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Abstract—DC Optimal Power Flow (DCOPF) is widely utilized
in power system operations due to its simplicity and computational
efficiency. However, its lossless, reactive power–agnostic model
often yields dispatches that are infeasible under practical operating
scenarios such as the nonlinear AC power flow (ACPF) equations.
While theoretical analysis demonstrates that DCOPF solutions
are inherently AC-infeasible, their widespread industry adoption
suggests substantial practical utility. This paper develops a unified
DCOPF → ACPF pipeline to recover AC feasible solutions from
DCOPF-based dispatches. The pipeline uses four DCOPF variants
and applies AC feasibility recovery using both distributed slack
allocation and PV/PQ switching. The main objective is to identify
the most effective pipeline for restoring AC feasibility. Evaluation
across over 10,000 dispatch scenarios on various test cases
demonstrates that the structured ACPF model yields solutions that
satisfy both the ACPF equations, and all engineering inequality
constraints. In a 13,659-bus case, the mean absolute error and
cost differences between DCOPF and ACOPF are reduced by 75%
and 93%, respectively, compared to conventional single slack bus
methods. Under extreme loading conditions, the pipeline reduces
inequality constraint violations by a factor of 3 to 5.

Index Terms—AC Feasibility, DC Power Flow (DCPF), Dis-
tributed Slack, Loss-Augmented DCOPF, Newton Method.

NOMENCLATURE

N Set of buses; N = {1, . . . , N}
E Set of lines {lines run from i→ j or j → i}
G, L Set of generators and loads {G, L ⊆ N}
r, b, g Line resistance, susceptance, and conductance
Y Complex branch line admittance
Φ Line-Bus PTDF matrix, size E × N
smax
tx Apparent power transformer limit
imax
line Current flow line limit
pmin
g , pmax

g Active power generation limits
pg, qg Active and reactive power generation
sg Complex power generation; pg + j · qg

pd, qd Active and reactive power demand
qmin
g , qmax

g Reactive power generation limits
vmin, vmax Voltage magnitude limits, for vi
θdc, θac Voltage angles from DC and AC models
πg Slack participation factor for generators
ℓtot, ϵ Total losses across network, tolerance
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I. INTRODUCTION

The linearity of the DC power flow equations provides the
DC Optimal Power Flow (DCOPF) problem with significant
computational advantages over the AC Optimal Power Flow
(ACOPF) problem [1]. These advantages come at the cost of
accuracy relative to ACOPF solutions. Since inaccuracies in
DCOPF solutions can lead to suboptimal operation and viola-
tions of operational limits, studying DC power flow accuracy is
a long-running research topic that includes both empirical and
analytical assessments. For instance, [1]–[10] empirically study
DC power flow accuracy for various applications. Analytical
analyses, e.g., [11]–[13], rigorously bound the worst-case DCPF
approximation error, but these bounds are not necessarily
indicative of typical accuracy.

Of particular relevance to this paper, Baker in [14] analyti-
cally proved that, under nonzero loading conditions in networks
with positive resistances and reactances, the feasible regions
of DCOPF and ACOPF are disjoint. This implies that the
optima of conventional DCOPF problems are never AC feasible,
i.e., never satisfy the AC power flow equations. The primary
argument in [14] relates to the difference in losses between
the DC and AC power flow equations. Baker further shows
that even DCOPF variants which incorporate loss-adjustment
mechanisms will still fail to provide AC feasible solutions due
to a similar argument at the level of individual buses.

The theory in [14] provides an important foundational result
regarding the accuracy of DC power flow approximations.
However, this theory does not address how frequently the
solutions to DCOPF problems can be easily restored to
acceptable AC feasible operating points, i.e., operating points
which satisfy both the AC power flow equations and the limits
on generator outputs, voltage magnitudes, and line flows. This
paper empirically addresses this question. Solving the AC
power flow equations is a natural approach for restoring an AC
feasible operating point from a solution to a DCOPF problem.
By fixing the generators’ active power setpoints to those from
the DCOPF solution and the voltage magnitudes to a nominal
value such as 1 per unit, one can easily construct a system
of AC power flow equations that are frequently solvable via
standard Newton-Raphson methods. The resulting power flow
solution is feasible with respect to the AC power flow equations
by construction. If the power flow solution satisfies limits on
generator outputs, voltage magnitudes, and line flow limits, it is



a feasible operating point with respect to the ACOPF problem’s
constraints. Thus, while the DCOPF problem’s solution is not
itself AC feasible as shown in [14], it may be the case that an
AC feasible solution can often be easily obtained.

Indeed, much of the prior literature on DC power flow ac-
curacy (e.g., [1]–[10]) and restoration of AC feasible solutions
(e.g., [15]–[19]) takes this AC power flow approach. However,
while existing work performs extensive numerical studies on
this topic, there are key gaps in the existing literature. Namely,
prior research either 1) focuses on simplistic ACPF models that
use a single slack bus or neglect the generators’ reactive power
limits and/or 2) focuses on DC power flow accuracy over a
range of power injections as opposed to the solutions to DCOPF
problems. Since DCOPF solutions are usually extreme points in
the operating region, approximation accuracy at these points is
not necessarily aligned with DC power flow accuracy over the
entire operating region. To the best of our knowledge, the only
other paper that simultaneously considers distributed slack and
reactive power limited formulations for ACPF settings similar
to ours is [17]. The paper examined reactive power control in
ACPF, and addressed a slack distribution formulation – though
independently, and only applies distributed slack on a 23-bus
system. Further, it does not apply any of the formulations in
the context of feasibility restoration for DCOPF solutions.

This work addresses these gaps using a “structured” ACPF
model that more accurately represent generator behavior via
distributed slack bus and PV/PQ switching models by imposing
realistic generator limits on both active and reactive power
outputs. Using the structured ACPF model with several DCPF
approximation variants, results from the DCOPF → ACPF
pipeline—solving a DCOPF and evaluating the resulting
setpoints with an ACPF—demonstrate that different DCPF
formulations influence DCOPF dispatch outcomes and the
ability to recover AC feasibility with respect to the ACOPF
constraints. This provides an important empirical counterpart
to the theoretical findings of [14] on the ease of restoration for
DCOPF solutions. In summary, the paper’s contributions are:

• A DCOPF → ACPF recovery pipeline identifying the
most effective DC formulation for obtaining AC feasible
solutions across a variety of large-scale power systems.

