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Abstract—Non-convexities induced by the non-linear power
flow equations challenge solution algorithms for many power
system optimization and control problems. Linear approxima-
tions are often used to address these challenges by trading off
modeling accuracy for tractability. The accuracy of a power
flow linearization depends on the characteristics of the power
system and the operational range where the linearization is
applied. However, rather than exploiting knowledge of these
characteristics for a particular system, many existing power
flow linearizations are based on general assumptions for broad
classes of systems, thus limiting their accuracy. Moreover, since
existing linearizations do not consistently overestimate or under-
estimate quantities of interest such as voltage magnitudes and
line flows, algorithms based on these linearizations may lead to
constraint violations when applied to the system. In contrast,
this paper computes conservative linear approximations of the
power flow equations, i.e., linear approximations that intend to
overestimate or underestimate a quantity of interest in order
to enable tractable algorithms that avoid constraint violations.
Using a sample-based approach, we compute these conservative
linearizations by solving a constrained linear regression problem.
We analyze and improve the conservative linear approximations
via an iterative sampling approach, optimizing over functions
of the quantities of interest, and a sample-complexity analysis.
Considering the relationships between the voltage magnitudes
and the active and reactive power injections, we characterize
the performance of the conservative linear approximations for a
range of test cases.

Index Terms—Conservative linear approximation; sample se-
lection; power flow approximation.

I. INTRODUCTION

The AC power flow equations represent the physical laws
governing the voltages and power flows in a power network.
These equations are thus an essential part of the mathematical
formulations for a variety of planning, optimization, and
control problems. The implicit nonlinear nature of the power
flow equations often results in computational and theoretical
challenges when solving these problems. These challenges
lead to the widespread use of simplified power flow repre-
sentations to improve tractability and enable solution times
that are within the problem’s latency requirements.

P. Buason and D.K. Molzahn were supported by the National Science
Foundation under grant number 2023140.

Linear approximations, due to their simplicity and effi-
ciency, are among the most widely used class of approxi-
mations. Examples of linear approximations include the DC
power flow for transmission systems [1], the LinDistFlow
for distribution systems [2], and approximations based on
the first-order Taylor expansion, such as the power transfer
distribution factor (PTDF) representation, among others [3].
Employing these power flow linearizations significantly im-
proves computational tractability, but comes at the price of
accuracy which can result in unsafe or sub-optimal decision
making. The magnitude of error introduced by a linearization
is system and problem specific. However, most linearizations
tend to be agnostic to these details and are derived based
on general principles. For example, the DC approximation
assumes that the voltage magnitudes throughout the system are
close to their nominal values and that overall resistive losses
are negligible, while the PTDF representation is only accurate
within a neighborhood of a given operating point.

To address these drawbacks, [4] introduces the notion of
an optimal adaptive linearization of the power flow equations.
These linearizations are adaptive because they are tailored to a
specific system and operating range, and optimal since they are
constructed to minimize their deviation from the nonlinear AC
equations with respect to a chosen error metric. A worse-case
metric representing the maximum absolute error is considered
in [4], whereas [5] minimizes the expected squared error
with respect to an underlying probability distribution over
the operating range. The mechanisms proposed to construct
these linearizations are also able to quantify the error of the
resulting approximations, thus allowing for more informed
decision making when employing these linearizations.

Various recent studies have proposed methods to construct
improved linearizations. In [6], a model that considers voltage
magnitude and reactive power in addition to the voltage angle-
active power relationship in the DC power flow (PF) is pro-
posed. Although this relationship includes a squared term of
voltage magnitude, it is seen as an independent variable, which
keeps the relationship linear. In [7], an optimization strategy is
proposed to choose an appropriate set of independent variables
from a list of available independent variables (e.g., V , V 2,
V 3, etc., where V is the voltage magnitude). Additionally,
data-driven linear approximations have been studied in [7],
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[8]. However, use of these linearizations in power flow-based
optimization problems can still lead to constraint violations.

