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Abstract—In this paper we present a method to transform op-

timal power flow models to enable the sharing of equivalent 

data sets while preserving privacy of an original data set. Im-

portantly, the generated models preserve a power system 

structure with certain characteristics chosen by the developer.  

The needed transformations are presented on the DC Optimal 

Power Flow (OPF) model. 

I. INTRODUCTION 

The electric power grid delivers essential energy to sup-

port almost all non-transportation energy needs.  It is indis-

putably important to the functions of society and is consid-

ered part of the nation’s critical infrastructure. There is con-

siderable concern that the power grid may be vulnerable to 

and targeted for malicious cyber and physical attacks.  

These concerns raise conflicting needs in the area of ad-

vanced power system analysis and research.  As critical en-

ergy infrastructure information (CEII), access to true power 

system data is restricted.  At the same time, interest in ad-

vancing power system tools with a view toward security has 

increased. For a researcher working to advance this field, 

results must be shown on real models to prove credibility.  

Unfortunately, these needs and expectations have result-

ed in the current state in which some researchers with access 

to CEII data can conduct relevant research using credible 

models; however, these models and results cannot be inde-

pendently verified by peers in the field.  This goes against 

traditional scientific principles that call for public verifica-

tion of results.  We argue that there is a fundamental need 

for new standard publicly-available models that are prova-

bly related to credible but secure models.  The purpose of 

this paper is to show that such models can be developed 

through transformations that yield a new power system 

model that maintains the privacy of the original data.   

The transformations map the solution of the new model to 

the original, establishing a strong and relevant connection 

between them.  

Here we demonstrate the techniques on an optimal pow-

er flow (OPF) model as it is the most important problem 

routinely solved in this industry.  The OPF computes the 

optimal dispatch of resources needed to supply energy while 

accounting for a range of physical, engineering, and security 

constraints.  It is solved nearly continuously in some form 

by grid operators to specify and adjust operation of the grid. 

It is known to be a non-convex problem and much of the 

current advanced research is directed towards developing 

efficient methods to find global optima.  Here we begin with 

the analysis of a linearized version of the OPF and show that 

it is possible to transform a given DC OPF model into a 

different DC OPF model that relates the optimal solutions 

through a transformation.  We further argue that it is not 

possible to infer the original model solely from the data of 

the new transformed model. 

In the following sections we present the DC OPF prob-

lem specification, the transformations permitting a new DC 

OPF model, and a specific solved example.   

II. DC OPF PROBLEM 

The standard DC OPF problem is shown below in (1) 

and is described in [1], where DC OPF problems were ob-

scured for preserving confidentiality in cloud computing.  

However, the transformations in [1] do not preserve a typi-

cal power system structure, which precludes application of 

OPF specific solution techniques.  The optimization varia-

bles in (1) are the powers generated 𝑃𝑔 and bus angles 𝛿. 

 min
𝑃𝑔‚ 𝛿

   
 

 
𝑃 

   𝑃     
 𝑃  (1) 

               𝑃   𝛿   𝑃             
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The constraints in (1) are power balance at each bus, the 

reference bus angle equal to 0°, power generation upper and 

lower limits, and power flow limits in both directions on 

transmission lines.  Primarily, the analysis in this paper will 

be on DC OPF problems with linear cost functions.  There-

fore the quadratic cost terms in (1) will be removed, and the 

problem will be rewritten in general form.  Notation is 



adopted from prior literature [2,3] that examines linear 

transformation problems. 

 min
𝑥

     𝑥 (2) 

             𝑥               

    𝑥     

In (2), 𝑃𝑔 and 𝛿 are free variables.  Slack variables 𝑥   

are included to convert inequality constraints to equality 

constraints.  They are nonnegative, 𝑥    , and are en-

forced by    𝑥   .  The optimization variables are 𝑥  

[𝑃 
    𝛿    𝑥  

 ]
 
.  The constraint matrix   and vector   have 

typical topologies as seen in Figure 1 which displays the 

IEEE 14-bus test system [5]. 

 
Figure 1:   matrix and 𝒃 vector for IEEE 14-bus system 

Matrix   has 𝑚 = 𝑛 𝑢  + 2𝑛𝑔𝑒𝑛 + 2𝑛𝑙 𝑛𝑒 + 1 rows and 

𝑛 = 𝑛 𝑢  + 3𝑛𝑔𝑒𝑛 + 2𝑛𝑙 𝑛𝑒  columns.  Therefore there are 

𝑛   𝑚 = 𝑛𝑔𝑒𝑛   1 more columns than rows in  .  It should 

be emphasized that the number of rows 𝑚 is less than num-

ber of columns 𝑛, as it is critical for the transformation 

analysis.  Note that the   matrix has full-rank in typical DC 

OPF problems and is therefore assumed to be full-rank. 

III. TRANSFORMATION PROBLEM 

In this section we begin the transformation procedure 

starting from one DC OPF problem to a completely new 

problem.  To begin with, two different DC OPF problems 

are constructed, with the first in (2) and the second in (3). 

 min
𝑥'

     𝑥  (3) 

              𝑥                

    𝑥     

For simplicity, it is assumed the two DC OPF problems 

possess the same number of generators, buses and lines.  