• An assessment of the impacts of ACPF variants—featuring
distributed slack and/or PV/PQ switching models—in the
context of AC-feasbility restoration.

• A systematic sensitivity analysis of the pipeline to load
perturbations and guidance on its importance for improv-
ing feasibility-restoration workflows.

The paper is organized as follows. Section II introduces the
pipeline with (A) loss-augmented DCOPF models, and (B) a
structured ACPF formulation. Section III shows the numerical
results, and Section IV concludes with future directions.

II. METHODOLOGY

To investigate the most effective DCOPF→ ACPF pipeline
as shown in Fig. 1, two components were integrated: (i) a
loss-aware DCOPF embedding a loss approximation while
remaining convex and efficient, and (ii) a structured ACPF

Model 1: DC Optimal Power Flow (DCOPF) Formulation

min
∑

i∈G

(
c2i p

2
gi + c1i pgi + c0i

)
(Cost Minimization) (1a)

s.t. pgi − pdi =
∑

j∈E

−→pji −
∑

j∈E

−→pij ∀i ∈ N (Power Balance) (1b)

−→pij = bij(θ
dc
i − θdcj ) ∀(i, j) ∈ E (DC Flow) (1c)

|−→pij | ≤ pmax
ij ∀(i, j) ∈ E (Line Limit) (1d)

pmin
g ≤ pg ≤ pmax

g (Gen. Active Power) (1e)

AC-Feasibility Check

Loss-Augmented

Structured Design

Recorded inequality constraint violations to observe ACOPF feasibility

Different inputs to DCOPF and ACPF variants 
Various DCOPF and ACPF formulations can be paired together

,

,

,

Fig. 1: Pipeline of the DCOPF→ACPF model. The DCOPF gives psp
g

and θdc from input pd. The ACPF performs feasibility checks with
distributed slack using participation factors (πg). Voltage initialization
(vint) aids in convergence. ACOPF constraints are marked with red.

with distributed slack and PV/PQ switching. The stages are
coupled: the DCOPF provides generator setpoints, and the
ACPF applies minimal adjustments to obtain solutions that are
nearly or fully AC feasible — i.e., solutions that satisfy both
the ACPF equations and the full ACOPF inequality constraints.

A. DCOPF with Line Loss Approximation

To improve the accuracy of the DCOPF while preserving
tractability, several loss-augmented DCOPF variants have been
developed in the literature, three of which are described next.

1) Linear Line Loss Factor Model (LLLF) [16], [20]:
Using the DC PTDF (Φ) matrix from the DC power flow
approximation [21], resistive losses are linearized about a
reference DC operating point. Total losses are expressed as:

ℓtot = ℓref + λ⊤p, (2)

where ℓref is a scalar offset, λ is the (linear) loss-factor
vector, and p stacks bus active-power injections. The loss
factors follow from differentiating the approximate quadratic
loss

∑
(i,j) rij

−→p 2
ij via the chain rule, yielding λ⊤ = −2 (R⊙

−→p ref)⊤Φ, and the offset is chosen to match the true loss at the
reference, ℓref = −λ⊤pref +

∑
(i,j)∈E rij (

−→p ref
ij )2. Here, R

stacks line resistances rij , −→p ref are oriented reference branch
flows, and ⊙ denotes the Hadamard product [21].

2) Line Loss Quadratic Convex Program (LQCP) [16]:
This model incorporates line losses directly through convex
quadratic constraints. Power balance and operational limits



follow (1d)–(1e). Flows are modeled as being linear in voltage
angles via (1c). For each line (i, j), losses are modeled as:

−→pij +←−pij ≥ rij (
−→pij)2 . (3)

While this formulation is convex, the presence of nonlinear
constraints may increase computational burden [16].

3) Line Loss Outer Approximation (LLOA) [16]: This
approach approximates the nonlinear LQCP loss constraints
using supporting hyperplanes. For a given reference flow −→pijref ,
the quadratic loss term is outer-approximated linearly via:

−→pij +←−pij ≥ rij

[
−
(−→pijref

)2
+ 2−→pijref · −→pij

]
, (4)

which makes the approximation conservative with respect to the
LQCP formulation. The total losses

∑
(i,j) ℓij are embedded

into the system power balance via
∑

i pi =
∑

d pd+
∑

(i,j) ℓij ,
with each ℓij lower-bounded by its linear approximation. The
LLOA approach allows fast, warm-started dispatch [16].

B. Structured AC Power Flow Model

Following the DCOPF, a structured ACPF is solved via
the Newton–Raphson method, with a distributed slack to
allocate active-power imbalances across generators and PV/PQ
switching to handle reactive-power limits. For a comprehensive
pipeline analysis, a total of four AC variants are utilized.

1) Distributed Slack Model: A conventional ACPF assigns
all active-power imbalance to a single slack generator, often
producing unrealistic dispatch and voltage bias. To address this,
a headroom-based distributed slack formulation is used, sharing
the total mismatch ℓtot—the signed active-power deficit or
surplus between the DCOPF setpoints pspgi , and the current AC
state (θ,V)—across generators in proportion to their available
headroom (i.e., margin to their upper active power output limit).
This adaptive allocation prevents infeasible loading during
AC feasibility recovery, unlike equal or maximum-capacity
participation schemes that disregard operating limits. As shown
in Model 2, (5a) defines each generator’s headroom hi as the
upward margin to the active-power limit; generators at their
upper limits have hi = 0 and thus do not absorb further deficit.
The participation factor πgi defined in (5b) allocates a fraction
of ℓtot to each unit, and a capacity-proportional fallback ensures
feasibility when

∑
i hi = 0. Updated injections follow (5c),

with πgi recomputed and normalized at each Newton–Raphson
iteration to maintain πgi ≥ 0 and

∑
i πgi = 1. This weighting

preserves realism under load perturbations, enhances numerical
stability, and improves cost allocation accuracy [22].

