasible under practical operating
scenarios such as the nonlinear AC power flow (ACPF) equations.
While theoretical analysis demonstrates that DCOPF solutions
are inherently AC-infeasible, their widespread industry adoption
suggests substantial practical utility. This paper develops a unified
DCOPF — ACPF pipeline to recover AC feasible solutions from
DCOPF-based dispatches. The pipeline uses four DCOPF variants
and applies AC feasibility recovery using both distributed slack
allocation and PV/PQ switching. The main objective is to identify
the most effective pipeline for restoring AC feasibility. Evaluation
across over 10,000 dispatch scenarios on various test cases
demonstrates that the structured ACPF model yields solutions that
satisfy both the ACPF equations, and all engineering inequality
constraints. In a 13,659-bus case, the mean absolute error and
cost differences between DCOPF and ACOPF are reduced by 75%
and 93 %, respectively, compared to conventional single slack bus
methods. Under extreme loading conditions, the pipeline reduces
inequality constraint violations by a factor of 3 to 5.

Index Terms—AC Feasibility, DC Power Flow (DCPF), Dis-
tributed Slack, Loss-Augmented DCOPF, Newton Method.

NOMENCLATURE

N Set of buses; N ={1, ..., N}
& Set of lines {lines run from ¢ — j or j — i}
g Set of generators and loads {G, £ C N'}

r,b g Line resistance, susceptance, and conductance
Y Complex branch line admittance

P Line-Bus PTDF matrix, size & x N

S Apparent power transformer limit

iax Current flow line limit

Py ", Py *  Active power generation limits

Pg Qg Active and reactive power generation

Sg Complex power generation; pg + j - qg

Pd, 9d Active and reactive power demand
qp'™, g™ Reactive power generation limits

ViR ymax Voltage magnitude limits, for v;

0dc, g Voltage angles from DC and AC models

Ty Slack participation factor for generators
£t e Total losses across network, tolerance
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I. INTRODUCTION

The linearity of the DC power flow equations provides the
DC Optimal Power Flow (DCOPF) problem with significant
computational advantages over the AC Optimal Power Flow
(ACOPF) problem [1]. These advantages come at the cost of
accuracy relative to ACOPF solutions. Since inaccuracies in
DCOPF solutions can lead to suboptimal operation and viola-
tions of operational limits, studying DC power flow accuracy is
a long-running research topic that includes both empirical and
analytical assessments. For instance, [1]-[10] empirically study
DC power flow accuracy for various applications. Analytical
analyses, e.g., [11]-[13], rigorously bound the worst-case DCPF
approximation error, but these bounds are not necessarily
indicative of typical accuracy.

Of particular relevance to this paper, Baker in [14] analyti-
cally proved that, under nonzero loading conditions in networks
with positive resistances and reactances, the feasible regions
of DCOPF and ACOPF are disjoint. This implies that the
optima of conventional DCOPF problems are never AC feasible,
i.e., never satisfy the AC power flow equations. The primary
argument in [14] relates to the difference in losses between
the DC and AC power flow equations. Baker further shows
that even DCOPF variants which incorporate loss-adjustment
mechanisms will still fail to provide AC feasible solutions due
to a similar argument at the level of individual buses.

The theory in [14] provides an important foundational result
regarding the accuracy of DC power flow approximations.
However, this theory does not address how frequently the
solutions to DCOPF problems can be easily restored to
acceptable AC feasible operating points, i.e., operating points
which satisfy both the AC power flow equations and the limits
on generator outputs, voltage magnitudes, and line flows. This
paper empirically addresses this question. Solving the AC
power flow equations is a natural approach for restoring an AC
feasible operating point from a solution to a DCOPF problem.
By fixing the generators’ active power setpoints to those from
the DCOPF solution and the voltage magnitudes to a nominal
value such as 1 per unit, one can easily construct a system
of AC power flow equations that are frequently solvable via
standard Newton-Raphson methods. The resulting power flow
solution is feasible with respect to the AC power flow equations
by construction. If the power flow solution satisfies limits on
generator outputs, voltage magnitudes, and line flow limits, it is



a feasible operating point with respect to the ACOPF problem’s
constraints. Thus, while the DCOPF problem’s solution is not
itself AC feasible as shown in [14], it may be the case that an
AC feasible solution can often be easily obtained.