The two models differ by having different bus and line to-

pologies as well as having numerically different component 

values such as line susceptances, generator cost coefficients, 

etc.  The optimal solutions 𝑥* and 𝑥 * to DC OPF problems 

(2) and (3) respectively, must be known before proceeding 

with the transformation.   

We next show a bidirectional linear transformation be-

tween (2) and (3).  The goal is to construct the transfor-

mation matrices 𝑷 and 𝑻 and vectors 𝑤 and 𝑟 such that the 

following relationships hold.  

      𝑷 𝑻 (4a) 

    = 𝑻𝑇  +  ′𝑇𝑤 (4b) 

    = 𝑷  +  ′𝑟 (4c) 

 𝑥* = 𝑻(𝑥 *   𝑟) (4d) 

The above relationships all have specific purposes.  Re-

lationship (4a) enforces a linear transformation between the 

constraint matrix   in (2) and the constraint matrix    in 

(3).  This is done by multiplying   on the left and right by 

some transformation matrices 𝑷 and 𝑻.   

Relationship (4b) enforces a linear transformation  

between the cost coefficient vector   in (2) and the cost co-

efficient vector    in (3).  A linear combination of the rows 

in constraint matrix    is added to 𝑻𝑇  in order to satisfy 

(4b).  This is justified because adding  ′𝑇𝑤  to the cost 

function does nothing more than add a constant   𝑇𝑤, 

  𝑇𝑥  = ( 𝑇𝑻 + 𝑤𝑇 ′)𝑥  =  𝑇𝑻𝑥  + 𝑤𝑇  .  

Relationship (4c) enforces a linear transformation be-

tween the constraint vector   in (2) and the constraint vector 

   in (3).   

Lastly, relationship (4d) enforces a linear transformation 

between the optimal solution 𝑥* in (2) and the optimal solu-

tion 𝑥 * in (3).  In [1] and [2], the matrix 𝑻 was required to 

be a positive monomial matrix, (i.e. a matrix containing 

exactly one positive entry per row and column, with the 

remainder of the entries being zero), and vector 𝑟 was re-

quired to have positive entries.  By defining 𝑻 and 𝑟 this 

way, it can be shown that if   𝑙 𝑥   0 then it is guaranteed 

that   𝑙 𝑥    0 as well.  The requirements on 𝑻 and 𝑟 from 

[1] and [2] will be removed now, as they restrict the ability 

to transform to a new system with an OPF structure.   

The transformation between the DC OPF problems (2) 

and (3) is developed by determining appropriate matrices 𝑷 

and 𝑻 and vectors 𝑤 and 𝑟 such that the relationships 

(4a)−(4d) hold.  We next exploit the relationships in 

(4a)−(4d) and the degrees of freedom inherent in the trans-

formation (i.e. the null-spaces of the DC OPF problems' 

matrices) to describe an appropriate choice for these matri-

ces and vectors.  The specifics of each transformation are 

detailed next. 

To begin, the relationship (4a) can be enforced by defin-

ing 𝑻 as the sum of two terms, 𝑻 = 𝑻0 + 𝑵𝑸 , where the 

𝑛×(𝑛 𝑚) matrix 𝑵  is the null-space of  , i.e. 

 𝑵 = 0𝑚×(𝑛 𝑚).  Given any nonsingular 𝑷, one can solve 

nz = 200

𝑃       𝛿                           𝑥   



𝑻0 =  †𝑷‒1  , where † denotes the Moore-Penrose pseudo-

inverse [4].  This solution structure on 𝑻 satisfies (4a).  It is 

necessary for 𝑻 to be full-rank, therefore matrices 𝑷 and 𝑸 

must be full-rank. 

Next, relationship (4b) is expanded by substituting 

𝑻 = 𝑻0 + 𝑵𝑸 as shown in (5), where matrix 𝑸 and vector 𝑤 

are unknown.   

      𝑻0
𝑇

   + 𝑸𝑇𝑵𝑇  +  ′𝑇𝑤 (5) 

The procedure goes as follows, 𝑤 is solved as a function 

of 𝑸 in (6) by taking the pseudoinverse of  ′𝑇. 

 𝑤 =  ′𝑇
†
(     𝑻0

𝑇    𝑸𝑇𝑵𝑇 ) (6) 

Next 𝑤 is substituted back into (5) which can be rewrit-

ten as in (7). 

(𝐼    ′𝑇 ′𝑇
†)(     𝑻0

𝑇
  ) = (𝐼    ′𝑇 ′𝑇

†)𝑸𝑇𝑵𝑇  (7) 

Note that  ′𝑇 ′𝑇
†

 ≠ 𝐼𝑛×𝑛  and  ′𝑇
†
 ′𝑇 = 𝐼𝑚×𝑚 , there-

fore it follows that (𝐼    ′𝑇 ′𝑇
†)  𝑇 = 0𝑛×𝑚.  The 𝑛×𝑛 

matrix 𝐼    ′𝑇 ′𝑇
†
 has rank of order 𝑛 𝑚, and can be re-

written as 𝐼    ′𝑇 ′𝑇
†
 = 𝑵′𝑵′𝑇, where the 𝑛×(𝑛 𝑚) ma-

trix 𝑵′ is the null-space of  ′, i.e.  ′𝑵′ = 0𝑚×(𝑛 𝑚).  Note 

that 𝑵′† = 𝑵′𝑇, 𝑵′𝑵′𝑇 ≠ 𝐼𝑛×𝑛 and 𝑵′𝑇𝑵′ = 𝐼(𝑛 𝑚)×(𝑛 𝑚).   