In this paper, we consider the notion of a conservative linear
approximation (CLA), which in addition to being optimal and
adaptive, has the feature of being conservative. We say that
an approximation is conservative if it preferentially under- or
over- estimates the approximating quantity of interest. The
motivation behind conservativeness is a natural one: almost all
of our target applications seek to ensure that quantities such as
voltages magnitudes, line flows, generator set-points, etc., re-
main within given upper and lower limits. For instance, bilevel
optimization problems (see, e.g., [9]) and optimization prob-
lems with discrete variables (e.g., AC unit commitment [10])
include inequality constraints on voltage magnitudes, line
flows, and generator outputs. However, directly enforcing these
limits by modeling the nonlinear power flow equations (1) in
these problems leads to significant computational challenges.
CLAs address the need for constraint satisfaction during the
construction of the linear approximations rather than deferring
it to the problem-solving stage of the target application, thus
achieving tractability while ensuring constraint satisfaction.
CLAs, therefore, not only simplify the enforcement of bounds
in the target problem but also enable the use of linearizations
whose error properties are better suited for bound enforcement.

To construct these linear approximations, we propose a
sample-based approach where the CLAs are obtained as the
solution to a constrained regression problem. This differs
from the iterative optimization-based approach of [4] and
the polynomial chaos method used in [5], although it is
closely related to the latter. The main reason for this choice is
scalability, as sample-based regression problems are efficient
to solve and can exploit parallelizability and high-performance
distributed computing hardware. Further, we propose a basic
sample-selection procedure that significantly boosts conver-
gence speed and a Monte-Carlo validation in each selection
step for obtaining theoretically guaranteed confidence bounds.

To further improve the quality of the approximations, we
propose a method to optimally modify the quantity being
approximated while retaining all of the desirable features of
the CLA. For example, instead of approximating the voltage
magnitude at a bus as a linear function of the active and
reactive power injections, our method will automatically de-
termine a different function (such as a monotonic quadratic
function) of voltage magnitude that has a smaller linearization
error. The procedure to determine the modified function is
directly built into the constrained regression used to construct
the CLA. While imposing a small computational cost, this can
significantly reduce the approximation error. We also show that
when the modified function is monotonic in the quantity of
interest, this modification introduces no additional complexity
when the constructed CLA is used in problems relevant to our
target applications.

In summary, the main contributions of this paper are:

(i) A CLA formulation that is adaptive to the relevant system
and operating range, optimal with respect to an error metric,

and conservative in that it under- or over-estimates the quantity
of interest.
(ii) A procedure to modify the quantity of interest being
approximated that improves error without sacrificing beneficial
properties of the CLA.
(iii) A data-driven approach to construct the CLAs using
a constrained regression formulation and a sample selection
method that improves the convergence rate.
(iv) Numerical analysis of the CLA for a variety of test cases
and a demonstration of its application to the optimal power
flow problem.

This paper is organized as follows. Section II provides back-
ground on the power flow equations. Section III formulates and
solves an optimization problem for computing CLAs using
a sample-based approach. Section IV presents our numerical
tests. Section V concludes the paper and discusses future work.

II. THE POWER FLOW EQUATIONS

Consider an n-bus power system with a fixed network
topology. The sets of buses and lines are N = {1, . . . , n}
and L, respectively. One bus in the system is specified as
the slack bus (also known as the reference bus), where the
voltage magnitude and angle is set to be 1∠0° per unit.
Each of the remaining buses is classified as either a PV bus,
which specifies the active power and the voltage magnitude,
or a PQ bus, which specifies the active and reactive power.
The set of buses that are neighbors to bus i is denoted as
Ni := {k | (i, k) ∈ L}. Subscript (·)i denotes that quantity
at bus i, and subscript (·)ik denotes that quantity from or
connecting bus i to k. The power flow equations at bus i are:

Pi = V 2
i Gii +

∑
k∈Ni

ViVk(Gik cos θik +Bik sin θik), (1a)

Qi = −V 2
i Bii +

∑
k∈Ni

ViVk(Gik sin θik −Bik cos θik), (1b)

where Vi is the voltage magnitude at bus i, Pi (Qi) is the
active (reactive) power injection at bus i, θik := θi− θk is the
voltage angle difference between buses i and k, and Gik (Bik)
is the real (imaginary) part of the network admittance matrix
entry associated with buses i and k. Equations (1a)–(1b) are
called the full AC-PF equations.

