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Abstract—The power flow equations are central to many prob-
lems in power system planning, analysis, and control. However,
their inherent non-linearity and non-convexity present substan-
tial challenges during problem-solving processes, especially for
optimization problems. Accordingly, linear approximations are
commonly employed to streamline computations, although this
can often entail compromises in accuracy and feasibility. This
paper proposes an approach termed Conservative Bias Linear
Approximations (CBLA) for addressing these limitations. By min-
imizing approximation errors across a specified operating range
while incorporating conservativeness (over- or under-estimating
quantities of interest), CBLA strikes a balance between accuracy
and tractability by maintaining linear constraints. By allowing
users to design loss functions tailored to the specific approximated
function, the bias approximation approach significantly enhances
approximation accuracy. We illustrate the effectiveness of our
proposed approach through several test cases, including its appli-
cation to a unit commitment problem, where CBLA consistently
achieves lower operating costs and improved feasibility compared
to traditional linearization methods.

Index Terms—Conservative bias linear approximation; power
flow approximation; unit commitment.

I. INTRODUCTION

The power flow equations play a central role in the operation
and analysis of electric power systems. These equations are es-
sential for evaluating the behavior of power networks, making
them key to various optimization problems such as resilient
infrastructure planning [1]-[3], AC unit commitment [4], [5],
and bilevel problems [6], [7]. However, the nonlinearity of
the power flow equations induces non-convexities in these
problems that pose significant computational challenges.

To address these challenges, researchers have developed
various linear approximations such as DC power flow [8],
LinDistFlow [9], first-order Taylor expansions of the power
flow equations, and other approximations [10]. These methods
offer simplified representations of power flow, which improve
the tractability of power systems optimization problems. How-
ever, these linearizations often depend on broad assumptions
such as maintaining voltages near 1 per unit and keeping
voltage angle differences small between neighboring buses, as
in DC power flow. These assumptions may not be valid across
all operating conditions, potentially resulting in inaccuracies
in the approximations. Consequently, the solutions derived
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from these linearized models may not closely align with
the actual optimal solutions in real-world scenarios. This
trade-off between simplicity and accuracy necessitates careful
consideration when applying these linearizations in practice.
In response to these challenges, various studies have ex-
plored adaptive power flow approximations tailored to specific
systems and operating ranges to enhance approximation accu-
racy (e.g., optimization-based approaches in [11] and sample-
based approaches in [12]-[14]); see [15]-[17] for recent survey
papers on this concept. For sample-based approaches, samples
of operating points computed by repeatedly solving the power
flow equations at various points within an operating range
(e.g., a specified range of power injections) are leveraged to
compute the approximations. By capturing complex nonlinear
relationships directly from these samples, the resulting linear
approximations can be more accurate as they are formulated by
minimizing deviations from the solutions provided by the AC
power flow equations for a particular system and operating
range of interest. These adaptive power flow linearizations
spend computational effort to calculate the linearization co-
efficients in order to improve accuracy and tractability when
applied in optimization problems. By trading up-front com-
putational time for increased accuracy when applied, adaptive
power flow approximations are particularly valuable in settings
with both offline and online aspects where the linearization
coefficients can be computed offline in advance of a real-time
problem as well as settings where explicitly modeling power
flow nonlinearities would lead to intractability, e.g., [1]-[7].
Extending the concept of sample-based adaptive power flow
linearizations, the conservative linear approximation (CLA)
approach in [12], [13] incorporates the concept of conserva-
tiveness. In other words, the CLAs are computed to minimize
approximation errors with respect to the AC power flow
equations while consistently over- or under-estimating quan-
tities of interest over the set of drawn samples. The resulting
approximations are particularly well suited for settings with
an asymmetry in the implications of overestimating a quantity
like voltage magnitude or current flow as opposed to underesti-
mating that quantity. This is particularly relevant in power sys-
tem optimization problems where feasibility is of paramount
importance. For instance, when used in the bound on the
magnitude of current flow through a line, a linearization that
erroneously underestimates the amount of current flow risks



predicting feasibility when the constraint is actually violated
with respect to the nonlinear AC power flow equations. This is
a more problematic linearization error than an overestimate of
the current flow for use in this constraint. Thus, conservative
linearizations that avoid errors in a particular direction (i.e.,
avoid either overestimates or underestimates of some quantity)
are valuable in many power system optimization contexts.
However, maintaining conservativeness can sometimes lead to
reduced accuracy.

In this paper, we introduce an approach to approximating
power flow equations called conservative bias linear approx-
imation (CBLA). The CBLA approach seeks to balance the
trade-off between conservativeness and accuracy, particularly
in scenarios where certain samples are challenging to ap-
proximate accurately. To construct CBLAs, the process shares
similarities with CLAs by beginning with drawing samples
from within the operational range. These samples form the
basis of a regression problem, which is solved to compute an
approximated function representing the power flow equations.
However, unlike CLA, CBLA does not explicitly enforce con-
servativeness in its approximated function as a hard constraint.
Instead, the CBLA approach introduces an error function
that penalizes linearization errors for samples that violate
conservativeness to enable more accurate approximations.

CBLA offers the advantage of flexibility in designing cus-
tomized error functions that quantify the penalty for deviating
from actual values. User-defined error functions enable the
approach to be tailored to particular quantities of interest and
system characteristics, thus computing a linearization special-
ized for a specific problem. This flexibility can be particularly
beneficial in scenarios where some violations are permissible,
such as in chance-constrained optimization problems.