Before solving for 𝑸 by using (7) and the above obser-

vations, it should be emphasized that 𝑻 = 𝑻0 + 𝑵𝑸  must 

have full-rank of 𝑛.  𝑻0 will have rank 𝑚 as long as 𝑷 is 

full-rank 𝑚; therefore, 𝑵𝑸  must have rank 𝑛 𝑚.  It be-

comes necessary to split 𝑸 into the sum of two (𝑛 𝑚)×𝑛 

terms 𝑸 = 𝑸1 + 𝑸2.  The first of these two terms 𝑸1 will be 

solved by using (7) and the prior observations. 

 𝑸1 = ( 𝑇𝑵)
†
  𝑇𝑵′𝑵′𝑇 (8) 

Setting 𝑸 = 𝑸1 now satisfies (7).  With 𝑤 solved as a 

function of 𝑸 using (6), relationship (4b) will be satisfied.  

As it turns out however, 𝑻𝑸1 is rank 1, and therefore 𝑻 is 

still lacking 𝑛 𝑚 1 in its rank.  Fortunately the remaining 

𝑛 𝑚 1 rank can be acquired by the second term 𝑸2.  Ob-

serve in (5) that 𝑸𝑇  multiplies an (𝑛 𝑚)×1 vector 𝑵𝑇 .  

Define 𝑵
 ~

 as the (𝑛 𝑚)×(𝑛 𝑚 1) null-space of  𝑇𝑵, such 

that  𝑇𝑵𝑵
 ~

 = 0 1×(𝑛 𝑚 1).  Define an (𝑛 𝑚 1)×𝑛 matrix 𝑽 

which can be any full-rank matrix.  Finally define 𝑸2 = 𝑵
 ~

𝑽, 

which yields 𝑻 = 𝑻0 + 𝑵(𝑸1 + 𝑸2) to be a full-rank matrix. 

The two vector relationships (4c) and (4d) have yet to be 

satisfied, but can be satisfied by appropriately determining 

the 𝑛×1 vector 𝑟.  Define 𝑟 as the sum of two terms, 

𝑟 = 𝑟0 + 𝑵′𝑞.  Rearrange (4c) to solve for 𝑟0 as shown in 

(9). 

 𝑟0 =  ′†(     𝑷 ) (9) 

Setting 𝑟 = 𝑟0 will now satisfy (4c), but not (4d).  The 

last remaining variable to be solved for is 𝑞, which can be 

obtained by substituting 𝑟 = 𝑟0 + 𝑵′𝑞 and rearranging (4d).   

 𝑞 = 𝑵′†( 𝑥 *   𝑻‒1𝑥*   𝑟0 ) (10) 

Substitute 𝑞 from (10) into 𝑟 = 𝑟0 + 𝑵′𝑞.  This solution 

for 𝑟 satisfies both (4c) and (4d).  At this point, all four rela-

tionships (4a)−(4d) have been satisfied by appropriately 

determining the transformation matrix 𝑻 and vectors 𝑤 and 

𝑟.  The transformation solution is not unique, as there is 

some flexibility in choosing any full-rank matrix 𝑷 and also 

any full-rank matrix 𝑽 as described above. 

IV. EXAMPLE 

We next present a numeric example of the transfor-

mation method described in Section III. Specifically, we 

transform between two OPF problems derived from the 

IEEE 14-bus system [5].  The first OPF problem has the 

same network topology and line susceptances (calculated as 

the reciprocal of the line reactance and neglecting line re-

sistance) as the standard IEEE 14-bus system and has a 100 

MVA base power.  The one-line diagram for this system is 

shown in Figure 2.  To enable two-dimensional plotting of 

the feasible space of generator power injections (detailed in 

the Appendix), this example considers an OPF problem with 

only three generators, as opposed to five generators in the 

standard IEEE 14-bus system.  The coefficients for the line-

ar generator cost functions are given in Table 1.  All genera-

tors have lower generation limits of zero and upper genera-

tion limits specified in Table 1.  Line-flow limits of 100 

MW are enforced on all lines. Load demands are the same 

as those specified for the standard IEEE 14-bus system. 

Generator 
Cost Coefficient 

[$/𝑀𝑊ℎ] 

Upper Generation 

Limit [𝑀𝑊] 

1 20 330 

2 30 140 

8 25 50 

Table 1: Generator Data for First OPF Problem 

 

Figure 2: One-Line Diagram for First OPF Problem 



The second OPF problem has the same number of buses, 

lines and generators as the first OPF problem, but has dif-

ferent network topology, line susceptances, generator and 

line-flow limits, load demands and generator costs.  The 

coefficients for the linear generator cost functions are given 

in Table 2, load demands are given in Table 3 and line sus-

ceptances are given in Table 4.  All line-flows are limited to 

90 MW.  The network topology of the second OPF problem 

is shown in the one-line diagram in Figure 3. 