Indeed, much of the prior literature on DC power flow ac-
curacy (e.g., [1]-[10]) and restoration of AC feasible solutions
(e.g., [15]-[19]) takes this AC power flow approach. However,
while existing work performs extensive numerical studies on
this topic, there are key gaps in the existing literature. Namely,
prior research either 1) focuses on simplistic ACPF models that
use a single slack bus or neglect the generators’ reactive power
limits and/or 2) focuses on DC power flow accuracy over a
range of power injections as opposed to the solutions to DCOPF
problems. Since DCOPF solutions are usually extreme points in
the operating region, approximation accuracy at these points is
not necessarily aligned with DC power flow accuracy over the
entire operating region. To the best of our knowledge, the only
other paper that simultaneously considers distributed slack and
reactive power limited formulations for ACPF settings similar
to ours is [17]. The paper examined reactive power control in
ACPEF, and addressed a slack distribution formulation — though
independently, and only applies distributed slack on a 23-bus
system. Further, it does not apply any of the formulations in
the context of feasibility restoration for DCOPF solutions.

This work addresses these gaps using a “structured” ACPF
model that more accurately represent generator behavior via
distributed slack bus and PV/PQ switching models by imposing
realistic generator limits on both active and reactive power
outputs. Using the structured ACPF model with several DCPF
approximation variants, results from the DCOPF — ACPF
pipeline—solving a DCOPF and evaluating the resulting
setpoints with an ACPF—demonstrate that different DCPF
formulations influence DCOPF dispatch outcomes and the
ability to recover AC feasibility with respect to the ACOPF
constraints. This provides an important empirical counterpart
to the theoretical findings of [14] on the ease of restoration for
DCOPF solutions. In summary, the paper’s contributions are:

e A DCOPF — ACPF recovery pipeline identifying the
most effective DC formulation for obtaining AC feasible
solutions across a variety of large-scale power systems.

« An assessment of the impacts of ACPF variants—featuring
distributed slack and/or PV/PQ switching models—in the
context of AC-feasbility restoration.

« A systematic sensitivity analysis of the pipeline to load
perturbations and guidance on its importance for improv-
ing feasibility-restoration workflows.

The paper is organized as follows. Section II introduces the
pipeline with (A) loss-augmented DCOPF models, and (B) a
structured ACPF formulation. Section III shows the numerical
results, and Section IV concludes with future directions.

II. METHODOLOGY

To investigate the most effective DCOPF — ACPF pipeline
as shown in Fig. 1, two components were integrated: (i) a
loss-aware DCOPF embedding a loss approximation while
remaining convex and efficient, and (ii) a structured ACPF

Model 1: DC Optimal Power Flow (DCOPF) Formulation

min Z (c2, PZ, + c1, Pg; +co,)  (Cost Minimization) (1a)
i€G
St pg; — pa; = Zm - Zgﬁ Vi € N (Power Balance) (1b)
JEE je€
Pij = bij (07 — 05°) V(i,j) € € (DC Flow)  (lc)
|piy| < P Y(i,7) € € (Line Limit)  (1d)
pr'™ < pg < pp (Gen. Active Power) (le)
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Fig. 1: Pipeline of the DCOPF — ACPF model. The DCOPF gives pg”
and @9° from input pg. The ACPF performs feasibility checks with
distributed slack using participation factors (7rg). Voltage initialization
(v'™) aids in convergence. ACOPF constraints are marked with red.

with distributed slack and PV/PQ switching. The stages are
coupled: the DCOPF provides generator setpoints, and the
ACPF applies minimal adjustments to obtain solutions that are
nearly or fully AC feasible — i.e., solutions that satisfy both
the ACPF equations and the full ACOPF inequality constraints.

A. DCOPF with Line Loss Approximation

To improve the accuracy of the DCOPF while preserving
tractability, several loss-augmented DCOPF variants have been
developed in the literature, three of which are described next.

1) Linear Line Loss Factor Model (LLLF) [16], [20]:
Using the DC PTDF (@) matrix from the DC power flow
approximation [21], resistive losses are linearized about a
reference DC operating point. Total losses are expressed as:

gtot _ gref_i_)\Tp’ (2)

where is a scalar offset, A is the (linear) loss-factor
vector, and p stacks bus active-power injections. The loss
factors follow from differentiating the approximate quadratic
loss Z(i,j) Tij 75] via the chain rule, yielding AT = —2 (R®
ﬁref)—'—(b, and the offset is chosen to match the true loss at the
reference, (' = —ATp™f + 7, o7 (Ph)2 Here, R
stacks line resistances 7;;, ﬁref are oriented reference branch
flows, and © denotes the Hadamard product [21].
2) Line Loss Quadratic Convex Program (LQCP) [16]:
This model incorporates line losses directly through convex

quadratic constraints. Power balance and operational limits

gref



follow (1d)—(le). Flows are modeled as being linear in voltage
angles via (1c). For each line (4, j), losses are modeled as:

2

pij +big = ri; (055)" - ©)

While this formulation is convex, the presence of nonlinear
constraints may increase computational burden [16].