This work extends our previous study presented in [18],
where we introduced the CBLA approach for power flow
linearization. In this journal version, we build upon that foun-
dation by incorporating a unit commitment formulation [19]
using CBLA, comparing it against other power flow lineariza-
tion methods, and detailing a step-by-step process for solving
the unit commitment problem.

In summary, the paper’s main contributions are:

(i) A CBLA formulation that is tailored to the specific sys-
tem and operating range, optimal with respect to an error
metric, and strikes a balance between conservativeness
and accuracy.

A discussion on choosing an error function for computing
the CBLA.

Numerical tests of CBLAs for a variety of test cases.
An application and numerical results on proposed unit
commitment problems comparing the CBLA approach
with other power flow linearizations.

The remainder of this paper is organized as follows: Sec-
tion II presents background material on power flow equa-
tions and sample-based conservative linear approximations.
Section III introduces the proposed conservative bias linear
approximation (CBLA) approach. Section IV describes the it-
erative method for solving the unit commitment problem using

(i)

(iif)
(@v)

CBLA. Section V provides numerical results demonstrating
the performance of the proposed method. Finally, Section VI
concludes the paper and outlines directions for future research.

II. BACKGROUND

In this section, we provide background information about
the AC power flow equations and present the recently devel-
oped conservative linear approximations of these equations.

A. The Power Flow Equations

Consider a power system where a reference bus has the
voltage angle set to 0. Let V' (#) denote the voltage magnitude
(angle). Let P(Q) denote the active (reactive) power injection.
We use the subscript (-); to represent a quantity at bus ¢ and
the subscript (-);x to represent a quantity from or connecting
bus i to k. Let j = +/—1. The AC power flow equations at
bus ¢ are:

P, = VfG“‘, + Z Vsz(GLk cos 0;5, + Bjj sin Hik)a (1a)
keB;
Qi = —VPBii+ Y ViVi(Gisin i, — Big cosfir,), (1b)
keB;

where 60;;, := 0; — 0, G and B are the real and imaginary
parts of the system’s admittance matrix, respectively, and B;
is the set of all neighboring buses to bus ¢, including bus <.

B. Conservative linear approximations

The nonlinearity of the power flow equations in (1) con-
tributes to the complexity encountered in solving optimization
problems. To address this challenge, we previously introduced
a sample-based conservative linear approximation (CLA) ap-
proach aimed at either over- or under-estimating specified
quantities of interest, such as the magnitudes of voltages
and current flows (as illustrated in Fig. 1) [12]. Moreover,
CLAs facilitate parallel computation by enabling concurrent
computation of the CLA for each quantity of interest. The
construction of a CLA entails sampling power injections
across an operational range of interest, such as a range of
loads and power generated by Distributed Energy Resources
(DERs), followed by computing power flow solutions for each
sample and solving a constrained-regression problem.

For instance, samples for load demands are acquired utiliz-
ing a predefined probability distribution Ps over a specified
operational range S. This range could be defined as S =
{P]E“i“ < P, < P, Qrfil“ < Qr, < Q¥ forall Ly €
Np}, where (), denotes the load demand, Ps represents
the uniform distribution, A/p is the set of all buses with loads,
and the superscripts max (min) indicate upper (lower) limits.

The utilization of CLAs allows for the customization of the
approximation to fit a specific operating range and the targeted
system. Additionally, the sample-based approach enables inte-
grating the behavior of complicated devices like tap-changing
transformers and smart inverters into the approximation, as
discussed in our prior work [6]. In the realm of optimization,
CLAs offer a crucial advantage: they enable the satisfaction of
nonlinear constraints while enforcing only linear inequalities,
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Fig. 1. An illustration showcasing a comparison between a conventional linear
approximation (on the left) and CLAs (on the right). In this visual represen-
tation, the solid line signifies the nonlinear function under consideration. In
the figure on the left, the dotted line represents a traditional first-order Taylor
approximation centered at point X, while in the figure on the right, the dotted
line above (below) corresponds to an over- (under-)estimating approximation.

assuming the CLAs maintain conservativeness. Consequently,
CLAs streamline optimization problems, rendering them suit-
able for commercial optimization solvers.

Consider a quantity of interest denoted as -, which could
represent variables such as the voltage magnitude at a specific
bus or the magnitude of current flow along a particular line. In
this context, bold quantities signify matrices and vectors. Let
superscript 7' denote the transpose. An overestimating CLA
can be expressed as follows:

P
Q 2)

ap + a{
where ag is a scalar and a; is a vector, both serving as decision
variables in the regression problem later described in (4). This
CLA is designed to ensure the following relationship for power
injections P and @ within a specified range:

P
v <ap+al ol 3)

Assuming that (3) is indeed satisfied, we can ensure that
the constraint v < ™ is also satisfied by instead enforcing

g < ~™*_ This approach
allows us to meet the upper bound requirement ™ without
introducing the implicit system of nonlinear AC power flow
equations in (1). Importantly, by employing the CLA, we are
able to satisfy the nonlinear equations while maintaining a
linear formulation, thus enhancing computational tractability
without sacrificing feasibility in the resulting solution.

