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Abstract—In the field of power system engineering, the optimal 

power flow problem is essential in planning and operations. 

With increasing system size and complexity, the computational 

requirements needed to solve practical optimal power flow 

problems continues to grow. Increasing computational 

requirements make the possibility of performing these 

computations remotely with cloud computing appealing. 

However, power system structure and component values are 

often confidential; therefore, the problem cannot be shared. To 

address this issue of confidential information in cloud 

computing, some techniques for masking optimization 

problems have been developed. The work of this paper builds 

upon these techniques for optimization problems but is 

specifically developed for addressing the DC and AC optimal 

power flow problems. We study the application of masking a 

sample OPF using the IEEE 14-bus network. 

I. INTRODUCTION 

The optimal power flow (OPF) problem is used to 
determine an optimal operating point in electric power 
systems. It takes a number of different forms depending on 
the particular objective and the scale of interest (planning 
vs. operations, economics, reliability, etc.). The 
mathematical representation varies from a linear program 
(DC OPF [1]) to a nonlinear, nonconvex mixed-integer 
program (security constrained AC OPF). Generally, all 
variants include an objective function (commonly quadratic 
or piece-wise linear), physical network constraints (the 
power flow equations) and imposed engineering limits 
(voltage magnitude, active and reactive power generation, 
transmission line-flow, etc.). The problem can be large with 
thousands of decision variables and tens of thousands of 
constraints. In this context, advances in the field of 
computing are of considerable interest. 

An emerging paradigm in computer science and 
engineering is cloud computing [2]. Cloud computing 
provides subscribers shared access to powerful remote 
computing platforms; therefore, the potential to solve OPF 
problems remotely with cloud computing is an appealing 
possibility. The full AC OPF problem is nonlinear and 
nonconvex, and with realistic power system models being 
very large, potentially having tens of thousands of buses, the 
OPF problem seems a promising candidate for remotely 
solving in the cloud. 

It is well recognized however, that security in cloud 
computing is a significant concern [3],[4]. With a shared 
computing platform comes the possible risk of attackers 

obtaining data sent to the cloud. In the case of power 
systems, this data is often confidential. Leaks of confidential 
data can be financially damaging and potentially threatening 
to national security. For this reason, cloud computing is 
currently not well suited for power system applications 
without further security advances. 

This confidentiality motivates the need to improve OPF 
problem security masking. The masking process obscures 
the problem data such that an attacker with access to the 
masked problem cannot obtain confidential information. 
The masking process preserves the ability to obtain the 
original optimal solution. Knowledge of the masking 
process details are required in order to extract the original 
solution from the masked solution.  

Existing research has investigated techniques for 
masking optimization problems [5],[6]. In [5], the authors 
outline a systematic approach for masking a general linear 
program. The approach in [5] seems well suited for the 
linear DC OPF problem; however, some additions are 
needed. The approach in [5] only specifies a linear objective 
function whereas quadratic cost functions are necessary for 
many practical OPF problems. Furthermore, existing 
literature does not discuss dual solutions to the original 
unmasked problem. The dual variables in the OPF problem 
are important to power system operations with some of 
them being the locational marginal prices in market 
contexts. The method in [5] also does not obscure the 
number and type of facilities present in the problem.  

An additional computational concern is that the 
approach in [5] destroys problem sparsity, making solutions 
of large OPF problems computationally intractable. A 
masking approach that preserves sparsity in integer 
programs is described in [6]. This approach serves as 
inspiration to a similar approach for preserving sparsity in 
the masked OPF problems presented in this paper. 

This paper presents a confidentiality preserving optimal 
power flow for cloud computing. We address several issues 
pertaining to the OPF including dual variable calculations in 
Section III, controlling the sparsity of a linear program for 
computational ease in Section IV-B, imposing quadratic 
cost functions in Section IV-0, obscuring the number of 
system facilities in Section V, and masking nonlinear 
constraints in Section VI. We initially focus on the linear 
DC OPF and its relation to the existing literature on cloud 
computing security and then consider the nonlinear AC OPF 
with an example of both in Section VII. 