3) Line Loss Outer Approximation (LLOA) [16]: This

approach approximates the nonlinear LQCP loss constraints

using supporting hyperplanes. For a given reference flow 17; ref
the quadratic loss term is outer-approximated linearly via:

2
Py + i > i {— (pi5™")" + 2035 p_zﬂ , ©)

which makes the approximation conservative with respect to the
LQCP formulation. The total losses }_; ,, £;; are embedded
into the system power balance via »_, pi = >, pa+>_; ) Cij»
with each /;; lower-bounded by its linear approximation. The
LLOA approach allows fast, warm-started dispatch [16].

B. Structured AC Power Flow Model

Following the DCOPF, a structured ACPF is solved via
the Newton—Raphson method, with a distributed slack to
allocate active-power imbalances across generators and PV/PQ
switching to handle reactive-power limits. For a comprehensive
pipeline analysis, a total of four AC variants are utilized.

1) Distributed Slack Model: A conventional ACPF assigns
all active-power imbalance to a single slack generator, often
producing unrealistic dispatch and voltage bias. To address this,
a headroom-based distributed slack formulation is used, sharing
the total mismatch £*°*—the signed active-power deficit or
surplus between the DCOPF setpoints pg?, and the current AC
state (@, V)—across generators in proportion to their available

b}

headroom (i.e., margin to their upper active power output limit).

This adaptive allocation prevents infeasible loading during
AC feasibility recovery, unlike equal or maximum-capacity
participation schemes that disregard operating limits. As shown
in Model 2, (5a) defines each generator’s headroom h; as the
upward margin to the active-power limit; generators at their

upper limits have ~; = 0 and thus do not absorb further deficit.

The participation factor m,, defined in (5b) allocates a fraction
of £t° to each unit, and a capacity-proportional fallback ensures
feasibility when ), h; = 0. Updated injections follow (5c),
with 7,4, recomputed and normalized at each Newton-Raphson
iteration to maintain 7y, > 0 and ), 7, = 1. This weighting
preserves realism under load perturbations, enhances numerical
stability, and improves cost allocation accuracy [22].

2) Reactive Power Control: The ACPF also utilizes a reactive
power control mechanism via bus-type switching—a standard
method for representing generator behavior in power flow
analysis. As shown in Fig. 2, the bus transitions between
PQ™>, PV, and PQ™" states based on (g,,,v;?). In
practice, most solvers apply small tolerances to avoid oscillatory
switching during Newton—Raphson iterations. Accordingly, a
deadband (e, €,) is imposed such that |qg — qu™| < €, and
|[v* —vP| < €,, preventing transitions within this range. When
reactive power violations exceed €,, PV buses switch to PQ),
clamping reactive power at its bound. Reversion occurs only

Model 2: Headroom-Based Slack Distribution

hi = max(py,™ — py7, 0), Vi € G (Headroom)  (5a)
Ty, =R T €9 Vi € G (Slack share) (5b)
pg’i"maw otherwise,
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Dy, = Dy + mg, I, Vi € G (New dispatch) (5c)
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Fig. 2: The generator bus-type switching logic. The blue curve is the
discrete logic. The bus transitions between PQ™**, PV, and PQ™"
states, based on ¢y, and v;”. The blue dashed lines are infeasible
regions where the generator cannot maintain voltage control while
obeying reactive power limits. The is the tolerance-
based control, with tolerances €, and €,, on reactive power and voltage.

when voltages move beyond ¢,. This practical scheme limits
switching per Newton solve, enforces reactive power feasibility,
and improves convergence by reducing oscillations. Although
it does not guarantee voltage-limit satisfaction, it maintains
feasible reactive injections and numerically stable operation.
Unstable and erratic iterations from discrete PV/PQ switch-
ing noted in prior studies [23], [24] were rarely observed in
ACspg, and while homotopy-based methods [17] can further
reduce iterations, the tolerance-based deadband offers sufficient
robustness and integrates seamlessly with the ACPF framework.
In Newton-Raphson ACPF, fotal iteration count records all
inner iterations needed for convergence under fixed bus types,
while the PV/PQ switching count tracks outer iterations where
generator buses change type as reactive limits are enforced or
released. Both iteration counts are recorded in Section III.
For the sake of notational brevity, the paper hereafter
denote four ACPF variants as follows: ACpasg uses a single
slack bus with no generator control, ACgrs applies discrete
PV/PQ switching (blue curve in Fig. 2), ACps employs
distributed slack control only, and ACspg (Structured Power
Flow) combines headroom-based distributed slack (Model 2)
with tolerance-based PV/PQ switching (orange curve in Fig. 2).