III. PROBLEM FORMULATION AND SOLUTION APPROACH

This section introduces the conservative linear approxima-
tions (CLAs), formulates a constrained regression problem
to compute the CLAs using a sample-based approach, and
presents methods for improving the accuracy of the CLAs by
modifying a function of the quantity being approximated and
by using a sample selection procedure to speed up calculations.

Without loss of generality and for ease of exposition, we
use the voltage magnitude at a bus as our quantity of interest
and consider the CLAs that express the voltage magnitude as
a function of active and reactive power injections.
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A. Conservative linear approximations of the power flow
equations

Linear approximations of the power flow equations are
widely used to reduce the complexity of formulating many
operation and planning problems. We propose to develop
linear approximations that are conservative, meaning that the
computed linear approximation is greater or equal to the actual
quantity for an overestimating approximation or the other way
around for an underestimating approximation.

Using voltage magnitude as our quantity to approximate
and active and reactive power injections as input variables,
our goal is to compute approximations that satisfy:

Vi − gi(P,Q) ≤ 0 (≥ 0); if overestimate (underestimate)
(2)

where

gi(P,Q) = ai,0 + aTi,1

(
P
Q

)
(3)

is a linear function of active power injections at PQ buses (P)
and reactive power injections at PV and PQ buses (Q).

B. Data-driven power flow approximations

Instead of an analytic or purely optimization-based ap-
proach, we propose a data-driven approach to compute the
CLAs. The data-driven approach is highly scalable, can utilize
advanced computing hardware, permits a parallel implemen-
tation, and can take advantage of improved sensing and
communication technology for on-the-fly updates.

Using our example, we compute the data-driven power flow
approximations by randomly sampling load demands (or gen-
erator outputs) within a given operating range and calculating
the corresponding bus voltages by solving the power flow
equations for each of these samples. The samples for load
demands are obtained using a given probability distribution
PS over a specified operating range S. For example, one
may consider S = {Pmin

Ld
≤ PLd

≤ Pmax
Ld

, Qmin
Ld
≤ QLd

≤
Qmax
Ld

for all d ∈ ND} where ( · )Ld
denotes the load demand,

ND is the set of load buses, PS is the uniform distribution, and
superscript max (min) is an upper (lower) limit. The power
injections at PQ buses change with varying load demands
change, which also affects the reactive power injections at PV
buses (see (3)).

In this paper, we approximate voltage magnitudes as linear
functions of the power injections. Using uniformly generated
samples, we propose to minimize errors (e.g., the 1-norm
error) between the CLA and the samples. Using M power
flow samples, we consider the following regression problem
that computes a CLA while minimizing a chosen loss function
L( · ) representing the approximation error.

min
g( · )

M∑
m=1

L (Vi,m − gi(Pm,Qm)) (4a)

s.t. Vi,m − gi(Pm,Qm) ≤ 0; if overestimate, (4b)
Vi,m − gi(Pm,Qm) ≥ 0; if underestimate, (4c)

for all m = 1, 2, . . . ,M . Subscript m denotes the m-th
sample. All bold quantities are vectors. The set of equations
(4b) (or (4c) as chosen) enforces conservativeness and ensures
that the CLA remains above (or below, as appropriate) the
actual voltage magnitudes for all samples. Examples of L( · )
include the `1 and `2 loss functions.

Like any linear function, we note that the computed CLAs
are defined for all inputs, i.e., every choice of power injections
Pm,Qm is mapped to a voltage magnitude gi(Pm,Qm). Con-
versely, the nonlinear power flow equations can be insolvable
for some power injections, i.e., there may be power injections
without corresponding voltages. When constructing the CLAs,
we ignore any sampled power injections for which the power
flow equations are insolvable. Thus, our goal is to compute the
CLAs with respect to power injections for which the power
flow equations are solvable.

C. Optimal output function design

For many applications, one can significantly reduce the
linearization error for some quantity of interest by instead
approximating an appropriately chosen function of that quan-
tity. Using our voltage magnitude example, instead of ap-
proximating the voltage magnitude Vi itself, we propose to
linearly approximate a function of the voltage magnitude,
f(Vi), in terms of P and Q. We call the function f( · ) an
output function. To motivate the idea of an output function, we
consider a simple two-bus system and examine the relationship
between the voltage magnitudes and the power injections.