Generator 
Cost Coefficient 

[$/𝑀𝑊ℎ] 

Upper Generation 

Limit [𝑀𝑊] 

1 25 150 

8 10 40 

13 20 150 

Table 2: Generator Data for Second OPF Problem 

Bus 1 2 3 4 5 6 7 

Demand 

[𝑀𝑊] 
0 20.2 87.8 49.9 7.9 10.9 0 

        
Bus 8 9 10 11 12 13 14 

Demand 

[𝑀𝑊] 
0 28.7 9.5 3.5 5.6 14.3 15.4 

Table 3: Load Demands for Second OPF Problem 

From Bus 1 1 8 2 2 8 4 

To Bus 12 5 3 4 5 4 5 

Suscept- 

ance [𝑝.𝑢.] 
17.04 3.85 5.76 5.79 5.49 5.63 22.27 

        
From Bus 4 4 5 6 6 6 7 

To Bus 7 10 11 11 12 13 8 

Suscept- 

ance [𝑝.𝑢.] 
5.27 1.85 3.54 4.29 3.96 8.32 5.82 

        
From Bus 7 9 9 10 12 6  

To Bus 14 11 14 11 13 14  

Suscept- 

ance [𝑝.𝑢.] 
9.85 13.0 4.32 6.01 5.02 3.44  

Table 4: Line Susceptances for Second OPF Problem 

 

Figure 3: One-Line Diagram for Second OPF Problem 

The feasible spaces for generator power injections in the 

first and second OPF problems are shown in Figures 4 and 

5, respectively.  The details for reducing these OPF prob-

lems to two optimization variables (generator power injec-

tions 𝑃𝑔1  and 𝑃𝑔2 ) and plotting the optimization feasible 

space are outlined in the Appendix.  The contour lines illus-

trate the linear cost function, with color blue representing 

lower cost.  Using the procedure detailed in Section III, a 

transformation (i.e. a set of matrices 𝑷 and 𝑻 and vectors 𝑤 

and 𝑟) is generated that satisfies relationships (4a)−(4d).   

 
Figure 4: Feasible Space of Power Generation  

for First OPF Problem 

 
Figure 5: Feasible Space of Power Generation  

for Second OPF Problem 

The feasible space in Figure 4 corresponds to the first 

OPF problem having the formulation in (2).  The feasible 

space in Figure 5 corresponds to the second OPF problem 

having the formulation in (3).  The procedure used for plot-

ting the feasible spaces is described in the Appendix. 

In Figure 6, the transformation is applied to the first OPF 

problem (2) and is plotted in the coordinate system con-

sistent with the second OPF problem (3).  That is to say, the 

larger purple colored polytope in Figure 6 corresponds to 

the feasible space of the problem formulation shown below 

in (11b).  The formulation in (11a) displays the transfor-

mation taking place on (2) to convert to (3).  The formula-

tions in (11a) and (11b) are equivalent, and the optimal solu-

tion 𝑥* of (2) can be recovered from either (11a) or (11b).   



Notice the formulation in (11b) is nearly identical to the 

formulation in (3), excluding the inequality constraints 

  𝑙 𝑻𝑥      𝑙 𝑻𝑟.  These inequality constraints are replaced by 

  𝑙 𝑥    0 to completely transform (2) to (3), which does not 

change the optimal solution 𝑥 *.  The feasible space of (3) is 

shown as the green colored polytope in Figure 6.   

 min
𝑥

   (  𝑻  𝑤 𝑷 𝑻)(𝑻  𝑥  𝑟) (11a) 

            𝑷 𝑻(𝑻  𝑥  𝑟)  𝑷   𝑷 𝑻𝑟           

    𝑥     

⇕ 
 min

𝑥'
     𝑥  (11b) 

              𝑥  𝒃            

    (𝑻(𝑥  𝑟))     

 

Figure 6: Feasible Space of Both OPF Problems  

in Coordinates of Second OPF Problem 

Both feasible spaces in Figure 6 return the same optimal 

solution, indicated by the red star in the figure.  It is there-

fore true that the optimal solution 𝑥 * to (3) can be used to 

recover the optimal solution to (2) by 𝑥* = 𝑻(𝑥 *   𝑟).  The 

small-scale OPF in this example was chosen so that plotting 

the feasible space in two-dimensions was possible; however, 

the transformation procedure outlined in Section III is appli-

cable to any larger DC OPF having linear cost function.  

This example has demonstrated the method for transforming 

one DC OPF problem to another while preserving the opti-

mal solution.  In the next section, DC OPF problems with 

quadratic and piecewise linear cost functions are analyzed.   

V. QUADRATIC AND PIECEWISE-LINEAR COST FUNCTIONS 

The DC OPF model used to develop the transformation 

in Section III requires linear cost functions on active power 

generation.  Exploratory work has investigated extension of 

this transformation to quadratic and piecewise-linear cost 

functions. 