2) Reactive Power Control: The ACPF also utilizes a reactive
power control mechanism via bus-type switching—a standard
method for representing generator behavior in power flow
analysis. As shown in Fig. 2, the bus transitions between
PQmax, PV, and PQmin states based on (qgi , v

sp
i ). In

practice, most solvers apply small tolerances to avoid oscillatory
switching during Newton–Raphson iterations. Accordingly, a
deadband (ϵq, ϵv) is imposed such that |qg − qlim

g | ≤ ϵq and
|v∗−vsp| ≤ ϵv , preventing transitions within this range. When
reactive power violations exceed ϵq , PV buses switch to PQ,
clamping reactive power at its bound. Reversion occurs only

Model 2: Headroom-Based Slack Distribution

hi = max
(
pmax
gi − pspgi , 0

)
, ∀i ∈ G (Headroom) (5a)

πgi =





hi∑
i∈G hi

, if
∑

i∈G
hi > 0,

pmax
gi∑

i∈G pmax
gi

, otherwise,
∀i ∈ G (Slack share) (5b)

pgi = pspgi + πgi ℓ
tot, ∀i ∈ G (New dispatch) (5c)
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B. Principled AC Power-Flow Model

The second stage runs a Newton–Raphson AC power flow
enhanced in two ways: real-power mismatch is shared among
all generators (distributed slack) and generator buses switch
from PV to PQ only when their reactive output genuinely
saturates, using a small tolerance band to prevent state-flipping
“chatter.” These features give the ACPF the stability needed
to process many stressed dispatches without operator tuning.

1) Dynamic Bus-Type Switching Design

Smooth enforcement: Switching is embedded via the com-
plementarity formulation of [19], keeping the Jacobian contin-
uous as each bus approaches its limit. With distributed slack
and this buffered switching logic, the solver resolves 90% of
stress-test scenarios that a flat-start, single-slack ACPF cannot
solve. Algorithm (1b) originates from Molzahn et al. [28],
where it provides a smooth, complementarity-based method
to model generator bus switching under reactive power limits.
By introducing slack variables and enforcing the conditions,
it ensures the switching behavior is embedded within a con-
tinuous optimization framework.

Algorithm 1a: Bus Switching Logic with Tolerances
Input: Initial state s 2 {PV, PQmin, PQmax}

Generator reactive limits: Qmin
gi

, Qmax
gi

Generator setpoint: Qgi

Voltage magnitude Vi and setpoint V sp
i

Tolerances: "q, "v > 0
Output: Updated bus type si for all i 2 N

1 foreach i 2 N do
2 if si = PV then
3 if Qgi < Qmin

gi
� "q then

4 Qgi  Qmin
gi

;
5 si  PQmin;

6 else if Qgi > Qmax
gi

+ "q then
7 Qgi  Qmax

gi
;

8 si  PQmax;

9 else
10 si, remains unchanged;

11 else if si = PQmin and Vi > V sp
i + "v then

12 si  PV;

13 else if si = PQmax and Vi < V sp
i � "v then

14 si  PV;

15 else
16 si, remains unchanged;
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Fig. 3: The generator bus-type switching logic. The blue curve
corresponds to the discrete logic in Algorithm (1a), where the bus
transitions between PV, PQmax, and PQmin states based on qgi
and vi, with tolerances "q and "v to prevent chattering. The red curve
corresponds to the continuous formulation in Algorithm (1b), which
uses complementarity constraints, v�

i · xi = 0 and v+
i · (qmax

gi
�

qg
min
i � xi) = 0, to enable smooth and differentiable switching

behavior for use in gradient-based solvers.

Algorithm 1b: Smooth Bus Switching Formulation
Input: Voltage target: V?

i for all i 2 N
Reactive limits: Qmin, Qmax

Complex voltage: Vi for all i 2 N
Complex current: Ii for all i 2 N

Output: Slack variables {V+
i , V�

i , xi} for all i 2 N
1 foreach i 2 N do
2 Slack constraint:
3 V2

d,i + V2
q,i  (V?

i )2 �V�
i + V+

i

4 Reactive mismatch:
5 xi  Qmax

i � fQ(Vd,i, Vq,i)
6 Complementarity:

V�
i · xi = 0, V+

i · (Qmax
i �Qmin

i � xi) = 0

7 Feasibility:
8 Qmax

i �Qmin
i � xi � 0

9 Non-negativity:
10 V+

i , V�
i , xi � 0

11 Reactive injection:
12 fQ  Vd,i · Iq,i �Vq,i · Id,i

13 Voltage decomposition:
14 Vd,i  <(Vi), Vq,i  =(Vi)

15 Current computation:
16 Ii  Gii · Vi +

P
j2N Yij · Vj

17 return {V+
i , V�

i , xi}

2) Distributed Slack Model in NRLF

Instead of assigning all real-power imbalance to a single ref-
erence generator, we distribute the total loss `total among online
units according to their upward headroom ri = Pmax

g,i � P set
g,i.

Dhople et al. show that such distributed slack yields a unique,
better-conditioned solution and cuts branch-flow error by 47
% on IEEE-300 [16]. Our implementation (Algorithm (2))
allocates a participation factor ⇡i = ri

�
⌃j2S ·rj , ⌃i2S⇡i = 1,
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Algorithm 2: Bus Switching Logic with Tolerances
Input: Initial state: s 2 {PV, PQmin, PQmax}; Generator
and load buses (at min and max)
Generator reactive limits: (Qmin

gi
, Qmax

gi
}

Generator setpoint: {Qgi}
Voltage magnitude: {v⇤

i } and Voltage setpoint: {vsp
i }

Tolerances: {✏q} (reactive power), {✏v} (voltage) > 0
Output: Updated bus type {si} for all i 2 N

1 foreach i 2 N do
2 if si = PV then
3 if Qgi < Qmin

gi
� ✏q then

4 Qgi  Qmin
gi

; si  PQmin;

5 else if Qgi > Qmax
gi
� ✏q then

6 Qgi  Qmax
gi

; si  PQmax;

7

8 PQ at min and max are devices that previously underwent
bus-switching (static gens). These are not pure loads:

9 else if si = PQmin and v⇤
i > vsp

i + ✏v then
10 si  PV;

11 else if si = PQmax and v⇤
i < vsp

i � ✏v then
12 si  PV;
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Fig. 4: The generator bus-type switching logic. The blue curve
corresponds to the discrete logic in Algorithm (2), where the bus
transitions between PV, PQmax, and PQmin states based on qgi
and v⇤. The orange curve represents the tolerance-based Q-V curve
that has with tolerances ✏q and ✏v to prevent chattering. The red
curve is the smooth derivative of the basic step-size. Beyond the red
squares reveal the lower and upper voltage limit violations.