Multiplying (1a) by Bik and (1b) by Gik to eliminate
cos θik, the power flow equations for a two-bus system are:

P1B12 +Q1G12 = V 2
1 (G11B12 −G12B11) + V1V2(B

2
12 +G2

12) sin θ12,
(5a)

P2B21 +Q2G21 = V 2
2 (G22B21 −G21B22) + V1V2(B

2
21 +G2

21) sin θ21.
(5b)

Consider the case where the admittance matrix is symmetric,
bus 1 is a slack bus, and bus 2 is a PQ bus. Adding (5a) to
(5b) gives:

V 2
2 (G22B21 −G21B22) =(P1 + P2)B12 + (Q1 +Q2)G12

+ β(G11B12 −G12B11), (6)

where β = −V 2
1 is a constant, which is typically -1. Here, we

model the power injections at both buses 1 and 2 (P1, P2, Q1,
and Q2) as input variables for the linear approximation (3).
Thus, (6) shows that the relationship between V2 and power
injections at buses 1 and 2 is quadratic. Hence, a linear output
function f(V2) = V2 will result in a non-zero approximation
error, whereas using a quadratic output function f(V2) = V 2

2

could result in zero approximation error. The relationship
in (6) is specific to the two-bus system, and more complicated
systems will have non-zero approximation errors even with
quadratic output functions. However, the two-bus example
motivates the use of non-linear output functions. While there
are many possible output functions, this paper considers two
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natural choices: (i) polynomials and (ii) piecewise linear
functions. Polynomial output functions are:

f(Vi) = bnV
n
i + bn−1V

n−1
i + . . .+ b1Vi, (7)

where bk is a polynomial coefficient for all k = 1, 2, . . . , n.
Given n segments, piecewise linear output functions are:

f(Vi) = c0j + c1jVi, if pj ≤ Vi ≤ pj+1, 0 ≤ j ≤ n− 1,
(8)

where pj are the specified breakpoints, and c0j and c1j are
coefficients corresponding to each piece.

To avoid calculating non-meaningful and trivial solutions,
enable efficient computation of the CLA using the constrained
regression in (4), and preserve the advantages of using the
CLA in our target applications, we enforce the following
characteristics on the output function f( · ):

Characteristic 1. The function f( · ) is monotonically increas-
ing within a specified range.

Characteristic 2. The range of f( · ) is bounded below; i.e.,
f(Vi) − f(Vi) ≥ c, for some c > 0, where ( · )i and ( · )i
denote the maximum and minimum values of that quantity at
bus i, respectively, among the sampled power flow solutions.

Characteristic 1 means that f( · ) is invertible. More im-
portantly, it is required to ensure that when the CLA is used
in an optimization problem, the resulting constraint remains
linear even when the output function f( · ) is nonlinear. This
idea is demonstrated in detail using the optimal power flow
(OPF) problem as an example application in Section III-F.
Characteristic 2 is necessary to avoid trivial output functions
since f( · ) = 0 will always result in zero approximation error.

For piecewise linear f( · ), we impose additional character-
istics to make the approximation well behaved.

Characteristic 3. A piecewise f( · ) is continuous within an
operating range.

Characteristic 4. Let p be the set of all breakpoints. The
slope of a piecewise function is bounded from above except
at breakpoints; i.e., f ′(V ) ≤ d, ∀V /∈ p, for some specified
d ≥ 0, where f ′(V ) denotes the first derivative of f(V ).

Characteristic 3 ensures continuity of the piecewise func-
tion. Characteristic 4 prevents the piecewise function from
having sharp changes within its range, especially towards the
end of its range. This is also a desirable property for the
polynomial output functions. The number and locations of
the breakpoints in the piecewise linear function also impact
the accuracy of the corresponding CLA. We chose the break-
points such that each segment of the piecewise linear function
contains the same number of sampled voltages.

It is also possible to include the following additional char-
acteristic which may be beneficial for certain applications.

Characteristic 5. (Optional) An output function is either
convex or concave.