A. Quadratic Cost Function 

Section III detailed the method for creating a transfor-

mation between two DC OPF problems with linear cost 

functions.  In this section, we investigate what is necessary 

in order to perform a transformation between two DC OPF 

problems having quadratic cost functions.  The requirements 

for the transformation are more strict than the linear cost 

function case, and it will be shown only systems meeting a 

certain required property can be transformed to one another.  

If two systems do not meet this requirement, they can only 

be transformed to one another by introducing an additional 

variable/degree of freedom that was not needed in the case 

of the linear cost function. 

Two DC OPF problems with quadratic cost functions are 

shown in (12) and (13). 

 min
𝑥

  
 

 
𝑥  𝑥    𝑥 (12) 

             𝑥               

    𝑥     

 min
𝑥'

  
 

 
𝑥    𝑥     𝑥  (13) 

              𝑥                

    𝑥     

The goal is to determine a set of transformation matrices 

and vectors that establish a bidirectional transformation be-

tween (12) and (13).  Relationships (14a)- (14e) must hold 

in order for the transformation to be complete.  Transfor-

mation matrices 𝑷 and 𝑻 and vectors 𝑟 and 𝑤 are analogous 

to those defined in Section III.  The matrix 𝑾 in (14b) and 

(14c) results from the additional degrees of freedom in OPF 

problems with quadratic cost functions. 

      𝑷 𝑻 (14a) 

    = 𝑻𝑇 𝑻 + 2 ′𝑇𝑾 ′ (14b) 

    = 𝑻𝑇    𝑻𝑇 𝑻𝑟   2 ′𝑇𝑾 ′ +  ′𝑇𝑤 (14c) 

    = 𝑷  +  ′𝑟 (14d) 

 𝑥* = 𝑻(𝑥 *   𝑟) (14e) 

Relationships (14a), (14d) and (14e) are exactly the 

same as relationships (4a), (4c) and (4d) in the linear cost 

function case.  There is now, however, an additional rela-

tionship, (14b), which enforces a transformation between 

the quadratic cost matrix   in (12) and the quadratic cost 

matrix    in (13).  In (14b), a quadratic combination of the 

rows in constraint matrix    is added to 𝑻𝑇 𝑻.  Adding 

2 ′𝑇𝑾 ′ to the quadratic cost matrix in (14b) and sub-

tracting 2 ′𝑇𝑾 ′ from the linear cost vector in (14c), effec-

tively just adds a constant to the cost function.  

 0 = (𝑥 𝑇  𝑇     𝑇)𝑾(  𝑥      ) (15) 

= 𝑥 𝑇  𝑇𝑾  𝑥    2  𝑇𝑾  𝑥      𝑇𝑾   



The cost function in (13) effectively has a constant 

𝑥 𝑇  𝑇𝑾  𝑥    2  𝑇𝑾  𝑥  =    𝑇𝑾   added to it, as 

evident in (15).  

The relationship between the linear cost vector   in (12) 

and linear cost vector    in (13), is shown in (14c).  Similar 

to relationship (4b), a linear combination of the rows in con-

straint matrix    is added as  ′𝑇𝑤, which effectively adds a 

constant to the cost function.  There is one additional term 

in (14c) that has yet to be explained, that being  𝑻𝑇 𝑻𝑟.  

Consider substituting 𝑥 = 𝑻(𝑥    𝑟) into the quadratic cost 

term 
1
2
𝑥𝑇 𝑥 in (12). 

 
1
2
𝑥𝑇 𝑥 = 1

2
(𝑥 𝑇   𝑟𝑇

 )𝑻𝑇 𝑻(𝑥    𝑟) (16) 

=  1
2
𝑥 𝑇𝑻𝑇 𝑻𝑥    𝑟𝑇𝑻𝑇 𝑻 𝑥  + 1

2
𝑟𝑇𝑻𝑇 𝑻𝑟 

As shown in (16), quadratic, linear and constant terms 

are created after making the substitution.  Therefore 

 𝑻𝑇 𝑻𝑟 in (14c) originates from the cross coupling terms 

of the quadratic cost function transformation.  The constant 

term 
1
2
𝑟𝑇𝑻𝑇 𝑻𝑟 is dropped altogether, as it has no impact on 

results of the optimization in (13). 

The transformation procedure between two DC OPF 

problems having quadratic cost functions is detailed next.  

The procedure is started the same as the linear cost function 

case, where relationship (14a) is enforced by defining 𝑻 as 

the sum of two terms, 𝑻 = 𝑻0 + 𝑵𝑸, where 𝑻0 =  †𝑷‒1   

and the 𝑛×(𝑛 𝑚) matrix 𝑵  is the null-space of  , i.e. 

 𝑵 = 0𝑚×(𝑛 𝑚).  With relationship (14a) satisfied, we move 

on to relationship (14b). 

The procedure goes as follows, (14b) is rearranged by 

taking the pseudoinverse of  ′𝑇 and  ′ to solve for 𝑾 as a 

function of 𝑻 as shown in (17). 

 𝑾 = 1
2
 ′𝑇

†(     𝑻𝑇 𝑻) ′† (17) 

Next, 𝑾 from (17) and 𝑻 =  †𝑷‒1   + 𝑵𝑸 are substi-

tuted back into (14b), which can be rewritten as in (18).  