C. Newton–Raphson with Distributed Slack

In the classical Newton–Raphson (NR) formulation, the slack
bus is excluded from the state vector

x =


✓\slack
V\slack

�
,

and its injections are allowed to vary freely to maintain real
power balance.

When a distributed slack scheme is adopted, the active
power mismatch is not assigned entirely to a single slack bus
but proportionally distributed among multiple participating
generators using predefined loss participation factors ⇡g:

X

g2Gpart

⇡g = 1, ⇡g � 0.

Modified Power Balance Equations

For a participating generator bus m, the active power
injection equation becomes:

pspec
m  pspec

m + ⇡m ploss,

where Ploss is the total system real power loss computed as:

Ploss =
NX

k=1

0
B@|Vk|2Gkk +

NX

n=1
n 6=k

|Vk||Vn|Gkn cos(✓k � ✓n)

1
CA .

This modification couples the loss term into the P -equations
for multiple buses instead of just one.

Effect on the Jacobian

Let the NR state be x = [✓>
\slack V>

\slack ]> and the mismatch

F(x) =


P(x)�Pspec

Q(x)�Qspec

�
.

The conventional Jacobian is

J(x) =

2
64
@P

@✓

@P

@V
@Q

@✓

@Q

@V

3
75

Under distributed slack, for each participating generator bus
m 2 Gpart we modify only the P-row associated with bus m:

@Pm

@✓j
 @Pm

@✓j
+ ↵m

@Ploss

@✓j
,

@Pm

@Vj
 @Pm

@Vj
+ ↵m

@Ploss

@Vj
8j.

All non-participating P -rows are unchanged, and the Q-
block rows remain unchanged (unless a reactive sharing scheme
is also adopted).

Equivalently, in block form with explicit partials:

JDS(x) =

2
64

@P

@✓
+A

@Ploss

@✓

@P

@V
+A

@Ploss

@V
@Q

@✓

@Q

@V

3
75

where A 2 RNP ⇥1 has entries [A]m = ↵m for m 2 Gpart and
0 otherwise, and the products A (@Ploss/@·) are understood as
adding ↵m(@Ploss/@·) to the m-th P -row.

(The loss sensitivities @Ploss/@✓j and @Ploss/@Vj are given
in the next subsection.)

Loss Sensitivities

The loss sensitivities follow from the total loss formula
above. We write @Ploss

@✓j
and @Ploss

@Vj
as:

�
NX

j 6=i

|Vi||Vj |Gij sin(�✓jk)�
NX

j 6=i

|Vi||Vj |Gij sin(�✓ij),

where �✓ij , ✓i�✓j .

2VjGjj +
NX

i 6=j

|Vi|Gij cos(�✓ij)+
NX

i 6=j

|Vi|Gij cos(�✓ij).
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B. Principled AC Power-Flow Model

The second stage runs a Newton–Raphson AC power flow
enhanced in two ways: real-power mismatch is shared among
all generators (distributed slack) and generator buses switch
from PV to PQ only when their reactive output genuinely
saturates, using a small tolerance band to prevent state-flipping
“chatter.” These features give the ACPF the stability needed
to process many stressed dispatches without operator tuning.

1) Dynamic Bus-Type Switching Design

Smooth enforcement: Switching is embedded via the com-
plementarity formulation of [19], keeping the Jacobian contin-
uous as each bus approaches its limit. With distributed slack
and this buffered switching logic, the solver resolves 90% of
stress-test scenarios that a flat-start, single-slack ACPF cannot
solve. Algorithm (1b) originates from Molzahn et al. [28],
where it provides a smooth, complementarity-based method
to model generator bus switching under reactive power limits.
By introducing slack variables and enforcing the conditions,
it ensures the switching behavior is embedded within a con-
tinuous optimization framework.

Algorithm 1a: Bus Switching Logic with Tolerances
Input: Initial state s 2 {PV, PQmin, PQmax}

Generator reactive limits: Qmin
gi

, Qmax
gi

Generator setpoint: Qgi

Voltage magnitude Vi and setpoint V sp
i

Tolerances: "q, "v > 0
Output: Updated bus type si for all i 2 N

1 foreach i 2 N do
2 if si = PV then
3 if Qgi < Qmin

gi
� "q then

4 Qgi  Qmin
gi

;
5 si  PQmin;

6 else if Qgi > Qmax
gi

+ "q then
7 Qgi  Qmax

gi
;

8 si  PQmax;

9 else
10 si, remains unchanged;

11 else if si = PQmin and Vi > V sp
i + "v then

12 si  PV;

13 else if si = PQmax and Vi < V sp
i � "v then

14 si  PV;

15 else
16 si, remains unchanged;
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Fig. 3: The generator bus-type switching logic. The blue curve
corresponds to the discrete logic in Algorithm (1a), where the bus
transitions between PV, PQmax, and PQmin states based on qgi
and vi, with tolerances "q and "v to prevent chattering. The red curve
corresponds to the continuous formulation in Algorithm (1b), which
uses complementarity constraints, v�

i · xi = 0 and v+
i · (qmax

gi
�

qg
min
i � xi) = 0, to enable smooth and differentiable switching

behavior for use in gradient-based solvers.