We note that the output function of each voltage magnitude
can be different. Let fi(Vi) denote the output function of
Vi. We rewrite the regression in (4) incorporating the above
characteristics (when applicable) to obtain the full version of
the constrained regression to construct a CLA at bus i:

min
fi( · ),gi( · )

M∑
m=1

L (fi(Vi,m)− gi(Pm,Qm)) (9a)

s.t. f ′i(Vi,m) ≥ 0 (9b)

fi(Vi)− fi(Vi) ≥ c (9c)
f ′i(Vi) ≤ d (if piecewise) (9d)
fi(Vi) is continuous (if piecewise) (9e)
fi(Vi,m)− gi(Pm,Qm) ≤ 0 (if overestimate) (9f)
fi(Vi,m)− gi(Pm,Qm) ≥ 0; (if underestimate), (9g)

for all m = 1, . . . ,M . Note that the decision variables in
(9) are the coefficients of fi( · ) and gi( · ). We observe that
when the output function fi( · ) can be linearly parameterized,
which is the case for both polynomial and piecewise linear
output functions, the constraints (9b)–(9g) are linear in these
parameters (e.g., coefficients of the polynomial). When the loss
function is chosen to be L(x) = |x| representing an `1-loss,
the regression (9) can be cast as a linear program by using the
standard slack formulation for minimizing the `1-norm, which
enables an efficient solution. For the rest of this section and
for our experiments, we will select L(x) = |x|.

We define the minimum value of the objective function
in (9a) as the CLA error. We also define the actual error
as the error obtained by inverting the output function. Since
characteristic 1 allows us to invert fi( · ), we can compute the
voltage predicted by the CLA for each sample, V Ci,m, as

V Ci,m = f−1i (gi(Pm,Qm)) . (10)

The average actual error, ea,i, is defined as

ea,i =
1

M

M∑
m=1

|V Ci,m − Vi,m|. (11)

As the name suggests, we would ideally want to directly
minimize ea,i in (11) as opposed to the objective function (9a).
However, this can make (9) a (possibly non-convex) non-
linear program that is much more challenging to solve than
the linear program in (9). We therefore instead use the CLA
error (9a) as a proxy for minimizing the actual error (11) that
is significantly faster to compute. Our numerical experiments
support the effectiveness of this approach.

D. Sample selection method and confidence bound

Since the calculated CLA is based on random samples, it is
possible that newly drawn samples could be on the wrong side
of CLA (e.g., a new sample may have a higher voltage than
the overestimate provided by a CLA). Increasing the number
of samples M used to compute the CLA in (9) improves
confidence with respect to its conservativeness.
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To reduce the number of samples needed to achieve a
certain amount of confidence, we propose a sample selection
method that iteratively updates a CLA using only violating
samples (see Fig. 1). To perform the sample selection, we
iterate between:

1) Drawing additional samples and adding points using the
sample selection method, which only considers points that
violate the CLA calculated in the previous iteration.

2) Updating the CLA by solving (9) and repeating these
steps until termination conditions are satisfied.

All sampled points in step 1) can be further analyzed,
so only meaningful points are added in each iteration. Note
that the overestimating CLA and the underestimating CLA
are updated separately based on violated points, i.e., a point
that violates the overestimating CLA does not violate the
underestimating CLA. Thus, that point is not included in the
re-calculation of the underestimating CLA. At each step of the
iteration, we use Mout samples to perform an out-of-sample
validation which allows us to provide confidence bounds on
the over- or under- estimation property of the CLA. Let eout

be the fraction of the Mout samples for which there is a
violation of the over- or under- estimation property of the
CLA in the out-of-sample testing. For a randomly drawn set
of (P,Q), let Vi denote the actual voltage and let V Ci denote
the predicted voltage using the CLA. Then the probability
µerr = PS(V Ci < Vi) that a randomly drawn sample violates
the over- or under- estimation property for the CLA can be
bounded using the confidence bound

P
(
µerr > eout + δ

)
≤ e−2δ

2Mout

, (12)

which can be derived using the Hoeffding inequality [11].