To compute a CLA, we solve for the coefficients of the
affine function of power injections in (2) in the following
regression problem:

a linear constraint ag + ai

max

1 < P,
. i _ T m
BV mzzl Elrm—atariq) (42)
st. Ym— | ag+al gm <0, m=1,...,M. (4b)

The subscript (-),, denotes the m™ sample and M is

the number of samples. The function £(-) represents a loss
function, such as the absolute value for ¢; loss or the square
for squared-¢5 loss. In this paper, our focus is on quantities
of interest denoted by 7, which correspond to the magnitudes
of voltages (V') and current flows (I). The construction of
underestimating CLAs follows a similar process as described
in (4), with the key distinction being the reversal of the
inequality direction in (4b).

The conservativeness of the CLA computed in (4) comes
at the cost of reduced accuracy relative to the approximation
corresponding to the unconstrained regression problem result-
ing from dropping (4a) from (4). To manage this tradeoff,
the next section presents the main contribution of this paper,
namely, a linear approximation technique that achieves a
balance between conservativeness and accuracy. This approach
involves biasing the linearization towards conservativeness,
guided by a designated loss function.

III. CONSERVATIVE BIAS LINEAR APPROXIMATIONS

The CLA approach presented in Section II-B is consistently
conservative within the set of drawn samples. However, in
certain scenarios, the conservativeness property may lead to
significant errors due to specific samples. In this paper, we
present a sample-based conservative bias linear approximation
(CBLA) approach that is adaptive, meaning it can be tailored
to a specific system and operating range. The CBLA approach
is designed to be optimal, minimizing a specific error metric
while maintaining a tendency to be conservative to enhance
accuracy. This means CBLA focuses on minimizing errors
between the approximating function and the samples, allowing
some samples to violate conservativeness at a specified cost.

A. Formulation

Let € denote the mismatch between the approximated quan-
tity and the actual quantity. The optimization problem to
compute a CBLA is formulated as follows:

| XM
min — €m 4)
flem(ao,ar)) M mz::If( )
where
Vm=1,...,M]
em=m— | ao+al | o] ©)
and
g(em), ifen <0
f(em) = . (7)
h(em), otherwise.

The optimization problem in (5) seeks to minimize the
aggregated value of the error function f( -) defined in (7) over
all samples by computing the coefficients ag and a; in (6).
This error function is contingent upon the error mismatch,



denoted as € in (6), between the estimated quantity and the
actual quantity (7). The error function is computed based on
the error’s sign for each sample. For overestimation, h(e,,)
is set high to impose a substantial cost for violation, while
g(€em) is kept low for non-violations. Conversely, for under-
estimation, h(e,,) is relatively low and g¢(e,,) is high. For an
alternative formulation of CBLA that incorporates a penalty
term to influence the optimization behavior, see the appendix.

B. Error function

Choosing a suitable error function in the CBLA approach
is an important consideration. The choice of error function
depends on various factors, such as the specific system re-
quirements, a quantity of interest, and the trade-off between
accuracy and conservativeness. To better understand how the
error function works, we compare the error function used in
the CLA approach with that of the CBLA approach.

The CLA approach imposes conservativeness across the
set of sampled data in the constraints. We can rewrite the
regression problem described in (4), which utilizes the ¢; loss
function, as an optimization problem formulated in (5)—(7). In
this formulation, the error function is defined as follows:

if €, <0

mm=¥” ®)

00, otherwise.
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Fig. 2. An error function of the CLA where g(€) = € and h(e) = oco.

The error function in (8) (see Fig. 2) assigns an infinite
cost to any violation of the overestimating requirement. This
implies that for all samples drawn, no violation is permitted.
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Fig. 3. An example of an error function where g(e) = € and h(e) = e2¢ — 1.

In contrast, our CBLA approach offers the flexibility to
configure an error function that accommodates violations
for specific samples, all while considering a predefined cost
associated with these violations. This ability to tailor the error

function empowers us to strike a balance between accuracy and
the acceptable level of conservativeness for the specific system
and operating range of interest. In Fig. 3, an example of an
error function f(e) for an overestimating CBLA is depicted.
The function f(e) exhibits a high value for ¢ > 0, f(e)
maintains a relatively low value for ¢ < 0, and f(0) is zero,
indicating an exact approximation.

In this setup, assigning a higher penalty for violations of
conservativeness leads to more conservative approximations at
the expense of some accuracy. Additionally, when the deriva-
tive of the function h(e) increases, as shown in Fig. 3, the
function tends to allow only small positive values of ¢, because
larger positive values result in exponentially higher penalties.
Conversely, reducing the penalty cost tends to produce more
accurate approximations but with less conservativeness.

When the error function is defined as a piecewise linear
function (i.e., when both g(e) and h(e) are linear functions),
the problem formulation to compute CBLAs in (5)—(7) can be
framed as a linear program as follows:

1 M
i ap 2 ©2)
st. [VYm=1,...,M]
P,
€m =Ym — | a0 +ai 0 : (9b)
Zm 2 k16m7 (90)
Zm 2 k26m» (9d)

where z is a slack variable, and k; and ko are the coefficients
of the linear error functions, i.e., g(€) = k1€ and h(e) = kqe.

Nonlinear error functions transform the regression problem
into a mixed-integer nonlinear program. This can be efficiently
implemented using a user-defined function in Julia and solved
with packages such as Optim, which offers a robust framework
for constrained optimization problems [20].