Algorithm 1b: Smooth Bus Switching Formulation
Input: Voltage target: V?

i for all i 2 N
Reactive limits: Qmin, Qmax

Complex voltage: Vi for all i 2 N
Complex current: Ii for all i 2 N

Output: Slack variables {V+
i , V�

i , xi} for all i 2 N
1 foreach i 2 N do
2 Slack constraint:
3 V2

d,i + V2
q,i  (V?

i )2 �V�
i + V+

i

4 Reactive mismatch:
5 xi  Qmax

i � fQ(Vd,i, Vq,i)
6 Complementarity:

V�
i · xi = 0, V+

i · (Qmax
i �Qmin

i � xi) = 0

7 Feasibility:
8 Qmax

i �Qmin
i � xi � 0

9 Non-negativity:
10 V+

i , V�
i , xi � 0

11 Reactive injection:
12 fQ  Vd,i · Iq,i �Vq,i · Id,i

13 Voltage decomposition:
14 Vd,i  <(Vi), Vq,i  =(Vi)

15 Current computation:
16 Ii  Gii · Vi +

P
j2N Yij · Vj

17 return {V+
i , V�

i , xi}

2) Distributed Slack Model in NRLF

Instead of assigning all real-power imbalance to a single ref-
erence generator, we distribute the total loss `total among online
units according to their upward headroom ri = Pmax

g,i � P set
g,i.

Dhople et al. show that such distributed slack yields a unique,
better-conditioned solution and cuts branch-flow error by 47
% on IEEE-300 [16]. Our implementation (Algorithm (2))
allocates a participation factor ⇡i = ri
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Fig. 3: The generator bus-type switching logic. The blue curve
corresponds to the discrete logic in Algorithm (1a), where the bus
transitions between PV, PQmax, and PQmin states based on qgi
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corresponds to the continuous formulation in Algorithm (1b), which
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i � xi) = 0, to enable smooth and differentiable switching

behavior for use in gradient-based solvers.

Algorithm 1b: Smooth Bus Switching Formulation
Input: Voltage target: V?

i for all i 2 N
Reactive limits: Qmin, Qmax

Complex voltage: Vi for all i 2 N
Complex current: Ii for all i 2 N

Output: Slack variables {V+
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i , xi} for all i 2 N
1 foreach i 2 N do
2 Slack constraint:
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Fig. 2: The generator bus-type switching logic. The blue curve is the
discrete logic. The bus transitions between PQmax, PV, and PQmin

states, based on qgi and vspi . The blue dashed lines are infeasible
regions where the generator cannot maintain voltage control while
obeying reactive power limits. The orange curve is the tolerance-
based control, with tolerances ϵq and ϵv on reactive power and voltage.

when voltages move beyond ϵv. This practical scheme limits
switching per Newton solve, enforces reactive power feasibility,
and improves convergence by reducing oscillations. Although
it does not guarantee voltage-limit satisfaction, it maintains
feasible reactive injections and numerically stable operation.

Unstable and erratic iterations from discrete PV/PQ switch-
ing noted in prior studies [23], [24] were rarely observed in
ACSPF, and while homotopy-based methods [17] can further
reduce iterations, the tolerance-based deadband offers sufficient
robustness and integrates seamlessly with the ACPF framework.

In Newton-Raphson ACPF, total iteration count records all
inner iterations needed for convergence under fixed bus types,
while the PV/PQ switching count tracks outer iterations where
generator buses change type as reactive limits are enforced or
released. Both iteration counts are recorded in Section III.

For the sake of notational brevity, the paper hereafter
denote four ACPF variants as follows: ACBASE uses a single
slack bus with no generator control, ACBTS applies discrete
PV/PQ switching (blue curve in Fig. 2), ACDS employs
distributed slack control only, and ACSPF (Structured Power
Flow) combines headroom-based distributed slack (Model 2)
with tolerance-based PV/PQ switching (orange curve in Fig. 2).

III. NUMERICAL EXPERIMENTS

The various combinations of DCOPFs and ACPFs de-
scribed in Section II were evaluated on a diverse suite
of MATPOWER 8.1 test cases [25]. This includes IEEE
cases {ieee_30, ieee_ne_39, ieee_118}, ACTIVSg
grids {South_Carolina_500, Texas_2000}, PEGASE
networks {pegase_89, pegase_1354, pegase_2869,



TABLE I: NUMBER OF VIOLATIONS IN BASE CASE FOR DCOPF → ACPF PIPELINES USING STANDARD TEST CASES

Test case AC type Active Power Violations Reactive Power Violations Voltage Violations Thermal Violations
DCBASE DCLLLF DCLQCP DCLLOA DCBASE DCLLLF DCLQCP DCLLOA DCBASE DCLLLF DCLQCP DCLLOA DCBASE DCLLLF DCLQCP DCLLOA

case_118
ACBASE 1 1 0 1 22 21 18 16 0 1 0 0 0 0 0 0
ACBTS 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1
ACDS 0 0 0 0 19 20 25 26 0 1 0 0 0 0 0 0
ACSPF 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

case_1354
ACBASE 1 1 1 1 91 70 85 76 2 1 1 1 3 17 5 11
ACBTS 1 1 0 1 0 0 0 0 1 1 1 1 6 13 5 10
ACDS 0 0 0 0 82 67 87 89 1 1 1 0 5 15 1 4
ACSPF 0 0 0 0 0 0 0 0 0 1 1 0 0 13 2 0

case_2869
ACBASE 1 1 1 1 310 190 87 115 2 1 1 1 12 4 3 16
ACBTS 1 1 1 1 0 0 0 0 14 7 4 2 12 25 13 22
ACDS 0 0 0 0 365 213 164 96 2 2 3 2 18 17 5 11
ACSPF 0 0 0 0 0 0 0 0 0 1 0 0 0 6 1 0

case_13659
ACBASE 1 1 1 0 1215 1028 971 1012 19 6 6 5 68 65 62 62
ACBTS 1 1 0 1 0 0 0 0 213 170 69 62 93 55 52 60
ACDS 0 0 0 0 1003 980 956 940 22 16 17 16 40 42 32 33
ACSPF 0 0 0 0 0 0 0 0 0 7 0 3 0 24 0 21