E. Computation time

Using the CLA instead of the non-linear AC-PF equations
can significantly improve the computational efficiency of
problems for many applications. The regression computing
the CLA (9) can be pre-computed offline given the system
topology, line limits, range of load demands, and other pre-
defined constraints. Moreover, this offline computation can
be parallelized for each quantity of interest independently.
Since the CLAs are constructed separately for each constrained
quantity, CLA-based constraints can be imposed adaptively

iV

,P Q

iV

,P Q

Fig. 1. An example of the sample selection method. The red circles and the
blue stars are the previous and the new samples, respectively. The top (bottom)
lines illustrate over- (under-) estimating CLAs. The right picture shows that
only new samples which violate the previous CLA are included to compute
the updated CLA. Specifically, the stars with the dashed circles (squares) are
included for the updated over- (under-) estimating CLA.

using a scenario and constraint generation approach that only
enforces a constraint after determining that it may be binding.
Conversely, when using the implicit AC-PF equations, if an
operating scenario has even a single binding constraint, then
all AC-PF equality constraints must be added for that scenario.

F. Application: Optimal power flow

While the advantages of using the CLA are best seen in
more complex optimization problems such as bilevel prob-
lems [9] and the AC unit commitment problem [10], a detailed
analysis of such applications is out of scope of this paper.
Instead, we use a simplified AC-OPF problem as a proof-of-
concept demonstration of CLAs. The simplified OPF problem
we consider here is identical to the classical OPF problem ex-
cept that the line flow limits are neglected such that enforcing
bus voltage limits is the primary goal in order to match the
exhibition earlier in this paper. We emphasize that although
we do not focus on line flow limits here, one may include
them by constructing CLAs that approximate the line flows.

Let NS , NPV , and NPQ denote the sets of slack, PV, and
PQ buses, respectively. To compute the CLAs for this simpli-
fied OPF problem, we change the inputs of the linear function
in (3) to be Pi and Vi at all i ∈ NPV . The approximated
quantities are (i) Qi, for all i ∈ NPV ∪ NS , (ii) Vi for all
i ∈ NPQ, and (iii) Ps at a slack bus s ∈ NS . Let g̃(P,V)
(g
∼
(P,V)) be the function that overestimates (underestimates)

quantities of interest, f̃( · ) (f
∼
( · )) be the polynomial output

function corresponding to g̃(P,V) (g
∼
(P,V)), and NG be the

set of all generators. We denote the power generation and
generation cost as PG and c, respectively. By formulating
voltage and power generation limits with CLAs, the simplified
OPF problem becomes:

min
∑
k∈NG

ckPGk
(13a)

s.t. f̃i(V i) ≥ g̃i(P,V), f
∼
i(V i) ≤ g

∼
i(P,V), (13b)

f̃j(Qj) ≥ g̃j(P,V), f
∼
j(Qj) ≤ g

∼
j(P,V), (13c)

f̃s(P s) ≥ g̃s(P,V), f
∼
s(P s) ≤ g

∼
s(P,V), (13d)

Ps = g̃s1(P,V), (13e)

Pmin
Gk
≤ PGk

≤ Pmax
Gk

, Qmin
Gk
≤ QGk

≤ Qmax
Gk
, (13f)

for all i ∈ NPQ, j ∈ NPV ∪ NS , s ∈ NS , and k ∈ NG . We
call (13) a CLA-OPF problem. Constraints (13b)–(13d) ensure
that all approximated quantities are within their limits. The
overestimated value of the power generation at the slack bus
in (13e) is used in the objective function. The resulting CLA-
OPF is a linear program that nevertheless ensures satisfaction
of the inequality constraints in the non-linear AC-OPF problem
so long as the computed conservative linear approximations
are indeed conservative.

IV. SIMULATION AND RESULTS

In this section, we use numerical experiments on a number
of test cases to analyze various properties of the CLA, demon-
strate the advantages of output function design and sample
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(a) CLA errors
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Fig. 2. Plot of (a) CLA errors, (b) actual errors at bus 6 in the 6-bus system
using the quadratic output functions. The solid and dashed lines represent the
errors from underestimating and overestimating the voltage magnitude V6,
respectively

selection procedures, and demonstrate the effectiveness of the
CLA in enforcing constraints using the simplified OPF.