Recall that  ′𝑇 ′𝑇
†

 ≠ 𝐼𝑛×𝑛 and  ′𝑇
†
 ′𝑇 = 𝐼𝑚×𝑚. 

      𝑸𝑇𝑵𝑇 𝑵𝑸     𝑇  𝑇
†
(     𝑸𝑇𝑵𝑇 𝑵𝑸)  †    

 =      𝑇𝑷𝑇‒1
 𝑇†

 𝑵𝑸(𝐼     †  ) (18) 

 + (𝐼     𝑇  𝑇
†)𝑸𝑇𝑵𝑇  †𝑷‒1    

Note that 𝐼     †   = 𝐼    ′𝑇 ′𝑇
†
= 𝑵′𝑵′𝑇, where the 

𝑛×(𝑛 𝑚) matrix 𝑵′  is the null-space of  ′,  i.e. 

 ′𝑵′ = 0𝑚×(𝑛 𝑚).  Recall that 𝑵′† = 𝑵′𝑇, 𝑵′𝑵′𝑇 ≠ 𝐼𝑛×𝑛 and 

𝑵′𝑇𝑵′ = 𝐼(𝑛 𝑚)×(𝑛 𝑚).   

Matrices 𝑸 and 𝑷‒1 are unknown in (18).  However, (18) 

has a special structure that allows solving for 𝑷‒1 as a func-

tion of 𝑸.  Define 𝑵
 ~

 as the 𝑚×(2𝑚 𝑛) null-space of 

𝑵𝑇  †,  such that 𝑵𝑇  †𝑵
 ~

 = 0(𝑛 𝑚)×(2𝑚 𝑛).   Define a 

(2𝑚 𝑛)×𝑚 matrix 𝑽 which can be any full-rank matrix.   

A full-rank solution for 𝑷‒1 as a function of 𝑸 is deduced 

from (18) and is shown in (19). 

 𝑷‒1 = 𝑵
 ~

𝑽 + (19) 

 (𝑵  †)
†
𝑸𝑇†

𝑵 𝑵 𝑇(     𝑸𝑇𝑵𝑇 𝑵𝑸)  †  

Substituting the solution for 𝑷‒1 in (19) into (18), reduc-

es (18) to (20). 

 𝑵′𝑵′𝑇(     𝑸𝑇𝑵𝑇 𝑵𝑸)𝑵′𝑵′𝑇 = 0𝑛×𝑛 (20) 

In (20), the only unknown variable is matrix 𝑸.  The so-

lution for 𝑸 in (20) is not unique, but is rather adjustable by 

any (𝑛 𝑚)×(𝑛 𝑚) orthogonal matrix 𝑹, as shown in (21). 

 𝑸 = (𝑵𝑇 𝑵)‒1/2
 𝑹 (𝑵′𝑇  𝑵′)1/2

 𝑵′𝑇 (21) 

In (21), the exponent 1/2 denotes a matrix square root, 

such that 𝒀 = 𝑿
1/2

 and 𝒀𝒀= 𝑿 , and the exponent  1/2 

denotes the inverse of the matrix square root.  With 𝑸 from 

(21) and 𝑻 =  †𝑷‒1   + 𝑵𝑸, matrix 𝑾 can be solved us-

ing (17), and relationship (14b) is satisfied. 

Relationships (14d) and (14e) are exactly the same as 

(4c) and (4d) in the case of a linear cost function.  As de-

scribed in Section III, the relationships are satisfied by de-

fining 𝑟 as the sum of two terms, 𝑟 = 𝑟0 + 𝑵′𝑞.  It is neces-

sary for 𝑟0 =  ′†(     𝑷 )  and 𝑞 = 𝑵′†( 𝑥 *   𝑻‒1𝑥*   𝑟0 ) 

in order to satisfy (14d) and (14e).  With proper cancelation, 

𝑟 can be rewritten in (22). 

 𝑟 =  ′†     𝑻‒1𝑥* + 𝑵′𝑵′𝑇𝑥 * (22) 

The last remaining relationship to be satisfied is (14c), 

which equates the linear cost coefficients of DC OPF prob-

lems (12) and (13).  Relationship (14c) will next be exam-

ined to determine what property is required for two systems, 

with quadratic cost functions, to be able to transform to one 

another.  Rearrange (14c) to solve for 𝑤 as a function of 𝑸 

in (23) by taking the pseudoinverse of  ′𝑇. 

 𝑤 =  ′𝑇
†
(     𝑻𝑇  + 𝑻𝑇 𝑻 + 2 ′𝑇𝑾 ) (23) 

By substituting 𝑟 from (22), substituting 𝑻𝑇 𝑻 =

     2 ′𝑇𝑾 ′  and substituting 𝑻 =  †𝑷‒1   + 𝑵𝑸, 

(14c) can be reduced to reveal a necessary property in order 

for two systems, having quadratic cost functions, to be able 

to transform to one another.  This necessary property is 

shown in (24). 