III. NUMERICAL EXPERIMENTS

The various combinations of DCOPFs and ACPFs de-
scribed in Section II were evaluated on a diverse suite
of MATPOWER 8.1 test cases [25]. This includes IEEE
cases {ieee_30, ieee_ne_39, ieee_118}, ACTIVSg
grids {South_Carolina_500, Texas_2000}, PEGASE
networks {pegase_89, pegase_1354, pegase_2869,



TABLE I: NUMBER OF VIOLATIONS IN BASE CASE FOR DCOPF — ACPF PIPELINES USING STANDARD TEST CASES

Test case AC type Active Power Violations Reactive Power Violations Voltage Violations Thermal Violations
DCgase DCrir DCrqcp DCrioa DCpase DCrie DCrocp DCrioa DCpase DCrir DCrocer DCrioa DCpase DCrir DCroce DCrioa
ACpase 1 1 0 1 22 21 18 16 0 1 0 0 0 0 0 0
case_118  ACgrs 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1
DS 0 0 0 0 19 20 25 26 0 1 0 0 0 0 0 0
ACspr 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
ACgase 1 1 1 1 91 70 85 76 2 1 1 1 3 17 5 11
case_1354  ACprs 1 1 0 1 0 0 0 0 1 1 1 1 6 13 5 10
DS 0 0 0 0 82 67 87 89 1 1 1 0 5 15 1 4
ACspr 0 0 0 0 0 0 0 0 0 1 1 0 0 13 2 0
ACpgase 1 1 1 1 310 190 87 115 2 1 1 1 12 4 3 16
case_2869  ACprs 1 1 1 1 0 0 0 0 14 7 4 2 12 25 13 22
DS 0 0 0 0 365 213 164 96 2 2 3 2 18 17 5 11
ACspr 0 0 0 0 0 0 0 0 1 0 0 0 6 1 0
ACgase 1 1 1 0 1215 1028 971 1012 19 6 6 5 68 65 62 62
case_13659 ACprs 1 1 0 1 0 0 0 0 213 170 69 62 93 55 52 60
ACps 0 0 0 0 1003 980 956 940 22 16 17 16 40 42 32 33
ACspr 0 0 0 0 0 0 0 0 0 7 0 3 0 24 0 21

TABLE II: MAXIMUM VIOLATION VALUE IN BASE CASE FOR DCOPF — ACPF PIPELINES USING STANDARD TEST CASES

Test case AC type Active Power Violations (p.u.) Reactive Power Violations (p.u.) Voltage Violations (p.u.) Thermal Violations (%)
DCgase DCrur DCroecr DCrioa DCpase DCrik DCroep DCrioa DCgase DCritr DCroecp DCrioa DCgase DCrir DCrger DCrroa
ACgase 0.002 .001 .000 0.001 1.538 1.528 1.489 1.469 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000
case_118 ACgts 0.001 .001 .000 0.001 0.000 0.000 0.000 0.000 0.008 0.005 0.000 0.000 4.472 4.470 4.100 4.001
ACps 0.000 0.000 0.000 0.000 1.234 1.202 1.113 1.110 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.000
ACspr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000
ACgase 0.024 0.016 0.012 0.012 14.29 15.78 13.72 13.88 0.030 0.024 0.016 0.009 14.16 12.59 11.73 11.83
case_1354 ACgTs 0.014 0.013 0.000 0.014 0.000 0.000 0.000 0.000 0.017 0.015 0.014 0.012 18.85 16.60 17.14 19.07
ACps 0.000 0.000 0.000 0.000 12.78 12.35 12.10 12.12 0.021 0.016 0.011 0.000 15.42 11.23 8.433 9.761
ACspr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.010 0.000 0.000 15.65 3.810 0.000
ACgase 2.522 1.714 1.131 1.362 14.51 14.62 14.08 14.53 0.026 0.020 0.021 0.024 27.56 17.42 12.53 11.67
case_2869  ACprs 2.121 1.032 2.116 1.089 0.000 0.000 0.000 0.000 0.039 0.027 0.023 0.025 24.37 19.62 14.09 20.96
ACps 0.000 0.000 0.000 0.000 16.02 14.39 11.76 11.76 0.033 0.020 0.017 0.002 26.78 14.34 9.051 9.803
ACspr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.000 0.000 0.000 6.732 4.329 0.000
ACgase 43.10 42.05 44.30 0.000 8.790 7.322 6.999 6.704 0.063 0.055 0.053 0.042 55.45 56.01 48.67 46.34
case_13659 ACsgrs 44.52 43.46 0.000 33.80 0.000 0.000 0.000 0.000 0.150 0.129 0.112 0.122 75.43 70.13 62.24 67.60
ACps 0.000 0.000 0.000 0.000 9.334 7.592 6.178 6.207 0.071 0.067 0.066 0.061 46.73 41.28 40.01 40.13
ACspr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.007 0.000 15.65 0.000 13.81