II. DC OPTIMAL POWER FLOW PROBLEM OVERVIEW 

The DC OPF uses a power flow model that is a linear 

approximation of the nonlinear power flow equations. There 

are four main approximations made in the DC OPF: the bus 

voltage magnitudes are all equal to one, the voltage angle 

differences are small so that cos	(�� − �	) ≈ 1  and sin(�� − �	) ≈ �� − �	, the resistance for each branch is 

negligible and set to zero and all shunt elements are 

neglected. Reactive power at the loads and generators are 

not explicitly considered. 

The DC OPF can be written with linear constraints and 

quadratic cost function having the following form: 

 
δ,

min
gP

  
�������� +	���� (1) 

 �. �.									 − �� + �� = −�� 										  

 ���� = 0  

 ��,	"# ≤ �� ≤ ��,	%&  

 −��'(),	%& ≤ �*+,(-.�)/012� ≤ ��'(),	%&  

In the above formulation for the DC OPF, the 

optimization variables are ��  as the vector of generator 

power injections and � as the vector of bus voltage angles. 

There is a quadratic cost function, where � is a diagonal 

matrix of generator quadratic cost coefficients and � is a 

vector of generator linear cost coefficients.  

The first equality constraint enforces power balance at 

each bus. Here the bus susceptance matrix �  is the 

imaginary part of the bus admittance matrix with shunt 

elements neglected. Reflecting common power system 

topology, the matrix �  is typically sparse. The vector ��  

contains the bus active power loads. It is important to note 

that in the formulation of (1), the power generated is in the 

delivering reference frame (i.e., �� is nonnegative), and the 

bus loads are in the receiving reference frame (i.e., ��  is also 

nonnegative). The second equality constraint enforces the 

bus voltage angle at the reference bus to be zero. 

The first inequality constraint limits power generation 

for each generator to be within its lower and upper bounds. 

The last constraint limits the power flow in both directions 

on each branch to be less than a maximum flow ��'(),	%&. 

Here the vector -.�  contains the branch susceptances and �*+,(-.�) is the diagonal matrix with the vector -.� on the 

diagonal. The matrix /012  is the bus-to-branch incidence 

matrix; this matrix has number of rows equal to the number 

of branches and number of columns equal to the number of 

buses. Each row has +1 in the column corresponding to the 

branch’s “from” bus and -1 in the column corresponding to 

the branch’s “to” bus.  

III. MASKING PRIMAL AND DUAL LINEAR PROGRAMS 

Recent research details a method for masking a linear 

program [5]. In this section we will briefly summarize this 

method and further develop a method for recovering the 

unmasked dual variables. In Section IV we adopt and extend 

this method for application to the DC OPF problem.  

The primal notation in this section is adopted from [5]. 

We start from the standard linear program formulation of 

the primal (2a) and dual (2b) problems.  

 
x

min 3�4 (2a) 

 �. �.										564 = -�										  

 																	574 ≤ -�										  

 																	4 ≥ 0										  

 

 
vu,

max   -��9 + -��: (2b) 

 �. �.										56�9 +57�: ≤ 3										  

 																: ≤ 0									  

A random positive monomial matrix ;  (i.e., a matrix 

containing exactly one non-zero entry per row and column) 

and a random positive vector <  are used to hide the cost 

vector 3 and the optimization variable vector 4.  

 
x

min 3�;(;=�4 + <) (3) 

 �. �.										56;(;=�4 + <) = -� +56;	<											  

 																	57;(;=�4 + <) ≤ -� +57;	<									  

 																	;=�4 + < ≥ <										  

Substituting the masked variable > = ;=�4 + <  and 

introducing the random positive diagonal matrix ? yields the 

following primal and dual problems: 

 
z

min 3�;> (4a) 

 �. �.										56;> = -� +56;	<											  

 																	57;> ≤ -� +57;	<									  

 																	?> ≥ ?<										  

 

 
vu,

max   (-� +56;<)�9 + (-� +57;<)�: (4b) 

 �. �.										(56;)�9 + (57;)�: ≤ (3�@)�  

 																: ≤ 0									  

The inequality constraints in (4a) are converted to 

equality constraints through the introduction of slack 

variables >A'. Denote the optimization variable vector >B as 

the prior vector >  augmented with the slack variables, >B� = C>� 	>A'� D. The cost function vector is augmented with 

zero entries corresponding to the slack variables, 3B� = C3�;		0… 0D . The dual variable vectors 9  and :are 

consolidated into a single variable vector 9′� = C9�	:�D.  