TABLE II: MAXIMUM VIOLATION VALUE IN BASE CASE FOR DCOPF → ACPF PIPELINES USING STANDARD TEST CASES

Test case AC type Active Power Violations (p.u.) Reactive Power Violations (p.u.) Voltage Violations (p.u.) Thermal Violations (%)
DCBASE DCLLLF DCLQCP DCLLOA DCBASE DCLLLF DCLQCP DCLLOA DCBASE DCLLLF DCLQCP DCLLOA DCBASE DCLLLF DCLQCP DCLLOA

case_118
ACBASE 0.002 0.001 0.000 0.001 1.538 1.528 1.489 1.469 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000
ACBTS 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.008 0.005 0.000 0.000 4.472 4.470 4.100 4.001
ACDS 0.000 0.000 0.000 0.000 1.234 1.202 1.113 1.110 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.000
ACSPF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000

case_1354
ACBASE 0.024 0.016 0.012 0.012 14.29 15.78 13.72 13.88 0.030 0.024 0.016 0.009 14.16 12.59 11.73 11.83
ACBTS 0.014 0.013 0.000 0.014 0.000 0.000 0.000 0.000 0.017 0.015 0.014 0.012 18.85 16.60 17.14 19.07
ACDS 0.000 0.000 0.000 0.000 12.78 12.35 12.10 12.12 0.021 0.016 0.011 0.000 15.42 11.23 8.433 9.761
ACSPF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.010 0.000 0.000 15.65 3.810 0.000

case_2869
ACBASE 2.522 1.714 1.131 1.362 14.51 14.62 14.08 14.53 0.026 0.020 0.021 0.024 27.56 17.42 12.53 11.67
ACBTS 2.121 1.032 2.116 1.089 0.000 0.000 0.000 0.000 0.039 0.027 0.023 0.025 24.37 19.62 14.09 20.96
ACDS 0.000 0.000 0.000 0.000 16.02 14.39 11.76 11.76 0.033 0.020 0.017 0.002 26.78 14.34 9.051 9.803
ACSPF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.000 0.000 0.000 6.732 4.329 0.000

case_13659
ACBASE 43.10 42.05 44.30 0.000 8.790 7.322 6.999 6.704 0.063 0.055 0.053 0.042 55.45 56.01 48.67 46.34
ACBTS 44.52 43.46 0.000 33.80 0.000 0.000 0.000 0.000 0.150 0.129 0.112 0.122 75.43 70.13 62.24 67.60
ACDS 0.000 0.000 0.000 0.000 9.334 7.592 6.178 6.207 0.071 0.067 0.066 0.061 46.73 41.28 40.01 40.13
ACSPF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.007 0.000 15.65 0.000 13.81

pegase_9241, pegase_13659}, and a large-scale RTE
case {rte_6468}. Computations were carried out on the
Darwin high-performance computing system at Los Alamos Na-
tional Laboratory. Experiments used a single 24-core compute
node equipped with 32 GB of RAM. The ACOPFs and DCOPFs
variants were solved using PowerModels.jl [26]. The
design and implementation of the custom ACPF was formulated
using pandapower.py [27]. Active power demands (pd) at
load buses were perturbed using Gaussian multiplicative noise,
where each positive demand was scaled by ξ ∼ N (1.0,σ2)
with σ ∈ (5%, 15%). Reactive power (qd) was recomputed
from randomly sampled power factors in [0.95, 1.0], and 1000
samples were evaluated per testcase. Since distributed slack
and bus-type switching can change the Jacobian’s structure
across iterations, we rebuild the sparse system when the active
set changes while exploiting sparsity at each step. These
optimizations yield a scalable Newton-Raphson solver. The
solver tolerance was set to 10−6 p.u., while the tolerances for
reactive power control were 10−4 p.u. for ϵq (reactive power)
and 10−5 p.u. for ϵv (voltage). All results reported correspond
to samples that converged. The mean absolute error (MAE)
and percent cost difference (CD) are computed as follows:

MAE =
1

G

∥∥pDC→AC
g − pO

g

∥∥
1
, (6)

CD =

∣∣CostDC→AC − CostO
∣∣

CostO
· 100, (7)

where G is the number of generators, pDC→AC
g is the

generation vector after the DCOPF → ACPF pipeline, and
pO
g is the ACOPF-based reference used as a ground truth.

A. ACOPF Feasibility Study with DCOPF→ACPF Variants

This section evaluates violations of the ACOPF constraints
in Fig. 1 across the different DCOPF → ACPF pipelines.
Tables and charts summarize these violations and their reduction
factors under loss-augmented DCOPFs and the ACPF variants.

1) Violation Tables Analysis: Tables I and II show that
the distributed–slack reconciliation ACSPF delivers the fewest
violations across all DC initializations and systems. In
case_13659, reactive-power violations are noticeably high
for ACBASE and ACDS, since these lack reactive control.
The counts are 1215/1028/971/1012 for ACBASE across
DCBASE/DCLLLF/DCLQCP/DCLLOA, and 1003/980/956/940
for ACDS. By contrast, both ACBTS and ACSPF keep reac-
tive violations at zero, with ACSPF also maintaining volt-
age violations low (0/7/0/3) and thermal violations mod-
est (0/24/0/21). For active-power violations, the distributed
slack in ACDS and ACSPF again drives violations to zero
across all DC variants. However, ACBASE and ACBTS strug-
gle: in case_13659, maximum per-unit active-power viola-
tions reach 43.10/42.05/44.30/0.000 p.u. under ACBASE and
44.52/43.46/0.000/33.80 p.u. under ACBTS. For ACSPF, maxi-
mum active- and reactive-power violations remain 0.000 p.u. in
every case and DC variant. Thus, ACSPF combines the best of
both worlds, eliminating active and reactive violations. ACSPF
also seems to restore feasibility for DCBASE consistently. This
will be revisited in the sensitivity analysis, later in this section.

Looking horizontally within any fixed AC reconciliation,
violations generally fall as we move from the lossless DCBASE
to the lossy DCLQCP/DCLLOA. DCLLLF usually improves on
DCBASE but less reliably. As summarized in Section II, the
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Fig. 3: Comparison of the sum total of violations in different AC power flow formulations across various cases: case_118, case_1354,
and case_2869 (with mean and min–max error bars). The pipelines shown have different DC setpoints: (top) DCBASE and (bottom) DCLQCP.
The plots are taken over load uncertainty with σ = 15%, for 1000 samples per case. Shown are the active power, reactive power, voltage,
and thermal violations, with y-axes on log-scales. Results are reported for ACBASE (orange), ACBTS (blue), ACDS (green), and ACSPF (red).

superior accuracy of DCLQCP and DCLLOA arises because they
include lossy formulations that more faithfully capture I2R
effects, whereas DCLLLF, being a simpler linear formulation,
neglects higher-order terms and therefore underperforms. Ul-
timately, when observing the ACSPF results horizontally for
each case, the DCLQCP was revealed to generalize better and be
more consistent with violation reduction, at scale. DCLLOA did
have the lowest violations sparingly compared to the others, but
performed poorly at scale (e.g., for case_13659 in ACSPF,
complete AC feasibility was achieved in DCLQCP, with DCLLOA
recording violations closer to the linearized DCLLLF.