pegase_9241, pegase_13659}, and a large-scale RTE
case {rte_6468}. Computations were carried out on the
Darwin high-performance computing system at Los Alamos Na-
tional Laboratory. Experiments used a single 24-core compute
node equipped with 32 GB of RAM. The ACOPFs and DCOPFs
variants were solved using PowerModels. jl [26]. The
design and implementation of the custom ACPF was formulated
using pandapower.py [27]. Active power demands (pq) at
load buses were perturbed using Gaussian multiplicative noise,
where each positive demand was scaled by & ~ N(1.0,0?)
with o € (5%, 15%). Reactive power (qq) was recomputed
from randomly sampled power factors in [0.95, 1.0], and 1000
samples were evaluated per testcase. Since distributed slack
and bus-type switching can change the Jacobian’s structure
across iterations, we rebuild the sparse system when the active
set changes while exploiting sparsity at each step. These
optimizations yield a scalable Newton-Raphson solver. The
solver tolerance was set to 106 p-u., while the tolerances for
reactive power control were 10~* p.u. for ¢, (reactive power)
and 10~° p.u. for €, (voltage). All results reported correspond
to samples that converged. The mean absolute error (MAE)
and percent cost difference (CD) are computed as follows:

1 1 peoac o
MAE:EHPg - — Pg H1’ (©6)
CD — }Cost DC-AC Cost0| 100 @
B Cost® ’
where G is the number of generators, pgDC_>AC is the

generation vector after the DCOPF — ACPF pipeline, and
pg is the ACOPF-based reference used as a ground truth.

A. ACOPF Feasibility Study with DCOPF — ACPF Variants

This section evaluates violations of the ACOPF constraints
in Fig. 1 across the different DCOPF — ACPF pipelines.
Tables and charts summarize these violations and their reduction
factors under loss-augmented DCOPFs and the ACPF variants.

1) Violation Tables Analysis: Tables I and II show that
the distributed—slack reconciliation ACspr delivers the fewest
violations across all DC initializations and systems. In
case_136509, reactive-power violations are noticeably high
for ACgasg and ACps, since these lack reactive control.
The counts are 1215/1028/971/1012 for ACpasg across
DCBASE/DCLLLF/DCLQCP/DCLLOA7 and 1003/980/956/940
for ACps. By contrast, both ACgrs and ACspr keep reac-
tive violations at zero, with ACgpr also maintaining volt-
age violations low (0/7/0/3) and thermal violations mod-
est (0/24/0/21). For active-power violations, the distributed
slack in ACpg and ACgspr again drives violations to zero
across all DC variants. However, ACgasg and ACpgrs strug-
gle: in case_13659, maximum per-unit active-power viola-
tions reach 43.10/42.05/44.30/0.000 p.u. under ACgasg and
44.52/43.46,/0.000/33.80 p.u. under ACgrs. For ACspr, maxi-
mum active- and reactive-power violations remain 0.000 p.u. in
every case and DC variant. Thus, ACgspr combines the best of
both worlds, eliminating active and reactive violations. ACgpr
also seems to restore feasibility for DCpasg consistently. This
will be revisited in the sensitivity analysis, later in this section.

Looking horizontally within any fixed AC reconciliation,
violations generally fall as we move from the lossless DCgasg
to the lossy DCrLqcp/DCLioa. DCriLr usually improves on
DCgasg but less reliably. As summarized in Section II, the



Active Power Violations [p.u.]

Reactive Power Violations [p.u.

]  Voltage Violations [p.u.] Thermal Violations [%)]

(DCgasg setpoint) (DCpasE setpoint) (DCpgask setpoint) (DCpasg setpoint)
100 102 107! 10!
109
10~ 1072
E 1072 1 e
s 1077 1072
-3 P
10 1077 1073
10~ 1074 Lo
107° 1071 107° 107°
case 118 case 1354 case 2869 case 118 case 1354 case 2869 case 118 case 1354 case 2869 case 118 case 1354 case 2869
Active Power Violations [p.u.] Reactive Power Violations [p.u.]  Voltage Violations [p.u.] Thermal Violations [%]
10 (DCLqcp setpoint) (DCrqcp setpoint) . (DCLqcp setpoint) 101 (DCyrqcp setpoint)
109 102 10~
10°
107} 1072
g 100 107!
=107~ 9
§ ‘ 1073 10~
10 102 10-3
10~ 107 10!
107° G 1074 = 1075 103
case 118 case 1354 case 2869 case 118 case 1354 case 2869 case 118 case 13H4 case_2869 case 118 case 1354 case 2869

Test Cases

Fig. 3: Comparison of the sum total of violations in different AC power flow formulations across various cases: case_118, case_1354,

and case_2869 (with mean and min—-max error bars). The pipelines

shown have different DC setpoints: (top) DCgase and (bottom) DCpqcp.