The constraint notation is simplified by defining  

5B = G56; H57;−? /I			,			-B = G-� +56;<-� +57;<−?< I 

where /  is a random positive monomial matrix. The 

formulations in (4a) and (4b) can be rewritten as seen in (5a) 

and (5b). 

 
'

min
z

3B�>′ (5a) 

 �. �.										5′>′ = -′															  

 																>B ≥ 0										  

 

 
'

max
u

  -B�9′ (5b) 

 �. �.										5BJ9B ≤ 3B												  

Lastly the matrix 5B  and vector -′ are hidden using a 

nonsingular matrix K  and a random positive monomial 

matrix J with 5BB = K5′J, -BB = K-′ and 3BB� = 3B�J. The K  matrix takes linear combinations of the rows in the 

constraint equations. The J matrix scales and permutes the 

columns of the constraint matrix 5′  and cost function 

vector 3B�. The new primal optimization variable vector is >BB = J=�>B  and new dual optimization variable vector is 9′′ = (K�)=�9′ . The linear program is now in its final 

masked primal (6a) and dual (6b) forms. 

 
''

min
z

  3′′�>′′ (6a) 

 �. �.										5′′>BB = -′′																  

 													>BB ≥ 0								  

 

 
''

max
u

  -′′�9′′ (6b) 

 �. �.										5′′�9′′ ≤ 3′′															  

The original optimal primal variable vector 4∗  can be 

recovered after solving masked problem (6a) with  J>BB∗ = >B∗ = M>∗�	>A'∗ �N� and 4∗ = ;(>∗ − <). The original 

optimal dual variable vectors 9∗  and :∗  can be solved by K�9BB∗ = 9B∗ = M9∗�	:∗�N�.  

IV. MASKING A DC OPF PROBLEM 

In this section we specifically apply the masking 

techniques developed in Section III to the DC OPF problem 
outlined in Section II. We first specify the composition of 

the matrices in (2a) and (2b). We detail a method for 

constructing the K matrix used in (6a) and (6b). We then 
extend the masking to include a quadratic cost function 

which is required for typical OPF problems. 

A. Problem Setup 

The DC OPF problem in (1) must be formulated in terms 

of a standard linear program as in (2a) and (2b). Note that �� 

and � in (1) are free variables; however, the standard linear 

program formulation in (2a) requires nonnegative variables. 

Therefore �� and � are represented as the difference of two 

nonnegative variables, �� = ��O − ��=  and � = �O − �= 

where ��O, ��=, �O, �= ≥ 0. In (2a), the optimization variable 

vector 4� = M��O� ��=� �O� 	�=�N.  There are  2Q� + 2Q.  elements in 4,  where Q�  is the number of 

generators and Q. is the number of buses. 

We temporarily neglect the quadratic terms of the cost 
function in (1); the quadratic cost terms will be revisited in 

Section IV-0. In (2a), the linear cost coefficient vector 3� = C�� −�� 0…0D. Here � is the linear generator cost 

coefficients in (1), and there are 2Q. number of zeros. 
In the equality constraints of (2a), the matrix  

56 = R−ST ST � −�0			 … 			0 U��� −U���V 
has Q. + 1  rows. The Q. × Q�  matrix ST  has a single +1 

entry in each column for the rows corresponding to buses 

with generators and has zeros elsewhere. The Q. × Q. 

matrix � is the bus susceptance matrix with shunt elements 

neglected. The row vector U���  has Q. − 1  zeros and a 

single +1 in the column corresponding to the reference bus 

angle. In the equality constraints of (2a), the column vector  -� = C−��� 0D� . Here ��  is the vector of bus loads; 

therefore, the first Q.  rows of equality constraints enforce 

power balance at each bus. The final row of 56 and the zero 

in -�  enforce the reference bus angle, ���� = ����O − ����= = 0. 

In the inequality constraints of (2a), the matrix  

57 = XY
YZ
[T −[T H H−[T [T H HH H �*+,(-.�)/012 −�*+,(-.�)/012H H −�*+,(-.�)/012 �*+,(-.�)/012 \]

]̂ 
has 2Q� + 2Q.� rows where Q.� is the number of branches. 