2) Bar Graph Sensitivity Analysis: Following the realization
of DCLQCP’s better generalizeable performance, imperative
sensitivity analysis was conducted. Fig. 3 provides a visual
reflection of the numerical trends, presenting the sum of
violation magnitudes across all buses, branches, and limits.
Unlike Tables I–II, which details violation counts and maxima,
these plots capture the aggregate severity. The top panels
correspond to DCBASE → AC pipelines, while the bottom
panels use lossy DCLQCP initializations. Across most test
systems, the distributed–slack ACSPF reconciliation yields the
lowest summed violations in every category. From the upper
plots, moving from ACBASE to ACSPF reduces both active- and
reactive-power violation magnitudes by roughly four orders of
magnitude (from 10−3–102, down to 10−4–10−3 p.u.). The
same trend extends to voltage and thermal violations, which
remain low under ACSPF. In contrast, ACBTS and ACBASE show
higher aggregate magnitudes. ACDS performed well in active
power and voltage violation reduction, but performed poorly
in reducing reactive power and thermal violations.

Comparing the upper and lower rows, lossy initializations
(DCLQCP) further reduce total violation magnitudes by an
additional one-to-two orders of magnitude across all AC types.

The DCLQCP formulation captures loss and angle effects more
accurately than DCBASE, producing better-aligned initializations
and greater AC feasibility. Consequently, the DCLQCP→ACSPF
pipeline is the most consistent at violation reduction across
test cases. These plots reinforce the trends in Tables I–II:
incorporating lossy DC models and distributed slack improves
both constraint satisfaction and numerical stability.

B. Key Metrics for ACPF Variants Assessment

The following study gives a extensive comparative analysis
of the ACPF variants from Section II. After demonstrating that
DCLQCP→ACSPF reduces violations and often fully restores
AC feasibility, further performance analysis is required.

1) Performance Metrics Table: Table III summarizes key
performance metrics for 10 core test cases, comparing cost
deviation, mean absolute error, iteration behavior, and solv-
ing time across all ACPF variants. Clear trends show that
distributed–slack formulations, ACDS and ACSPF, yield the
lowest cost deviation and error magnitudes through improved
active-power balancing. Cost differences drop by up to 93%
relative to ACBASE, while mean absolute errors approach zero
for most systems (e.g., ACSPF maintains ≤ 0.05 p.u.). Iteration
metrics reflect the effects of tolerance-based PV/PQ switching:
both ACBTS and ACSPF reach zero reactive power violations,
though ACSPF consistently converges faster—reducing total
iterations by about 50% in case_2869. In contrast, ACBASE
and ACDS complete in a single recalculation loop but require
longer inner iterations, at times. Full feasibility was not restored
only for case_2000, likely due to high line impedance ratios
(r/x) limiting reactive controllability. As feasibility restoration
is the pipeline’s focus, convergence rate was not prioritized,
though future work will address it [24]. Solving times align
with iteration behavior: smaller systems (e.g., case_89,



TABLE III: PERFORMANCE METRICS IN BASE CASE DCOPF FOR ACPF VARIANTS ACROSS MULTIPLE TEST CASES

Test case Cost Difference (%) Mean Absolute Error (p.u.) Iteration Count (Total) Solving Time (s)

ACBASE ACBTS ACDS ACSPF Improv. (%) ACBASE ACBTS ACDS ACSPF Improv. (%) ACBASE AC⋆
BTS ACDS AC⋆

SPF ACOPF ACSPF

case_30 1.21 1.71 0.36 0.32 (74, 81, 11) 0.00 0.02 0.01 0.00 (0, 100, 100) 4 19 4 3 1.79 0.21
case_39 1.38 1.43 0.30 0.26 (81, 82, 13) 0.01 0.03 0.01 0.00 (100, 100, 100) 3 20 3 8 0.41 0.13
case_89 0.33 0.36 0.19 0.20 (39, 44, −5) 0.02 0.04 0.02 0.00 (100, 100, 100) 4 42 4 12 0.42 0.23

case_118 2.19 2.82 0.24 0.18 (92, 94, 25) 0.01 0.04 0.00 0.01 (0, 75, −100) 4 60 3 18 0.19 0.22
case_1354 0.41 0.58 0.12 0.28 (32, 52, −133) 0.01 0.05 0.03 0.02 (0, 60, 33) 4 357 3 152 2.78 64.10
case_2000⋄ 2.11 2.14 0.91 0.82 (61, 62, 10) 0.23 0.20 0.02 0.05 (78, 75, −150) 3 208 4 81 3.24 36.10

case_2869 0.54 0.62 0.31 0.37 (31, 40, −19) 0.04 0.14 0.03 0.04 (0, 71, −33) 4 777 3 380 4.88 187
case_6468 1.65 1.89 0.26 0.24 (85, 87, 8) 0.07 0.12 0.04 0.05 (29, 58, −25) 4 3396 4 1670 59.05 2213
case_9241 1.60 1.11 0.21 0.20 (88, 82, 5) 0.02 0.13 0.02 0.02 (0, 85, 0) 3 2204 3 1356 30.18 6104
case_13659 1.81 1.31 0.15 0.13 (93, 90, 13) 0.01 0.04 0.01 0.01 (0, 75, 0) 4 6452 3 3320 127.14 7170

⋆ AC variants have higher iteration counts due to PV/PQ switching. ⋄ case_2000 incurred violations of inequality constraints.
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Fig. 4: Boxplot comparison of different AC variants’ metrics across test cases: case_118, case_1354, and case_2869 (with mean and
min–max extremes). The AC variants shown have different DC setpoints: (top) DCBASE and (bottom) DCLQCP. The plots are taken over load
uncertainty with σ = 15%, for 1000 samples per case. Metrics shown (left to right): cost difference, mean absolute error, iteration count, and
solving time. Results are reported for ACOPF (purple), ACBASE (orange), ACBTS (blue), ACDS (green), and ACSPF (red).

case_118) run comparably or slightly faster under ACSPF,
while larger networks slow down due to iterative refinement.
Still, the gains in cost and feasibility confirm ACSPF has a
good balance between accuracy and computational efficiency.