IV. UNIT COMMITMENT

The unit commitment (UC) problem is an optimization
problem in power system operations that aims to determine
the optimal schedule of generating units over a specified time
horizon, typically 24 hours. The primary goal is to minimize
the total cost of operation while ensuring that the demand for
electricity is met and the technical and operational constraints
of the generation units and transmission network are satisfied.

The variability and uncertainty associated with loads, partic-
ularly when load shedding may be necessary, and generation
introduce additional complexities that the unit commitment
(UC) problem must address to ensure grid reliability and op-
erational efficiency. As a mixed-integer optimization problem,
the UC formulation involves binary variables to represent the
on/off status of generators, along with continuous variables to
model power output.



A. Computational procedure and parallelization potential

Solving the unit commitment problem using CBLA involves
multiple computational steps, each contributing to accurately
determining generator commitments and dispatch while lever-
aging efficient approximations of power flow equations. Given
the complexity of unit commitment and the nonlinearity of AC
power flow, CBLA serves as an effective method to construct
computationally efficient linear approximations. The overall
process consists of three key steps:

1) CBLA computation: Solve the CBLA formulation in (5)
to approximate voltage and current over a range of op-
erating conditions. This step requires generating samples
within expected operating ranges and solving the CBLA
optimization problem.

2) Unit commitment optimization: Using the CBLA ap-
proximations obtained in Step 1, solve the UC problem
to determine generator statuses for each generator at each
hour while ensuring operational constraints are satisfied.

3) AC optimal power flow (AC OPF) evaluation: Given
the generator statuses from Step 2, solve the AC OPF that
allows load shedding to determine the generation dispatch
at each hour, ensuring feasibility under AC power flow
constraints [21].

This computational framework allows parallel execution,
particularly in Steps 1 and 3. In Step 1, solving CBLA involves
two key computations that can be parallelized. First, the power
flow solutions at each operating point can be computed inde-
pendently. Second, the regression problem for the CBLA can
be solved independently for each quantity, using the same set
of samples across all regression problems. Similarly, in Step 3,
since ramping constraints are not enforced and only minimum
up- and down-time constraints are considered, the AC OPF
computations at different time steps are independent once

Draw samples within a specified
range and solve power flow*

A 4

Choose an error function

A 4
Solve a regression problem for
coefficients of CBLA*

| N

Add additional UC
constraints

i

Sample new ranges, solve
power flow and CBLA*

Solve UC for generator statuses

Check for hour(s)
mismatching prior solution(s

No

A 4
Solve AC OPF with load
shedding*

Fig. 4. A flowchart illustrating the computational process for solving the
unit commitment (UC) problem using CBLA. Steps enclosed in red boxes
correspond to CBLA, while steps enclosed in blue boxes relate to the UC
problem. Steps marked with * indicate parallelizable processes.

generator statuses are fixed, enabling parallel execution across
time periods. Fig. 4 illustrates the full set of computational
steps required to solve the unit commitment problem using
the CBLA approach.

B. Optimization Problem Formulation

Let ug+ be a generator on/off status and s, (r4,) be a
generator startup (shutdown) status for generator g at time t.
The unit commitment problem with the DC power flow [22]
is formulated as follows:

. startup shutdown
min E E cg(Pyt) + Cy* sy + Cf Tgt

teT \g€g
(10a)
s.t. Z P,;=D;, YteT, (10b)
Y
[Vg € ]
Py < PMugy, Py > PMug,, VEET, (10c)
sg7t — 7“97,5 = ug7t — U’g7t71) YVt € T, (10d)
i
Z Ug, T > T;P (ug,t - ug,t71)7
T=t
vte{l,...,T - T}, (10e)
T
Z (1 - ugn’) > T;lown (ug,tfl - ug,t)a
T=t
vte{l,...,T - T}, (10f)
Pt .
97;’15 — Gk,t = B s V(Z, k) S E,Vt S T, (10g)
ik
— PP < Pyt < Pp¥, V(i,k) e LYt €T, (10h)

where ug 0 = 0 for all g, ¢4(P,) is a cost associated with
generator g at time ¢ (for example, c,(P,;) = cogPy, +
c19Py,+ + cog for a polynomial cost function), G is a set of all
generators, £ is a set of all lines, and 7 is a set of time in
hours.

The optimization problem in (10) is referred to as the UC
problem, which minimizes the total operating cost over a
given time horizon. The objective function in (10a) comprises
generation costs, startup costs, and shutdown costs.

The constraint (10b) ensures power balance at every time
step, requiring total generation to match load demand, where
(10c) enforces that the power output of each generator stays
within its operational limits when the generator is online.
The constraint (10d) models the relationship between the
on/off status of generators and their startup/shutdown states.
In this setup, we consider ramping constraints as part of the
startup and shutdown constraints, ensuring that generation
changes smoothly during transitions. The constraints (10e)—
(10f) enforce minimum up-time and down-time requirements
for generators, ensuring they remain online or offline for
a specified duration after being switched on or off. The
constraint (10g) represents the linearized DC power flow
equations, relating power flows to voltage angle differences



and line susceptance. Finally, (10h) ensures that power flow on
each line does not exceed its thermal limits in either direction.

To extend this formulation and provide a baseline for com-
parison, the appendix presents a set of linear constraints based
on the first-order Taylor approximation of voltage magnitudes
and current flows.