Here _�  is the Q� × Q�  identity matrix. As described in 

Section II, the vector -.� contains the branch susceptances, 

and �*+,(-.�) is the diagonal matrix with the vector -.� on 

the diagonal. The matrix /012 is the bus-to-branch incidence 

matrix, and �*+,(-.�)/012  is an Q.� × Q.  matrix. In the 

inequality constraints of (2a), the column vector  -� = M��,	%&� −��,	"#� ��'(),	%&� ��'(),	%&� 			N� .  Vectors ��,	%&  and ��,	"# are the upper and lower power generation 

limits, and ��'(),	%& is the branch power flow limits. 

The dual optimization variables in (2b) are important in 

OPF problems. The optimization variable vector 9 

corresponds to the equality constraints of the primal 

problem, and :  corresponds to the inequality constraints. 

The locational marginal prices (LMPs) are the Lagrange 
multipliers of the power balance equality constraints; 

therefore, the first Q.  Lagrange multipliers in 9  are the 

LMPs. The final Lagrange multiplier in 9 corresponds to the 
reference bus angle equality constraint. In Section III, the 

method for recovering the dual variables was shown. 



B. Constructing a K Matrix for a DC OPF 

The masking steps of equations (2a) through (5a) are 
straightforward as the construction of matrices ;,/, ? and J 

and vector <  only require generation of random positive 
numbers and permutations. Sufficiently large random 
numbers will mask the magnitudes of all values. However, 

creation of the K  matrix used in (6a) is not as 
straightforward in the case of the DC OPF problem.  

The construction of matrix 5′  in (5a) was shown in 
Section III. To clearly illustrate the typical sparse structure 

of 5′ in a DC OPF problem, let matrices ; and / used in 
the construction of 5′ be random positive diagonal matrices 
rather than random positive monomial matrices. A spy plot 

displaying the nonzero elements of the 5′  matrix for the 
IEEE 14-bus test system [7] is shown below in Figure 1. 

 

 
Figure 1: Nonzero elements of 5′ in 14-bus system 

The typical structure of 5′ for the DC OPF can be seen 
in Figure 1 with obvious distinguishable sections; grid lines 
and labels were inserted to emphasize these sections. Given 
Figure 1, an attacker could only recover the original 

system’s numerical values by knowing matrices ;,/ and 	? 
and vector <. An attacker could, however, easily identify the 
topology of the system by viewing the matrix in Figure 1.  

The final step of the masking process requires the left 

multiplication of 5′  by a nonsingular matrix K  and right 

multiplication of 5′  by a random positive monomial  

matrix J,  specifically 5′′ = K5′J  in (6a). This left 

multiplication by K  results in linear row combinations of 5′ . Using Figure 1 as example, it can be seen that the 
columns in sections A-D are much more dense than the 
columns in E and F. Naively taking random row 

combinations of 5′  would increase the density of the 
columns in A-D much more than columns in E and F. By 
counting the number of denser columns, an attacker could 

determine the number of generators plus buses, Q� + Q. . 

Having the number of generators plus buses, an attacker 
knowing the DC OPF formulation could calculate the 

number of system branches Q.� . The nonsingular matrix K 
must carefully be constructed to prevent against this. 

The structure of 5′ can be exploited to perform custom 
tailored linear row operation tricks for the DC OPF that 

more evenly distribute column densities. The details of the 

DC OPF row operation tricks are left out of this report, but 

many different linear row operations can be performed 

using a preconditioning matrix K6 to be multiplied by 5′. 
There are numerous possible K6 matrices, and all are valid 

as long as K6  is nonsingular. One possible K6  matrix was 

generated to get K65′ in Figure 2 . 

 

 
Figure 2: Nonzero elements of K65′ in 14-bus system 

The column density of K65′ in Figure 2 has been more 

evenly distributed compared to 5′  in Figure 1, and the 

number of nonzero elements has also been reduced from 
426 to 288. This new matrix is better suited for performing 

row combinations that will obscure sensitive information 

like the number of generators plus buses.  
To further obscure system topology while maintaining 

sparsity, we define a second matrix K7 to be left multiplied 

by K65′ and a density parameter �% between zero and one 

which controls the tradeoff between sparsity and security. 

The matrix K7 is constructed in a way that enforces every 

row and column density percentage of K7K65′ to be greater 

than or equal to the parameter value �% defined by the user. 

In Figure 3, each row and column density percentage is 

greater than or equal to �% ≈ 0.05  for this example. An 

attacker viewing the matrix in Figure 3 could not recover 
any system topology information now by simply observing 

column or row density.  