The plots are taken over load uncertainty with o = 15%, for 1000 samples per case. Shown are the active power, reactive power, voltage,
and thermal violations, with y-axes on log-scales. Results are reported for ACgase (0range), ACprs (blue), ACps (green), and ACsp (red).

superior accuracy of DCrqcp and DCyoa arises because they
include lossy formulations that more faithfully capture I°R
effects, whereas DCyyF, being a simpler linear formulation,
neglects higher-order terms and therefore underperforms. Ul-
timately, when observing the ACgpr results horizontally for
each case, the DCyqcp was revealed to generalize better and be
more consistent with violation reduction, at scale. DCyoa did
have the lowest violations sparingly compared to the others, but
performed poorly at scale (e.g., for case_13659 in ACgpr,
complete AC feasibility was achieved in DCpqcp, with DCypoa
recording violations closer to the linearized DCypp.

2) Bar Graph Sensitivity Analysis: Following the realization
of DCyqcp’s better generalizeable performance, imperative
sensitivity analysis was conducted. Fig. 3 provides a visual
reflection of the numerical trends, presenting the sum of
violation magnitudes across all buses, branches, and limits.
Unlike Tables I-II, which details violation counts and maxima,
these plots capture the aggregate severity. The top panels
correspond to DCgasg — AC pipelines, while the bottom
panels use lossy DCiqcp initializations. Across most test
systems, the distributed—slack ACgpg reconciliation yields the
lowest summed violations in every category. From the upper
plots, moving from ACgasg to ACgspr reduces both active- and
reactive-power violation magnitudes by roughly four orders of
magnitude (from 1073-10%, down to 10~*-1073 p-u.). The
same trend extends to voltage and thermal violations, which
remain low under ACgpg. In contrast, ACgts and ACpasg show
higher aggregate magnitudes. ACpg performed well in active
power and voltage violation reduction, but performed poorly
in reducing reactive power and thermal violations.

Comparing the upper and lower rows, lossy initializations
(DCLqcp) further reduce total violation magnitudes by an
additional one-to-two orders of magnitude across all AC types.

The DCyqgcp formulation captures loss and angle effects more
accurately than DCpgasg, producing better-aligned initializations
and greater AC feasibility. Consequently, the DCrocp — ACspr
pipeline is the most consistent at violation reduction across
test cases. These plots reinforce the trends in Tables I-II:
incorporating lossy DC models and distributed slack improves
both constraint satisfaction and numerical stability.

B. Key Metrics for ACPF Variants Assessment

The following study gives a extensive comparative analysis
of the ACPF variants from Section II. After demonstrating that
DCrqcp — ACspr reduces violations and often fully restores
AC feasibility, further performance analysis is required.

1) Performance Metrics Table: Table III summarizes key
performance metrics for 10 core test cases, comparing cost
deviation, mean absolute error, iteration behavior, and solv-
ing time across all ACPF variants. Clear trends show that
distributed—slack formulations, ACpgs and ACspf, yield the
lowest cost deviation and error magnitudes through improved
active-power balancing. Cost differences drop by up to 93%
relative to ACgasg, while mean absolute errors approach zero
for most systems (e.g., ACspr maintains < 0.05 p.u.). Iteration
metrics reflect the effects of tolerance-based PV/PQ switching:
both ACgrs and ACsgpr reach zero reactive power violations,
though ACspr consistently converges faster—reducing total
iterations by about 50% in case_2869. In contrast, ACgasg
and ACpg complete in a single recalculation loop but require
longer inner iterations, at times. Full feasibility was not restored
only for case_2000, likely due to high line impedance ratios
(r/x) limiting reactive controllability. As feasibility restoration
is the pipeline’s focus, convergence rate was not prioritized,
though future work will address it [24]. Solving times align
with iteration behavior: smaller systems (e.g., case_89,



TABLE III: PERFORMANCE METRICS IN BASE CASE DCOPF FOR ACPF VARIANTS ACROSS MULTIPLE TEST CASES

Test case Cost Difference (%) Mean Absolute Error (p.u.) Iteration Count (Total) Solving Time (s)