C. Unit commitment using conservative bias linear approxi-
mations

The unit commitment problem formulated in the previous
subsection enforces network feasibility using a DC power
flow approximation. While computationally efficient, the DC
power flow model does not explicitly incorporate voltage and
current constraints. In this section, we introduce penalty terms
and replace the DC power flow constraints in (10g)—(10h)
with a CBLA, which provides a linearized yet conservative
representation of these constraints.

Let B be a set of all buses. The CBLA enforces voltage
magnitude limits at each bus using the following inequalities:

T Py
Qg+ + Q7 ;
Qoi,t T L1t
A )y [Qt

_ _T Pt
Qoit + @y ;4 [Q
4, ¢

where vﬂ“ and v;}* are nonnegative penalty variables that
allow violation of the voltage approximations at bus ¢ at
time t. Here, P, (Q;) denotes the vector of active (reactive)
power injections at time ¢, while V™" and V™ are the
lower and upper voltage magnitude limits at bus ¢. The
coefficients g ,; and a, ; correspond to the underestimating
voltage approximation at bus ¢, and @p ; + and @, ; ; correspond
to the overestimating voltage approximation.

Additionally, we enforce current flow limits in transmission
lines through the following constraint:

> ymin i vie BYte T, (1la)

SVl Vi€ BVte T, (11b)

gz €LVt ET,
12)
where z;;, + is a nonnegative penalty variable allowing violation
of the current flow approximation on line (4, k) at time ¢, I}}*}
denotes the maximum allowable current on line (4,k), and
BO,ik,t, Blﬂ-m are coefficients for the overestimating current
flow.
Let F(P,, s4.4,7g4,+) denote the objective function in (10a).
With the inclusion of penalty terms, the modified objective
becomes:

F(P,s,r) —1—2 A Z szt—FVZ max—i—v;“;n ,

teT \  (i,k)ec icB

_ T .
bO,ik,t + bl,ik,t S max + Zik by V(lv k)

(13)
where A and v are the penalty weights associated with
violations of current and voltage magnitude constraints, re-
spectively.

The CBLA method constructs linear constraints from coef-
ficients derived at sampled operating points within a specified
range. Before solving the UC problem, we can identify buses
and lines that do not exhibit voltage or current violations in
the sampled data; constraints for these elements remain inac-
tive and can be excluded, reducing computational complexity
without compromising feasibility.

By incorporating these constraints into the UC problem,
CBLA ensures generation schedules remain feasible with
respect to voltage and line flow limits while maintaining
computational tractability. Unlike the standard DC power flow
model, CBLA systematically accounts for these limits through
conservative yet efficient linear approximations. Its sample-
based nature also enables constraint screening, identifying
likely binding constraints and allowing flexibility in selecting
the error function depending on whether voltage or line flow
limits are active.

To maintain the validity of CBLA-based constraints during
the UC process, we adopt an iterative approach (Fig. 4). In
each iteration, we solve the UC problem with the current
CBLA, then check if the generation statuses and dispatch
levels match those from a first-order Taylor-based method
or previous CBLA iterations. We also verify whether power
injections stay within the sampled region used to build the
CBLA. If violations occur, we identify the affected time
periods and buses or lines, draw new samples around the
updated solution, recompute the CBLA, and resolve the UC
problem. This process prevents accuracy degradation from
extrapolation and cycling between inconsistent UC solutions.

This CBLA-based formulation further allows two practical
enhancements. First, it offers flexibility in controlling con-
servativeness by adjusting a bias term when constructing the
constraints, enabling the user to trade off between feasibility
margin and conservatism. Second, it supports the inclusion of
penalty terms that allow for controlled constraint violations,
enhancing feasibility in cases where a strictly conservative
formulation may be overly restrictive.

D. Combinatorial Growth of Valid Generator Statuses

In the unit commitment formulation, each generator’s on/off
status over time must satisfy minimum up and down time
constraints (10e)—(10f), substantially reducing the number of
admissible on/off sequences. Nevertheless, the feasible status
space still grows exponentially with the number of time
periods, making brute-force enumeration impractical.

To quantify this space, we implement an enumeration al-
gorithm that counts binary vectors of length |7 satisfying a
minimum run length d = T = T9%°"" for both states, allowing
exceptions for an initial short off-run and final short runs. Due
to these exceptions, a clean closed-form expression is difficult
to derive. Instead, the number of valid vectors is characterized
recursively: sequences are built by appending valid runs (of at
least length d) to shorter valid sequences, naturally leading to
a dynamic programming approach.



Let f(|T],s,¢) denote the number of valid binary sequences
of length |7, ending in state s € {0,1} with a current run of
length ¢. The recurrence relation is:

U7l
ST =k 1 —s,k), if€=d,|T|>d
fdﬂ—lﬁf—lLH€>d

f(lT‘? S,f) =
1, if |T| = ¢ < d, one of the exceptions holds

0, otherwise

where the exceptions include:

o Initial 0’s from position 1 with length less than d,
« Final 0’s or 1’s from position |7 | — d 4+ 2 onward.