 

 
Figure 3: Nonzero elements of K7K65′ in 14-bus system 

nz = 426

nz = 288

nz = 736

A B   C      D                  E                           F 

A B   C      D                  E                           F 

A B   C      D                  E                           F 



Recall matrices ; and / used in the construction of 5′ 
here were diagonal matrices rather than monomial 

matrices.Therefore the underlying diagonal matrix spanning 

sections 3E through 7F would be permuted and not so 

obvious. The diagonal matrix ? however, in sections 7A-D, 

would evidently still be present. The size of the diagonal 

matrix ? reveals the number of buses plus generators, which 

can consequently reveal the number of branches as well to a 

knowledgeable attacker. One final step of scaling and 

permuting the rows and columns of the matrix in Figure 3 is 

therefore performed to completely obscure the matrix 

structure. A matrix Kb is created for scaling and permuting 

rows, and a matrix J is created for scaling and permuting 

columns. Altogether, the final obscured matrix is  5′′ = KbK7K65′J = K5′J, as seen in Figure 4. 

 
Figure 4: Nonzero elements of 5BB = K5′J in 14-bus system 

The matrix 5BB = K5′J  in Figure 4 is the constraint 

matrix in (6a) and (6b). The three step process of creating 

the matrix K outlined above hides the original structure and 

values of 5′  while maintaining sparsity. No columns or 

rows have too great or too low of a density which prevents 

against attacks of that nature. According to [5], the 

numerical values of the masked problem are sufficiently 

secure. The transformation from 5B  to 5′′  may not 

completely hide system structure. A sophisticated attacker 

may be able to extract topological information knowing that 

the masked problem was derived from a DC OPF. Further 

work investigating structural security is ongoing. 

C. Quadratic Cost Function 

In this section we outline the details of masking a 

quadratic cost function which is typically required in OPF 

problems. In (1), a quadratic cost function was shown: 

δ,
min

gP
  
�������� + 	���� 

Rewriting this cost function in terms of an optimization 

variable vector 4� = M��O� ��=� �O� 	�=�N , as was 

done in Section IV-A, changes the primal and dual problems 

to those in (7a) and (7b). 

 
x

min   	�� 4�c4 +	3�4 (7a) 

 �. �.										564 = -�										  

 																	574 ≤ -�										  

 																	4 ≥ 0										  
 

wvu ,,
max   − �� d9:ef

� gh�i=�h�� h�i=�h�� h�i=�h�i=�h�� h�i=�h�� h�i=�i=�h�� i=�h�� i=� j d9:ef 

 +g-� +56c=63-� +57c=63c=63 j
�
d9:ef − �� 3�c=63 (7b) 

 �. �.										: ≤ 0										  

 																e ≥ 0									  

Like before, 3� = C��	−��	0… 0D, but there is now also 

the (2Q� + 2Q.) × (2Q� + 2Q.) quadratic cost matrix c. 

c = k � −� H−� � HH H Hl 
Following the masking procedure outlined in Section III 

(3) through (6a) and (6b) gives the final masked primal (8a) 

and dual (8b) problem for a quadratic cost function. 

 
''

min
z

  	�� >BB�cBB>BB + 3BB�> (8a) 

 �. �.										5′′>′′ = -′′										  

 																	>′′ ≥ 0										  

 

'',''
max

vu
  − �� m9′′:′′n� R5′′c′′=65′′J 5′′c′′=6c′′=65′′J c′′=6 V m9′′:′′n 

 + R-′′ + 5′′cBB=63′′c′′=63′′ V� m9′′:′′n − �� 3BB�cBB=63′′ (8b) 

 �. �.										:BB ≥ 0										  

Most of the variables above were already defined in 

Section III with a few important distinctions. In the linear 

cost function of Section III, 3B� = C3�;			0… 0D with zero 

entries corresponding to the slack variables; however, now 

due to the quadratic cost function this changes to  3B� = C(3�; − <�;JcJ;)				0… 0D  and 3′′� = 3′�J . There 

is also the new quadratic cost matrix  

c′ = R;Jc; HH HV 
with zero entries corresponding to the slack variables, and c′′ = JJc′J. As before the original optimal primal solution 

to (7a) can be obtained by J>BB∗ = >B∗ = M>∗�	>A'∗ �N�  and 	4∗ = ;(>∗ − <). The original optimal dual solution to (7b) 

can be obtained by KJ9BB∗ = 9B∗ = M9∗�			:∗�			e∗�N�. 

nz = 736



V. FURTHER OBSCURING 

In this section we explore further methods of masking an 
OPF. Further obscuring methods may be necessary in order 
to hide the number and type of facilities in the system.  