The test cases we use in the simulations are a 6-bus system
(adapted from case6ww), whose parameters can be found in
[12], the 33-bus system case33bw from MATPOWER [13], and
the IEEE 300-bus system. Note that the samples used to create
each table and figure below are drawn independently, and
5000 samples are drawn in each test unless stated. All load
demands vary within -50% to 200% of the values given in
the MATPOWER test systems, except for the OPF simulations
where the loads are fixed and the generator outputs vary.
Only samples for which the power flow solver converges are
included in CLA calculation, and the voltage magnitude at
one representative bus per system is chosen for illustration.
The loss function represents the `1 error.

A. Range constraint for polynomial output functions

As discussed in Section III-C, a lower bound c is enforced
on the range of the output function (characteristic 2) to avoid
trivial solutions. The value of c is an arbitrary parameter
chosen when constructing a CLA, and it is therefore important
to analyze the impact that this choice has on the CLA’s
linearization error.

For this purpose, Fig. 2(a) shows a representative example
of the relationship between c and the CLA error for the 6-bus
system. We observe that the CLA errors vary linearly with
the value of c. This is reasonable since decreasing c relaxes
constraint (9c), leading to reductions in the optimal objective
value of (9). Conversely, Fig. 2(b) shows that the actual errors
obtained using (10) do not depend on the value of c as the
plots in this figure are constant. The results from cubic and
quartic output functions, which are not shown in this paper,
are similar. This analysis suggest that the value of c can be
arbitrarily chosen and does not affect the optimal solution for
over/underestimated voltage magnitude.

B. Error reduction with polynomial output functions

We next investigate the effect of using polynomials (7)
with various degrees n as output functions as discussed in
Section III-C. While the CLA error is guaranteed to be non-
increasing with the degree of the polynomial, the same is not
necessarily true for the actual error in (11).

Moreover, as discussed above, the choice of c does not affect
the actual error of the CLAs. We arbitrarily set c to 1.5. The
results from the first-order Taylor approximation around the
operating point (given in the MATPOWER test cases) are also
included for reference. The results are reported in Table I.

TABLE I
RESULTS COMPARING AVERAGE CLA AND ACTUAL ERRORS FROM CLAS
AT BUS 6 IN THE 6-BUS SYSTEM AND AT BUS 33 IN THE 33-BUS SYSTEM

C
as

e

Function
Average errors (×10−2) in per unit

Underestimate Overestimate
CLA Actual (*) CLA Actual (*)

6-
bu

s

Quartic 4.57 1.451 (54.70%) 2.29 0.655 (47.93%)
Cubic 4.63 1.358 (57.60%) 2.29 0.657 (47.77%)

Quadratic 4.64 1.327 (58.57%) 2.33 0.662 (47.38%)
Linear 11.73 3.203 (0%) 4.61 1.258 (0%)
Taylor 1.800§

ca
se

33
bw

Quartic 0.90 0.059 (58.74%) 0.32 0.021 (51.16%)
Cubic 0.91 0.059 (58.74%) 0.32 0.021 (51.16%)

Quadratic 0.91 0.059 (58.74%) 0.32 0.021 (51.16%)
Linear 2.15 0.143 (0%) 0.64 0.043 (0%)
Taylor 0.259§

*The values in ( ) show the percentage reductions in the actual errors
compared to the actual errors from linear function.
§ The errors from first-order Taylor approximation are the average absolute
value of the errors caused by the approximation.

Table I presents the averages of the CLA errors and the
actual errors from the quartic, cubic, quadratic, and linear
functions for the CLA associated with the voltage magnitude
at bus 6 in the 6-bus system and bus 33 in the 33-bus
system. Note that using a linear output function is equivalent
to not designing an output function. The average CLA errors
are smaller when the degree of the polynomial is higher.
This is due to the fact the optimal solution of a lower-
degree polynomial is a feasible solution for the higher-degree
polynomial. The percentage reductions in the average actual
errors with respect to the linear function are also shown in
Table I. The average actual errors from the quadratic, cubic,
and quartic functions are significantly reduced from the linear
function (from 47% to 59% in both systems) with the quadratic
and higher-degree polynomials showing similar performance.
In comparison, the first-order Taylor approximation is not
conservative and has significantly larger error.