The total number of valid sequences is

171

S (Tl s,

s€{0,1} £=1

F(T)) =

For example, with |7 | 5 and d = 2, applying the
recurrence yields 13 valid sequences for a single generator.
Therefore, for 6 generators, the total number of configurations
is (F(5))¢ = 136 4,826,809, demonstrating how the
feasible status space grows rapidly even for modest systems.
This growth illustrates why brute-force enumeration of all
valid generator commitment combinations quickly becomes
intractable. To manage this complexity, we avoid exhaustive
search by solving the unit commitment problem iteratively:
each iteration only considers a manageable subset of decisions,
and additional constraints are introduced in subsequent itera-
tions to guide the solution away from unstable commitment
patterns, such as cycling or oscillating generator decisions,

e., repeatedly looping through statuses. The algorithm is
explained in more detail in Section IV-A.

E. AC Optimal Power Flow with Load Shedding

The AC Optimal Power Flow (AC OPF) problem determines
the optimal generation dispatch by solving the full nonlinear
AC power flow equations while satisfying network constraints.
Using generator commitment statuses from the unit commit-
ment problem in (10) (solved with formulations such as DC
power flow, first-order Taylor approximations, or CBLAs), we
compute the dispatch for each online generator at each hour.
The multi-period formulation minimizes the total cost across
all hours while ensuring power balance and network feasibility
at each time. If constraints prevent meeting full demand, load
shedding is used as a last resort, with L; ; denoting the load
shed at bus ¢ and time ¢. The AC OPF with load shedding is
formulated as follows:

min Z Z cg(Pyt) + Z C’Shed(L

teT \g€eg ieB
s.t. [Vi e BVt e T,Vg € G,V(i, k) € L]
PE = P+ Liy =

(14a)

Z Vit Vit (Gik cos b+ + By sin 9ik,t)7 (14b)
keB
= QN+ Bl =
Z ‘/i,tvk,t (Gik sin 0;,,. — Bji, cos 9ik,t>7 (14¢)
keB
Pmmuqt<P t<P 't uqt, (14d)
r;‘?ug t < Qg,t < Qg,t Ug,ts (146)
VIR < Vi < Vi (14)
Sik,t = \/ 1k .t + sz t < ?}caxﬂ (l4g)
0< Liy <P, 0<BiLiy < Q% (14h)

where §; = tanay, given that cosa; represents the power
factor associated with load i. The objective function in (14a)
minimizes the total cost of generation over all time periods
while penalizing load shedding using a function C*"4(L; ;) to
discourage demand curtailment unless necessary. The power
balance constraints in (14b)—(14c) enforce the nonlinear AC
power flow equations for active and reactive power at each bus
and time period. The generator limits in (14d)—(14e) ensure
that active and reactive power generation respects the unit
commitment status ug . The voltage limits in (14f) ensure
that bus voltages remain within safe operating ranges. The
thermal constraints in (14g) restrict apparent power flows on
transmission lines to their rated capacities. Finally, the load
shedding constraints in (14h) ensure that the curtailed demand
remains non-negative and does not exceed the original load at
any bus and time period. This formulation integrates the unit
commitment results into AC OPF, optimizing the dispatch of
committed generators while allowing for load shedding with
constant power factors.

V. NUMERICAL RESULTS

In this section, we conduct numerical experiments on several
test cases to examine the behavior of CBLA, highlight the ben-
efits of error function design, and demonstrate the effectiveness
of CBLA in a UC problem.

The test cases used in the simulations are the IEEE 24-
bus system and the IEEE 30-bus system, all of which are
accessible in MATPOWER [23]. For approximations of voltage
and current flow, we draw 500 samples by varying the power
injections within a range of 70% to 130% of their nominal
values. Both voltage and current flow values are reported in
per unit (pu). We use the ¢; norm as the loss function £(-).
The numerical simulation was conducted in MATLAB using
Yalmip [24] and in Julia using the Optim package.

A. Conservative Bias Linear Approximations

We begin our numerical tests by examining the effects of
changing the error function in (7) in our CBLA approach. As
discussed in Section III-B, error functions are designed to bal-
ance conservativeness and accuracy. By testing various error
functions, we aim to understand their impact on the number of
violated samples and the accuracy of the approximated power
flow equations.
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Fig. 5. Plots of results when (a) « = 1 (equivalent to the squared-¢2 loss),
(b) @ = 10, (¢) a = 100, and (d) o = 1000 for current flow from bus 3
to bus 24 in IEEE 24-bus system. The red points represent overestimating
CBLAs. The black line represents a zero approximation error.

In Fig. 5, we present the results of using the CBLA approach
to intentionally overestimate the predicted current flow from
bus 3 to bus 24 in IEEE 24-bus system using different
quadratic error functions. The error functions used in this test
are defined as g(€) = €2 and h(e) = ae?, where « is a param-
eter that we vary across the test. Specifically, the parameter o
modifies the bias in the CBLA formulation; a higher value of
« increases the tendency toward conservativeness. We adjust
« to take values of 1, 10, 100, and 1000. When o = 1, the
error functions are equivalent (i.e., g(¢) = h(e)), implying
no distinction in cost between violating and not violating
conservativeness (i.e., the squared-¢2 loss). In this scenario,
most samples are well approximated, but some fall below the
zero approximation error line, indicating a deviation from the
overestimating objective.

Increasing « reduces the number of samples falling below
the zero approximation error line, indicating better adherence
to the overestimation goal. However, this improvement sacri-
fices overall accuracy. At o = 1000, where most samples are
intentionally overestimated, the accuracy tends to be lower
compared to other scenarios. This trade-off highlights the
importance of carefully selecting the value of a to achieve
a suitable balance between overestimation and accuracy.