A. Adding Constraints to the Cost Function 

Even in the fully obscured problem, there remains 
sensitive information that could be extracted. By counting 
the number of nonzero entries in the masked linear cost 

coefficient 3′′ (or the masked quadratic cost coefficient cBB	), 
an attacker could determine the number of generators 

present in the system. If the zero entries in 3′′ and c′′ were 
filled in with nonzero entries then that particular attack 
could be prevented. This can be accomplished by adding the 
linear constraints to the cost function, or by adding the 
linear constraints squared in the case of a quadratic cost 
function. Take for example a problem with quadratic cost 
function and linear constraints as seen in (9).  

 
x

min   	�� 4�c4 + 3�4 (9) 

 �. �.										54 = -										  

 																	4 ≥ 0										  

Denote the *op  constraint as q"4 = -" , and rearrange it to 

get q"4 − -" = 0. The constraint squared is the following: 

 4�q"�q"4 − 2-"q"4 + -"� = 0  

Since the above equals zero, it can be added to the objective 
function without changing the optimal solution.  

 x
max   	�� 4�(c4 + q"�q")4 + (3� − 2-"q")4 + -"� (10) 

 �. �.										54 = -																				  

 																	4 ≥ 0													  

The optimal solutions to problems (9) and (10) are 
equivalent. However the optimization problem of (10) has a 
squared constraint added to the objective function which 
produces more nonzero entries in the objective function. 
This approach can be used to prevent against attacks that 
count the number of nonzero entries in the objective 
function. This approach would protect against counting the 
number of generators present in an OPF problem.  

B. Fictitious Buses, Generators and Loads 

The approach in Section V-A masks the number of 
generators in the cost function, but the total number of rows 

and columns in 5′′ contains information on the number of 

system facilities. To be exact the number of rows in 5′′ 
equals 3Q. + 4Q� + 2Q.� + 1 and the number of columns 

equals 4Q. + 6Q� + 2Q.� . An attacker with knowledge of 

just one of the variables, Q., Q� or Q.� could then calculate 

the two other unknown variables. 
To obscure the number of rows and columns fictitious 

buses, generators and loads can be created. A fictitious bus 
can be created by splitting an existing line. This way of 
adding fictitious buses does not alter the solution of the 

OPF, but naively adding fictitious generators can alter the 
solution. However adding a fictitious generator with a very 
large cost would not be dispatched and therefore does not 
affect the solution of the OPF. Alternatively an offsetting 
fictitious load and generator pair at the same bus with 
equivalent upper and lower generation limits will also not 
affect the solution of the OPF.  

VI. MASKING A NONLINEAR CONSTRAINTS 

Previous work that focused on masking linear programs 
[5], can be extended to masking nonlinear constraints such 
as the one shown below in (11) with quadratic cost function. 

 
x

min   	�� 4�c4 +	3�4 (11) 

 �. �.										u�v(4) = 0										  

 																	u"#�v(4) ≤ 0										  

 																	4 ≥ 0										  
Substitute the masked variable > = ;=�4 + <, and neglect 
the constant term created in the cost function. 

 
z

min   	�� >�;Jc;> + (3�; − <�;JcJ;)> (12) 

 �. �.										u�vw;(> − <)x = 0										  

 																	u"#�v(;(> − <)) ≤ 0										  

 																	> ≥ <										  

The nonlinear inequality constraints in (12) are 
converted to equality constraints through the introduction of 
slack variables >A'. Denote the optimization variable vector >B as the prior vector > augmented with the slack variables, >B� = C>� 	>A'� D.  Define the linear cost coefficient vector  3B� = C(3�; − <�;JcJ;)				0… 0D  with zero entries 
corresponding to the slack variables. Define the matrix 

c′ = R;Jc; HH HV 
with zero entries corresponding to the slack variables. The 
nonlinear equality constraint notation is defined as 

u�vB (>B) = g u�vw;(> − <)x
Ru"#�vw;(> − <)x−?> − ?< V + />A'j = 0 

Here / is a random positive monomial matrix and ? is a 
random positive diagonal matrix. The formulation in (12) 
can then be rewritten as (13). 