2) Box Plot Sensitivity Analysis: Fig. 4 illustrates the
statistical distribution of performance metrics for three cases,
revealing the robustness and variability of each ACPF variant.
The upper plots correspond to DCBASE→AC pipelines, while
the lower plots represent DCLQCP setpoints. The lossy DC
generally yields a lower average cost difference and MAE,
though with slightly higher variability across realizations. The
DCLQCP initialization also reduces iteration counts and solving
times—particularly for case_118 and case_1354—owing
to its pre-accounting of power losses and generator redispatch.
Since the AC reconciliation must only distribute the residual
loss (i.e., remaining mismatch after DC loss approximation),
convergence is faster. However, reactive-power control adjust-
ments still dominate iteration requirements in larger networks.
Across all metrics, ACSPF achieves the tightest distributions
with the lowest mean values for both cost difference and MAE.
The reduced interquartile ranges in ACSPF indicate superior
consistency and robustness. For iteration count and solving
time, ACSPF exhibits apparent higher computational effort, but
remains competitive—with improved accuracy and reliability.

C. Distributed Slack Effects on Active Power

The analysis examines distributed- versus single-slack-
bus modeling in ACPF, isolating how DC and AC variants
separately affect loss handling. It also evaluates whether DC
models with higher degrees of freedom paired with simpler AC
models (and vice versa) can yield acceptable performances.

1) Bar Plot Sensitivity Analysis: The horizontal bar plots in
Fig. 5(a) reveal significant differences in slack-bus active-power
requirements across four pipeline combinations. The red and
green pipelines using ACSPF consistently yield active-power
violations below 10−3 p.u. Among them, DCLLOA → ACSPF
produces the smallest active-power changes across all test cases.
This behavior arises from the distributed-slack mechanism,
which shares losses in proportion to generator reserve capability,
rather than a single slack bus. By contrast, DCBASE → ACBASE
exhibits the largest slack-bus injections, since a single slack
must absorb losses after a lossless DCOPF—pushing loss
accountability to that unit. The pipeline DCLQCP → ACBASE
also employs a single slack, but its setpoints originate from a
DCOPF that accounts for losses, yielding a notable reduction
relative to DCBASE. Consequently, using DCLQCP or DCLLOA
improves AC reconciliation compared with DCBASE (seen in
the reduction from orange to blue, and green to red). With low
perturbations of σ = 5%, single-slack pipelines may converge
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without active-power violations, yet the slack generator remains
stressed, underscoring its inherent fragility.

2) Cumulative Density Function Analysis: Fig. 5(b) compares∣∣pDC→AC
g − pO

g

∣∣ (p.u.) across pipelines on a logarithmic scale.
The two distributed-slack recoveries, DCLLOA→ACSPF and
DCBASE → ACSPF, dominate: for any error threshold, their
curves lie above the single-slack ones, indicating fewer large
generator-setpoint deviations. At 10−2 p.u., about 94.5%, 94%,
92.3%, and 91% of generators lie below this error for the four
pipelines, respectively. A notch near 10−1 p.u. on the ACBASE
curves reflects loss aggregation under a single slack, producing
a cluster of similar deviations. The right tails confirm the
same ordering: ACSPF pipelines saturate near 1 p.u., whereas
ACBASE ones require larger errors (∼ 1.2–1.3 p.u.) to reach
100%. These results underscore the advantage of distributed
slack and advanced AC recovery in minimizing generator output
errors and mitigating the limitations of single-slack aggregation.

D. Bus-type Switching Effects on Voltage and Reactive Power

As discussed in Section II-B, reactive power and voltage are
tightly coupled in ACPF. Fig. 6 shows this relationship across
five test cases under load uncertainty σ = 5%. The upper box
plots show voltage magnitudes with dashed limits, while the
lower plots depict mean reactive violations. ACBTS eliminates
most reactive violations through dynamic PV/PQ switch-
ing, maintaining feasibility but causing larger voltage devi-
ations—particularly in case_1354 and case_2869, where
voltages approach their upper limits. While voltage–reactive
coupling allows PV/PQ switching to restore most voltage
setpoints, near-limit voltages may demand reactive support
beyond generator capability, leading to increased violations.
ACBASE enforces setpoints rigidly, yielding more reactive-
limit breaches, whereas loss-aware DCLQCP and DCLLOA pre-
account for losses and phase angles, reducing voltage deviations

and violations. Among DC variants, DCLQCP best maintained
voltages within limits, even with ACBASE. Overall, ACBTS
demonstrates the benefits of reactive flexibility, while lossy DC
pipelines help keep bus voltages near nominal values. These
results highlight the voltage–reactive trade-off in AC feasibility
recovery and the value of loss-aware setpoints for balanced
operation. Voltage initializations from ACBASE also improved
convergence and reduced violations relative to a flat start.

IV. CONCLUSION

This paper investigates AC feasibility restoration pipelines
for DCOPF dispatches. A comprehensive empirical study
is conducted, applying various DCOPF and ACPF variants.
The most effective and consistent pipeline for restoring AC
feasibility from DC solutions is found to be DCLQCP→ACSPF.
The results show that integrating a structured ACPF—featuring
distributed slack and reactive power limited generators—with
loss-augmented DCOPF dispatches, can yield ACOPF feasible
outcomes. This workflow reduces violations in active power,
voltage, reactive power, and thermal limits while lowering
the cost difference. For reference, applying the structured
pipeline to the 13,659-bus case achieved improvements of
93% in cost difference, 75% in mean absolute error, and an
improved convergence rate compared to single-slack methods.
The link between voltage and reactive power violations is also
examined. Future work will focus on improving the pipeline’s
computational efficiency, with a promising direction being the
integration of parameterized DCOPF and structured ACPF in
an end-to-end self-supervised learning framework to enhance
AC feasibility, and scalability for DC-operated markets.
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