To gain further insight into the effects of varying o, we plot
the relationship between the average error per sample of the
approximated flow and the number of violated samples when
varying the value of « in Fig. 6. In this test, we adjust a over
a range from 1 to 10*. The results reveal a clear trend: as
« increases, the average error per sample also increases while
the number of violated samples decreases significantly, demon-
strating the trade-off between conservativeness and accuracy.
This is due to the increased enforcement of conservativeness
in the error function. Specifically, the average error per sample
increases from 0.00869 when o = 1 to 0.0455 when o = 10%,
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Fig. 6. Results showing the average error per sample in per unit (pu) and
the number of violated samples due to overestimating CBLA of current flow
from bus 3 to bus 24 in IEEE 24-bus system, as the value of « (labeled at
each point) varies from 1 to 10%.

while the number of violated samples decreases from 161
when o = 1 to just 12 when o = 10

TABLE I
APPROXIMATED CURRENT FLOW ERRORS AND NUMBER OF VIOLATED
SAMPLES AT REPRESENTATIVE BUSES IN IEEE 24-BUS SYSTEM

Line Average errors/sample # violated samples
(From-to) | a =1 [a=10*[a=10* [a =1[a=10"[a = 10%
3-14 0.00869 | 0.03012 | 0.04551 | 161 25 12
6-10 0.00907 | 0.02274 | 0.03780 | 202 30 8
9-12 0.01621 | 0.04961 | 0.09397 | 180 29 6

The data in Table I illustrates the relationship between the
number of violated samples and the average approximated
current flow errors across different o values at different
lines. These results align with the trend observed in Fig. 6,
confirming that as « increases, the average error per sample
increases while the number of violated samples decreases.

B. Application: Unit commitment

The comparison is conducted on the IEEE 30-bus test
system, which has 6 generators. Voltage magnitude lim-
its are set to 0.94 p.u. and 1.05 p.u. at all buses, and
current magnitude limits are derived from the values in
mpc.branch (:,RATE_A) in the MATPOWER case files.
The cost of load shedding is C*M*4(L; ;) = 500L; ¢. We draw
1000 samples by varying power injections, both loads and
generations, to cover possible load shedding and generation
variation within a range of 70% to 130% of their nominal
values. As shown in Table II, we report both the total cost,
which includes load shedding penalties, and the generation-
only cost, which excludes them to better isolate the impact
of load shedding. Although the DC-based formulation often
yields lower generation-only costs, it leads to much higher
total costs due to frequent and severe load shedding. As
illustrated in Fig. 7, the generator commitment schedules from
CBLA differ from those of the DC and first-order Taylor
methods, highlighting CBLA’s ability to adapt commitment
decisions based on a more accurate power flow approximation.

This difference is especially evident in hour 4, where the
DC-based approach leads to 11.82% load shedding and a total
cost of $20,417. In comparison, the first-order Taylor approx-
imation reduces load shedding to 5.01%, with a much lower
cost of $11,683. CBLA reduces load shedding even further to
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Fig. 7. Generator commitment schedules for the 30-bus system using three
different power flow linearization methods: DC, first-order Taylor, and CBLA
(when a = 10 and 100). Each row block corresponds to a generator across
five scheduling hours. Blue indicates the generator is ON, while red indicates
it is OFF.

just 1.92%, while lowering the total cost to $8,053.7—clearly
demonstrating the value of its adaptive linearization.

While the DC and first-order Taylor methods rely on a single
linearization of nonlinear power flows, CBLA builds a sample-
based conservative approximation over a defined operating
region, delivering significant improvements. Across all five
hours, CBLA eliminates load shedding in four hours and limits
it to minimal levels in the most challenging hour. CBLA
consistently achieves the lowest total cost. For example, in
hour 5, CBLA attains a lower total cost of $3,958.8 compared
to $5,875 with the Taylor approximation and $18,869 with the
DC approximation.

The table also includes results for a more conservative
CBLA variant with « = 100. With a« = 100, the UC
solution tends to avoid constraint violations. However, this
added conservativeness comes at the cost of reduced accuracy
in approximations. As a result, when the generation decisions
from the UC problem are passed to the AC OPF, the result-
ing solution may still exhibit load shedding—particularly in
Hour 5, where 0.93% of the demand remains unmet.

This trade-off underscores the need to balance conservative-
ness and approximation accuracy. CBLA’s tunable parameter
« allows us to adjust this balance to achieve the desired
feasibility and flexibility. By tailoring the approximation to
system conditions, CBLA helps reduce constraint violations
and yields UC solutions that generally remain feasible under
the nonlinear AC power flow model.