ACgase ACgprs ACps ACspr Improv. (%) ACgase ACprs ACps ACspr Improv. (%) ACpase ACgrg ACps ACg: ACOPF  ACsgpr

case_30 1.21 1.71 0.36  0.32 (74, 81, 11) 0.00 0.02 0.01  0.00 (0, 100, 100) 4 19 4 3 1.79 0.21
case_39 1.38 1.43 0.30 0.26 (81, 82, 13) 0.01 0.03 0.01 0.00 (100, 100, 100) 3 20 3 8 0.41 0.13
case_89 0.33 0.36  0.19 0.20 (39, 44, —5) 0.02 0.04 0.02 0.00 (100, 100, 100) 4 42 4 12 0.42 0.23
case_118 2.19 2.82 0.24 0.18 (92, 94, 25) 0.01 0.04 0.00 0.01 (0, 75, —100) 4 60 3 18 0.19 0.22
case_1354 0.41 0.58 0.12 0.28 (32, 52, —133) 0.01 0.05 0.03 0.02 (0, 60, 33) 4 357 3 152 2.78 64.10
case_2000° 2.11 2.14 091 0.82 (61, 62, 10) 0.23 0.20 0.02 0.05 (78, 75, —150) 3 208 4 81 3.24 36.10
case_2869 0.54 0.62 0.31 0.37 (31, 40, —19) 0.04 0.14 0.03 0.04 (0, 71, —33) 4 T 3 380 4.88 187
case_6468 1.65 1.89 0.26 0.24 (85, 87, 8) 0.07 0.12 0.04 0.05 (29, 58, —25) 4 3396 4 1670 59.05 2213
case_9241 1.60 1.11 0.21  0.20 (88, 82, 5) 0.02 0.13 0.02 0.02 (0, 85, 0) 3 2204 3 1356 30.18 6104
case_13659 1.81 1.31 0.15 0.13 (93, 90, 13) 0.01 0.04 0.01 0.01 (0, 75, 0) 4 6452 3 3320 127.14 7170
* AC variants have higher iteration counts due to PV/PQ switching. ¢ case_2000 incurred violations of inequality constraints.

Cost Difference [%] (DCgasg setpoint)  MAE [p.u.] (DCgasg setpoint) PV /PQ Switching (DCgasg setpoint) Solving Time [s] (DCpasg setpoint)
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Fig. 4: Boxplot comparison of different AC variants’ metrics across test cases: case_118, case_1354, and case_2869 (with mean and
min-max extremes). The AC variants shown have different DC setpoints: (top) DCpase and (bottom) DCiqce. The plots are taken over load
uncertainty with o = 15%, for 1000 samples per case. Metrics shown (left to right): cost difference, mean absolute error, iteration count, and
solving time. Results are reported for ACopr (purple), ACgase ( ), ACgrs (blue), ACps (green), and ACgpr (red).

case_118) run comparably or slightly faster under ACspr, C. Distributed Slack Effects on Active Power
while larger networks slow down due to iterative refinement.
Still, the gains in cost and feasibility confirm ACgpr has a
good balance between accuracy and computational efficiency.

The analysis examines distributed- versus single-slack-
bus modeling in ACPF, isolating how DC and AC variants
separately affect loss handling. It also evaluates whether DC

2) Box Plot Sensitivity Analysis: Fig. 4 illustrates the models with higher degrees of freedom paired with simpler AC
statistical distribution of performance metrics for three cases, models (and vice versa) can yield acceptable performances.
revealing the robustness and variability of each ACPF variant. 1) Bar Plot Sensitivity Analysis: The horizontal bar plots in
The upper plots correspond to DCpgasg — AC pipelines, while  Fig. 5(a) reveal significant differences in slack-bus active-power
the lower plots represent DCpqcp setpoints. The lossy DC  requirements across four pipeline combinations. The red and
generally yields a lower average cost difference and MAE, green pipelines using ACgpr consistently yield active-power
though with slightly higher variability across realizations. The violations below 1072 p.u. Among them, DCroa — ACspr
DCyLqcp initialization also reduces iteration counts and solving  produces the smallest active-power changes across all test cases.
times—particularly for case_118 and case_1354—owing This behavior arises from the distributed-slack mechanism,
to its pre-accounting of power losses and generator redispatch. which shares losses in proportion to generator reserve capability,
Since the AC reconciliation must only distribute the residual rather than a single slack bus. By contrast, DCgasg — ACpasg
loss (i.e., remaining mismatch after DC loss approximation), exhibits the largest slack-bus injections, since a single slack
convergence is faster. However, reactive-power control adjust- must absorb losses after a lossless DCOPF—pushing loss
ments still dominate iteration requirements in larger networks. accountability to that unit. The pipeline DCyqcp — ACgask
Across all metrics, ACgpr achieves the tightest distributions also employs a single slack, but its setpoints originate from a
with the lowest mean values for both cost difference and MAE. DCOPF that accounts for losses, yielding a notable reduction
The reduced interquartile ranges in ACgpp indicate superior relative to DCpgasg. Consequently, using DCypqcp or DCrioa
consistency and robustness. For iteration count and solving improves AC reconciliation compared with DCgagsg (seen in
time, ACgspr exhibits apparent higher computational effort, but  the reduction from orange to blue, and green to red). With low
remains competitive—with improved accuracy and reliability. perturbations of ¢ = 5%, single-slack pipelines may converge
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Fig. 5: Pipeline comparison across different DC and AC variants, over load uncertainty with o = 5%. (a) Slack-bus active power using
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)’ DCLQCP — ACgasg (blue),