 
'

min
z

�� >B�cB>B + 3B�>′ (13) 

 �. �.										u�vB (>B) = 0									  

 																>B ≥ 0										  

A random positive monomial matrix J  scales and 
permutes the optimization variables with >BB = J=�>′. The 

objective function is modified as 3′′� = 3′�J  and  c′′ = JJc′J . A nonsingular matrix K  creates linear row 



combinations of the nonlinear constraints in u�vB (>B) . The 

nonlinear constraints are rewritten as  

 u�vB (JJ=6>B) = u�vB (J>BB)  

 K ∙ u�vB (J>BB) = u�vBB(>BB)  

The final masked primal nonlinear program is (14).  

 
''

min
z

�� >′′�c′′>′′ + 3′′�>′′ (14) 

 �. �.										u�vBB(>′′) = 0									  

 																>′′ ≥ 0										  

As before the original optimal primal solution to (11) 

can be obtained by J>BB∗ = >B∗ = M>∗�	>A'∗ �N�  and 	4∗ = ;(>∗ − <). The original optimal dual solution can be 

obtained by KJ9BB∗ = 9B∗ = M9∗�			:∗�			e∗�N�. 

VII. NUMERIC EXAMPLE 

The IEEE 14-bus network [7] is used for the example in 
the following section. It is presented as both the DC OPF 
and the nonlinear AC OPF to show the successful recovery 
of the original optimal solution from both masked problems. 

The IEEE 14-bus network has already partially been 
used as a DC OPF example in Section IV-B, Figures 1-4. It 
will be examined more closely here. The 14-bus network 
has 5 generators and 20 branches. The standard IEEE 14-
bus network does not have binding branch flow limits, 
therefore some branch flow limits were tightened to enforce 
binding branch flow constraints in this example. 

A quadratic cost function is assumed in the DC OPF 
having the formulation shown in (1). The masking process 
requires the generation of random positive monomial 

matrices ; and /, random positive diagonal matrix ? and 

random positive vector <. The original primal variable 4 is 

substituted with 4 = ;(> − <) . All inequality constraints 
are converted to equality constraints via introduction of 

slack variables creating constraint matrix 5′ as in (5a).  

 
Figure 5: Nonzero elements of 5′ in 14-bus system 

The sparsity pattern of matrix 5′ for the 14-bus network 

was shown in Figure 1, but there the matrices ; and / used 

in construction of 5′ were diagonal rather than monomial. 

Properly masking the OPF requires ; and / to be monomial 

matrices, which produces a matrix 5B as seen in Figure 5. 

The sparsity pattern of 5B  in Figure 5 is more typical of 
those seen in (5a) compared to Figure 1. A nonsingular 

matrix K is carefully constructed using the steps outlined in 

Section IV-B, and a random positive monomial matrix J is 

generated. The constraint matrix 5BB = K5′J is shown in 
the spy plot of Figure 6. The masked primal DC OPF is in 

the form of (8a).  

 
Figure 6: Nonzero elements of 5BB = K5′J in 14-bus system 

Further obscuring is performed by adding squared 
constraints to the cost function as outlined in Section V-A. 
The fully masked DC OPF is passed to a quadratic program 
solver such as quadprog in MATLAB, and the masked 
primal and dual variables are calculated. The original 
optimal primal variables can be solved with  J>BB∗ = >B∗ = M>∗�	>A'∗ �N� and 4∗ = ;(>∗ − <). The original 

optimal objective value u∗ = �� 4∗�c4∗ + 3�4∗ , as in (7a). 

The primal variable vector 4� = M��O� ��=� �O� 	�=�N, 
so the final optimization variables are solved with  �� = ��O − ��= and � = �O − �=.  

The original optimal dual variables can be solved with KJ9BB∗ = 9B∗ = M9∗�			:∗�			e∗�N� .  In this 14-bus network, Q. = 14. The LMPs are the first Q. Lagrange multipliers in 9, with the last Lagrange multiplier being associated with 
the reference bus angle constraint. 