 (𝑵𝑇 𝑵)‒1/2
𝑵𝑇(  +  𝑥*) (24) 

 =  𝑹 (𝑵′𝑇 ′𝑵′)‒1/2
𝑵′𝑇( ′ +  ′𝑥′*)  



The two DC OPF problems in (12) and (13) must satisfy 

the given vector relationship (24) in order for (14c) to be 

satisfied.  The only degree of freedom in (24) is the 

(𝑛 𝑚)×(𝑛 𝑚) orthogonal matrix 𝑹.  All other variables 

are predetermined by the DC OPF models in (12) and (13).  

It is acceptable to use a complex valued orthogonal matrix 𝑹 

if needed.  If no 𝑹 matrix can be found, then an additional 

degree of freedom must be introduced.  Quite simply, the 

last degree of freedom needed would be an 𝑛×1 vector  ~, 

such that (25) is satisfied. 

    = 𝑻𝑇    𝑻𝑇 𝑻𝑟   2 ′𝑇𝑾 ′ +  ~ (25) 

At this point, the four relationships (14a), (14b), (14d) 

and (14e) have been satisfied by appropriately determining 

the transformation matrices 𝑻 and 𝑾 and vector 𝑟.  If rela-

tionship (14c) cannot be solved by determining the orthogo-

nal matrix 𝑹, then an additional degree of freedom  ~ is in-

troduced such that (25) is satisfied instead of (14c).  With 

this approach, two DC OPF models with quadratic cost 

functions can be transformed to one another. 

B. Piecewise-Linear Cost Function 

Convex piecewise-linear cost functions are often used in 

DC OPF problems, particularly in electricity market con-

texts.  Available literature on the piecewise-linear formula-

tion can be reviewed in [6].  Consider a piecewise-linear 

cost function for generator   with 𝑟  linear segments speci-

fied by slopes 𝑚 ‚1 ,…, 𝑚 ‚𝑟 
 and breakpoints (  𝑗,   𝑗) , 

𝑗 = 1 ,…, 𝑟  , where   𝑗 is the power generation coordinate 

and   𝑗 is the cost coordinate for the 𝑗 ℎ breakpoint of gener-

ator  .  With these specifications, the cost of power genera-

tion at the   ℎ generator becomes 𝐶𝑔(𝑃𝑔‚ ) as shown in (26). 

 𝐶𝑔(𝑃𝑔‚ ) = 





𝑚 ‚1(𝑃𝑔‚      ‚1) +   ‚1 ‚ 𝑃𝑔‚      ‚1

𝑚 ‚2(𝑃𝑔‚      ‚2) +   ‚2 ‚   ‚1 < 𝑃𝑔‚      ‚2

⋮ ⋮

𝑚 ‚𝑟 
(𝑃𝑔‚      ‚𝑟 

 ) +   ‚𝑟 
 ‚   ‚𝑟 

   𝑃𝑔‚ 

  

(26) 

Convex piecewise-linear cost functions can be imple-

mented as a linear program using a set of linear inequality 

constraints.  Specifically, define a scalar variable 𝛽  for each 

generator.  Then the piecewise-linear cost curves are im-

plemented using the linear program in (27), which is the 

piecewise-linear modification of the formulation in (1). 

Incorporation of this formulation for convex piecewise-

linear cost functions does not change the fundamental char-

acteristics of the DC OPF problem since inequality con-

straints are already allowed in the DC OPF formulation (1).  

The formulation for piecewise-linear cost functions has a 

linear objective, and therefore the transformation method 

described in Section III can be directly applied to this modi-

fied problem. 

 min
𝑃𝑔‚ 𝛿‚ 𝛽

   Σ
  = 1

𝑛𝑔𝑒𝑛

 𝛽  (27) 

               𝑃   𝛿   𝑃             

 𝛿       

 𝑃      𝑃  𝑃       

  𝑃            𝑔(   )    𝛿  𝑃          

{𝛽    𝑚𝑔‚  (𝑃𝑔‚      ‚ ) +   ‚    ∀   = 1,…,𝑟 }   ∀   = 1,…,𝑛𝑔𝑒𝑛 

VI. CONCLUSION 

This paper has outlined a transformation method be-

tween two DC optimal power flow (OPF) problems, and by 

extension to a family of problems, which preserves a map-

ping between optimal solutions.  The transformation method 

was first developed for DC OPF problems having linear cost 

functions, and the method was demonstrated on an example 

using a modified version of the IEEE 14-bus system.  Next, 

the transformation method was developed for DC OPF 

problems having quadratic cost functions, and lastly was 

developed for DC OPF problems having piecewise-linear 

cost functions.  The needed next steps include the extension 

to AC OPF models, and a means to compare the computa-

tional complexity of the original and transformed models for 

the nonlinear AC OPF models.   

Prior related work has examined transforming/masking 

OPF problems for purposes of preserving system confiden-

tiality in cloud computing [1].  However, in that work the 

transformed/masked problem did not resemble a typical 

power system structure.  For the purpose of cloud compu-

ting, we do not require the model to have a power system 

structure.  The methods detailed in this paper prove the ex-

istence of transformations that preserve power system struc-

ture by constructively calculating the transformations need-

ed for two such solved systems. 