Moreover, the benefits of CBLA become more pronounced
in larger systems or under tight feasibility margins. Unlike
the first-order Taylor approximation, which is inherently local,
CBLA is constructed to remain conservative across a sam-
pled region of interest. This range-aware property improves

TABLE II
HOURLY COMPARISON ACROSS DIFFERENT APPROXIMATIONS

| | HI | H2 | H3 | H4 | H5

Load Demand (MW) | 1522 | 192.13]234.29 | 287.33 | 219.27

Load Shedding (%)| 0% |4.37% |2.57% | 11.82% | 15.23%
Outputs (MW)
Gen 1 158.28 | 193.44 | 159.05 | 205.66 | 196.71
Gen 2 0 0 80 | 61.62 0
g Gen 3 — Gen 6 0 0 0 0 0
Total Cost ($) 1818 | 6328 | 6090 | 20417 | 18869
Gen-Only Cost ($) | 1817.6|2135.2|3076.1 | 3431.5 | 2167.3
. | Load Shedding (%)| 0% 0% |0.70% | 5.01% | 2.42%
a Outputs (MW)
S| Genl 52.84 | 85.27 | 134.71 | 202.56 | 189.72
~ | Gen2 68.48 | 80 80 | 62.73 0
2| Gen3 0 0 0 0 0
5| Gen4 33.86 | 32.41 | 26.96 | 22.16 | 33.90
< Gen 5 — Gen 6 0 0 0 0 0
E | Total Cost ($) 3483 | 3682 | 4800 | 11683 | 5875
= | Gen-Only Cost ($) |3483.0|3682.1|3978.0 | 4480.5 | 3219.1
Load Shedding (%)| 0% 0% 0% | 1.92% | 0%
Outputs (MW)
=| Genl 58.14 | 58.32 | 99.31 | 152.81 | 127.40
= | Gen?2 0 0 0 0 0
'l Gen3 26.96 | 27.47 | 4573 | 46.77 | 50.00
S| Gen4 50.40 | 55.00 | 53.42 | 50.02 | 47.48
<| Gen5s 18.73 | 24.61 0 0 0
2| Gen6 0 [29.04 | 40 40 0
O | Total Cost ($) 4506.2 | 5660.4 | 4929.7 | 8053.7 | 3958.8
Gen-Only Cost ($) | 4506.2 | 5660.4 | 4929.7 | 5299.5 | 3958.8
Load Shedding (%)| 0% 0% 0% | 1.92% | 0.93%
Outputs (MW)
S| Genl 110.53 | 110.45 | 99.31 | 152.81 | 100.66
S| Gen2 0 0 0 0 80.00
II| Gen3 45.01 | 4540 | 45.73 | 46.77 | 42.51
3| Gen4 0 0 | 5342 50.02 0
«| Gens 0 0 0 0 0
= | Gen6 0 | 40.00 | 40.00 | 40.00 0
£ | Total Cost ($) 2637.0|3799.1 | 4929.7 | 8053.7 | 4830.8
Gen-Only Cost ($) |2637.0|3799.1|4929.7 | 5299.5 | 3811.4

cost-efficiency in decision-making. Compared to traditional
methods, CBLA provides a more adaptive solution framework
that maintains the tractability of linear programming while
reducing the gap between the models of linear and nonlinear
power systems.

VI. CONCLUSION AND FUTURE WORK

This paper presents a conservative bias linear approximation
(CBLA) approach for approximating the power flow equations,
aiming to balance conservativeness and accuracy while pre-
serving linearity. The numerical results highlight the potential
advantages of using CBLA for power flow problems. Selecting
suitable error functions enables an effective balance between
conservativeness and accuracy. Additionally, the ability to
choose different error functions allows CBLA to be tailored to
specific systems and operational conditions. When applied to
the unit commitment problem, the CBLA-based formulation
consistently outperformed formulations based on DC power
flow and first-order Taylor approximations, achieving lower



overall operating costs in the subsequent evaluation of the AC
optimal power flow.

In our future work, we aim to extend our current approach
by developing additional conservative bias approximations
through the use of piecewise linearizations. Moreover, we
plan to apply our proposed approach to a broader range of
power system planning and resilience tasks. This includes
tackling complex bilevel problems, conducting capacity expan-
sion planning studies, and extending the application of CBLA
to unbalanced three-phase systems.
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APPENDIX: FIRST-ORDER TAYLOR APPROXIMATION OF
VOLTAGE AND CURRENT CONSTRAINTS

Suppose the power injections P and @ deviate from their
nominal values P"™ and Q"™ Let BPQ denote the set of PQ
buses, V; ; denote the first-order Taylor approximation of the
voltage magnitude at bus ¢ and time ¢, and let the abbreviation
“nom” indicate that a quantity is evaluated at the nominal
operating point, which is computed separately for each hour
based on the corresponding loads. For each i € BPQ, the first-
order Taylor approximation of the voltage magnitude is:

~ % %
Vvi — Vnom v (P _Pnom v . __Hhom ,
,t 7 + oP ( t ) + P} Q (Qt Q )
nom nom
15)
where the partial derivatives ‘g‘g and g‘é are evaluated at the

nominal operating point using the inverse of the power flow
Jacobian. For non-PQ buses, the voltage magnitude is fixed at
its nominal value:
Vi =Viom i ¢ B, (16)
To model current flow limits, we approximate the real part
of the power flow on each transmission line (i, k) € £ using
the difference in bus voltage magnitudes from (16):

R(Sik,t) ~ |Yir| - (‘7“& — Vk,t); (17)

where $( - ) denotes the real part of a complex quantity and
|Yik| is the magnitude of the admittance between buses 7 and
k. We then enforce the following absolute value inequality to
approximate current magnitude limits:

—IG <Yl - (Vig — Vigr) < I3, V(i,k) € L, Vt e T.
(18)
To allow controlled violations of these approximations sim-
ilar to (11)—(12), slack variables may be added as needed in
the optimization formulation.
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