The DC OPF solution is shown in the table below. The 
recovered solution from the masked problem matches the 
solution from the unmasked problem as well as the optimal 
solution given by the DC OPF solver in MATPOWER [8].  

u∗ = $9512.54 

Bus # 
Power  

Generated �� 
Bus 

Angles � 
LMPs 

1 32.29 MW 0° $22.78 / MW 

2 35.99 MW -0.636° $38.00 / MW 

3 100.00 MW -1.241° $81.17 / MW 

4  -2.331° $118.48 / MW 

5  -1.728° -$34.58 / MW 

6 65.72 MW -0.635° $41.31 / MW 

7  -2.331° $46.57 / MW 

nz = 426

nz = 737



8 25.00 MW -0.192° $40.50 / MW 

9  -3.907° $133.83 / MW 

10  -3.754° $117.39 / MW 

11  -2.418° $80.02 / MW 

12  -1.942° $48.62 / MW 

13  -2.264° $54.34 / MW 

14  -4.488° $99.07 / MW 

Table 1: DC OPF Optimal KT, | and LMPs 

From 
Bus 

To 
Bus 

P~ |P���| μ 

5 4 25 MW 25 MW $195.07 / MW 

8 7 25 MW 25 MW $6.07 / MW 

7 9 25 MW 25 MW $125.94 / MW 
Table 2: DC OPF Binding Branch Flow Constraints 

The nonlinear AC OPF for the 14-bus network can also 
be masked and solved for by following the steps in Section 
VI. The AC OPF formulation can be seen in [8]. The results 
of the full AC OPF are listed below, and the solution from 
the masked problem matches the solution from the 
unmasked problem as well as the solution given by the AC 

OPF solver in MATPOWER. 

u∗ = $9497.73 

Bus # 
Power  

Generated �� 
Bus 

Angles � 
LMPs 

1 37.57 MW 0° $23.23 / MW 

2 34.70 MW -0.638° $37.35 / MW 

3 100.00 MW -1.636° $75.37 / MW 

4  -2.358° $110.83 / MW 

5  -1.804° -$27.64 / MW 

6 64.60 MW -0.993° $41.29 / MW 

7  -2.462° $41.90 / MW 

8 23.98 MW -0.087° $40.48 / MW 

9  -3.987° $136.74 / MW 

10  -3.754° $120.51 / MW 

11  -2.511° $81.70 / MW 

12  -2.057° $49.34 / MW 

13  -2.285° $56.43 / MW 

14  -4.315° $104.16 / MW 
Table 3: AC OPF Optimal KT, | and LMPs 

From 
Bus 

To 
Bus 

�� |�	%&| � 

5 4 25 MVA 25 MVA $175.74 / MVA 

7 8 25 MVA 25 MVA $2.32 / MVA 

7 9 25 MVA 25 MVA $132.50 / MVA 

Table 4: AC OPF Binding Branch Flow Constraints 

VIII. CONCLUSION AND FUTURE WORK 

The optimal power flow (OPF) problem is a central 

problem in power systems optimization. The need to 
regularly solve this problem for large scale models 

motivates the use of cloud computing resources. However, 

concerns over the security of confidential power system 
models limits the potential use of cloud computing. In this 

paper we extend existing methods of masking optimization 
problems to the OPF problem. Specific contributions are the 

procedure for extracting the Lagrange multipliers from the 

masked dual problem, a method for preserving problem 

sparsity while ensuring a level of security in the masked 
problem, a method for masking a quadratic cost function, 

techniques for obscuring the number of system facilities and 
a proposal for masking nonlinear constraints.  

Future work in this topic would investigate methods for 

controlling numeric conditioning while keeping problem 
sparsity. Without careful choice of operations, the approach 

in Section IV-B can lead to poor numeric conditioning. 

Additionally, further investigation of the security and 
characteristics of the masked AC OPF problem is needed.  

A related masking application involves transforming the 
OPF problem of a given model into an OPF problem of a 

different model. In other words, masking the original OPF 

problem to yield a new problem that has the form of an 
OPF. This possibility would allow for increased sharing of 

confidential power system models for research purposes. 

Furthermore the procedure of masking power system 
problems for cloud computing could be extended for use in 

multi-party computation. Here each party contributes a 
piece of the entire problem to collaboratively solve the 

problem involving all parties. From a power systems 

perspective, each party shares their masked confidential 
system model to collectively solve problems such as 

generation dispatch and transmission planning. 
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