DCpase — ACspr (green), and DCrios — ACspr (red). Dashed (red) line is the active power violation. (b) Cumulative density factor (CDF) plot

of unit-wise active-power deviation \pgDc_’Ac
without active-power violations, yet the slack generator remains
stressed, underscoring its inherent fragility.

2) Cumulative Density Function Analysis: Fig. 5(b) compares
[pP7AC — pQ| (p.u.) across pipelines on a logarithmic scale.
The two distributed-slack recoveries, DCj0a — ACspr and
DCgasg — ACspg, dominate: for any error threshold, their
curves lie above the single-slack ones, indicating fewer large
generator-setpoint deviations. At 10—2 p.u., about 94.5%, 94%,
92.3%, and 91% of generators lie below this error for the four
pipelines, respectively. A notch near 10~! p.u. on the ACpasg
curves reflects loss aggregation under a single slack, producing
a cluster of similar deviations. The right tails confirm the
same ordering: ACgspr pipelines saturate near 1 p.u., whereas
ACgasg ones require larger errors (~ 1.2-1.3p.u.) to reach
100%. These results underscore the advantage of distributed
slack and advanced AC recovery in minimizing generator output
errors and mitigating the limitations of single-slack aggregation.

D. Bus-type Switching Effects on Voltage and Reactive Power

As discussed in Section II-B, reactive power and voltage are
tightly coupled in ACPF. Fig. 6 shows this relationship across
five test cases under load uncertainty o = 5%. The upper box
plots show voltage magnitudes with dashed limits, while the
lower plots depict mean reactive violations. ACgrg eliminates
most reactive violations through dynamic PV/PQ switch-
ing, maintaining feasibility but causing larger voltage devi-
ations—particularly in case_1354 and case_2869, where
voltages approach their upper limits. While voltage—reactive
coupling allows PV/PQ switching to restore most voltage
setpoints, near-limit voltages may demand reactive support
beyond generator capability, leading to increased violations.
ACgasg enforces setpoints rigidly, yielding more reactive-
limit breaches, whereas loss-aware DCrqcp and DCyyoa pre-
account for losses and phase angles, reducing voltage deviations

— pg\ across generators in case_1354, using 1000 per case, with an x-axis log-scale.

and violations. Among DC variants, DCqcp best maintained
voltages within limits, even with ACgasg. Overall, ACgrs
demonstrates the benefits of reactive flexibility, while lossy DC
pipelines help keep bus voltages near nominal values. These
results highlight the voltage-reactive trade-off in AC feasibility
recovery and the value of loss-aware setpoints for balanced
operation. Voltage initializations from ACpasg also improved
convergence and reduced violations relative to a flat start.

IV. CONCLUSION

This paper investigates AC feasibility restoration pipelines
for DCOPF dispatches. A comprehensive empirical study
is conducted, applying various DCOPF and ACPF variants.
The most effective and consistent pipeline for restoring AC
feasibility from DC solutions is found to be DCyqcp — ACspr.
The results show that integrating a structured ACPF—featuring
distributed slack and reactive power limited generators—with
loss-augmented DCOPF dispatches, can yield ACOPF feasible
outcomes. This workflow reduces violations in active power,
voltage, reactive power, and thermal limits while lowering
the cost difference. For reference, applying the structured
pipeline to the 13,659-bus case achieved improvements of
93% in cost difference, 75% in mean absolute error, and an
improved convergence rate compared to single-slack methods.
The link between voltage and reactive power violations is also
examined. Future work will focus on improving the pipeline’s
computational efficiency, with a promising direction being the
integration of parameterized DCOPF and structured ACPF in
an end-to-end self-supervised learning framework to enhance
AC feasibility, and scalability for DC-operated markets.
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