The study of sensitive data, typically shared under non-

disclosure agreements, is necessary for maintaining the reli-

able and secure operation of the electric power grid.  How-

ever, we must recognize that the development of algorithms 

and the presentation of results using these models cannot be 

independently investigated and directly confirmed by others, 

as is the accepted practice in the scientific community.  We 

need commonly accepted power system models that can be 

shared broadly, that are accepted as equivalent to actual 

models that are not shared, and that are suitable for research 

purposes.  This paper shows a method for converting DC 

OPF models in a way that preserves the confidentiality of 

the original model and the structure of a DC OPF.  This 

work may serve to more freely allow sharing of realistic 

models among researchers and thereby aid the process of 

algorithmic development for solving OPF problems.  



APPENDIX 

PLOTTING FEASIBLE SPACE 

In this Appendix, the procedure for reducing a quadratic 

or linear program by eliminating equality constraints is de-

tailed.  Additionally, the cost function is reconstructed for 

the reduced system, which can allow plotting of feasible 

spaces for small-scale problems. 

Consider a quadratic program such as (12) with equality 

constraints  𝑥 =  , where   has 𝑚 rows and 𝑛 columns 

and 𝑚   𝑛.  All 𝑚 equality constraints and 𝑚 of the optimi-

zation variables in 𝑥 can be eliminated from the problem.  

Denote   [      ], where M1 is 𝑚×(𝑛 𝑚) and  2 is 

𝑚×𝑚; also denote 𝑥  [𝑥 
    𝑥 

 ]  where 𝑥1  is (𝑛 𝑚)×1 

and 𝑥2 is 𝑚×1.  The optimization variables 𝑥2 can be elimi-

nated from the problem, shown in (28). 

 𝑥2(𝑥1) =  2
‒1(     1𝑥1) (28) 

In (28), 𝑥2 becomes a function of the remaining varia-

bles 𝑥1.  In a DC OPF problem, 𝑥1 contains 𝑛𝑔𝑒𝑛   1 opti-

mization variables.  One choice of variables in 𝑥1 and 𝑥2 is 

shown below.  

 𝑥1 = [
 
 𝑃𝑔‚1  𝑃𝑔‚2  …  𝑃𝑔‚𝑛𝑔𝑒𝑛 1

 
 ]

 
  

 𝑥2(𝑥1) = [
 
 𝑃𝑔‚ 𝑙  𝑘(𝑥1)  𝛿(𝑥1)𝑇  𝑥 𝑙(𝑥1)𝑇 ]   

In other words, the power output by all generators, ex-

cluding the slack generator, determines the bus angles 𝛿 and 

operating point of the system.  The quadratic cost matrix   

and linear cost vector   in (12) can be similarly split into 

parts.  In the case of linear programs, assume   = 0 in the 

following derivation. 

  [
      

      
]  and    [  

      
 ]  

With optimization variables 𝑥2 eliminated, consider the re-

duced sized quadratic cost matrix  ̂ and linear cost vector  ̂. 

 ̂    
   

   
     

     

   
   

   
         

         

 ̂    
    

   
     1

2
    

   
(       

 )  
     

  1
2
    

   
   

  1
2
    

   
   

  

The quadratic program in (12) can be rewritten once more 

as shown in (29). 

 min
𝑥1

  
 

 
𝑥 

  ̂𝑥    ̂ 𝑥  (29) 

  . .      𝑥2(𝑥1)   0  

The problem’s feasible space in (29) is now clearly de-

termined by 𝑥2(𝑥1)   0.  If there are only two or three varia-

bles in 𝑥1, then the feasible space can be plotted and visual-

ized in two or three dimensionally respectively. 

ACKNOWLEDGMENT 

This work was motivated in part by the project supported 
under National Science Foundation grant CNS-1329452.  

REFERENCES 

[1] Borden, A.R.; Molzahn, D.K.; Ramanathan, P.; Lesieutre, B.C.; 

"Confidentiality-Preserving Optimal Power Flow for Cloud Compu-

ting," in 50th Annual Allerton Conference on Communication, Con-

trol, and Computing, 2012, Oct. 1-5, 2012 

[2] Dreier, J.; Kerschbaum, F.; "Practical Privacy-Preserving Multiparty 
Linear Programming Based on Problem Transformation," Privacy, 
security, risk and trust (passat), 2011 ieee third international 
conference on and 2011 ieee third international conference on social 
computing (socialcom) , vol., no., pp.916-924, 9-11 Oct. 2011 

[3] Shojaei, H.; Davoodi, A.; and Ramanathan. P.; Confidentiality 
Preserving Integer Programming for Global Routing. In Proceedings 
of the 49th Annual Design Automation Conference, pp. 709-716. 
ACM, 2012. 

[4] Golub, G.H.; Van Loan, C.F.; Matrix Computations. 3rd Ed. JHU 
Press, 2012. 

[5] Power Systems Test Case Archive, University of Washington 
Department of Electrical Engineering. [Online]. Available: 
http://www.ee.washington.edu/research/pstca/ 

[6]  immerman   . .   urillo-  nche    . .  Thomas   . .  
"MATPOWER: Steady-State Operations, Planning, and Analysis 
Tools for Power Systems Research and Education," Power Systems, 
IEEE Transactions on , vol.26, no.1, pp.12,19, Feb. 2011 