We further analyze the behavior of all tested functions by
depicting them in Fig. 3. To enable a consistent comparison,
each function is adjusted using the offset a0, which is the
constant term for g(P,Q) defined in (3). The functions
corresponding to overestimates of the voltage magnitudes
are shown for a range from 20% below to 20% above the
extreme sampled values. Since both CLA and actual errors for
quadratic, cubic, and quartic functions are fairly close (refer
to Table I), these functions are almost identical within the
sampled operating range but are all quite different from the
linear function. However, they are different functions as clearly
seen outside the sampled operating range. For this illustration,
we intentionally select a large range of voltage magnitudes to
more clearly show the curvature of each function, but note that
similar behavior occurs for smaller voltage magnitude ranges.
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Fig. 3. Results from the overestimating CLAs for the voltage magnitude at
bus 6, V6, in the 6-bus system for polynomials of different degrees. The black
vertical lines show the minimum and maximum observed voltage magnitudes.
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(b) Quadratic output function
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(c) Cubic output function
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(d) First-order Taylor approximation
Fig. 4. Plots of results from (a) linear, (b) quadratic, (c) cubic, and (d)
first-order Taylor approximation functions at bus 6 in the 6-bus system. The
blue and red points represent underestimates and overestimates of the voltage
magnitude, respectively, in per unit. The first-order Taylor approximation
neither overestimates nor underestimates the voltage magnitude. The black
line at 45◦ represents a perfect fit.

To further illustrate how the output function f(V ) trans-
forms the samples, we compute over/underestimates of the
voltage magnitudes for each sample. Fig. 4 shows the results
for the linear, quadratic, cubic, and first-order Taylor ap-
proximation functions. The horizontal axis shows the voltage
magnitude from the power flow solution while the vertical
axis shows the predicted voltage magnitude from the CLA.
The quadratic and cubic output functions make the behavior
of the over/underestimated voltages closer to linear, resulting
in reduced approximation errors. The figure also shows the
conservative property of the CLAs when compared to the first-
order Taylor approximation.

C. Error reduction with piecewise linear output functions

Section III-C also discusses piecewise linear output func-
tions. The accuracy of a piecewise linear function depends on

0.7 0.8 0.9 1 1.1
-1.5

-1

-0.5

0

0.5

quartic

cubic

quadratic

Piecewise

0.75 0.76 0.77

-1.15

-1.1

-1.05

Fig. 5. The results from overestimates of the voltage magnitude at bus 6 in
the 6-bus system with different polynomials and a piecewise linear function.
The black vertical lines show the minimum and maximum observed voltage
magnitudes obtained from samples. The horizontal axis corresponds to the
per unit voltage magnitude and the vertical axis is the output function. The
results from underestimates of the voltage magnitude are similar.

the number of breakpoints. In this simulation, the number of
breakpoints is 100, the number of samples is 5000, and each
piece contains the same number of samples. The value of d
from Characteristic 4 is set to 50.

Fig. 5 compares a piecewise linear function with quadratic,
cubic, and quartic functions. The results from the piecewise
linear function are similar to the results from other functions,
especially at the middle of the range of voltage magnitudes
where the power flow solutions from samples are most dense
(refer to Fig. 4). On the other hand, when the voltage magni-
tude is near the minimum or maximum value, the piecewise
linear function has a larger difference with respect to the
other functions. This is due to an overfitting phenomenon
resulting from the larger number of free parameters in the
piecewise approximation compared to the polynomials. The
limit imposed on the maximum derivative in (9d) serves as a
regularizing constraint for the piecewise linear case.

Table II shows the average CLA errors and the average
actual errors when varying the number of breakpoints. Results
using one breakpoint are the same as those from a linear
function. Increasing the number of breakpoints continually
reduces the CLA errors, but the actual errors saturate quickly.

TABLE II
RESULTS COMPARING ERRORS FROM PIECEWISE LINEAR APPROXIMATION

WITH DIFFERENT NUMBER OF BREAKPOINTS AT BUS 6 IN THE 6-BUS
SYSTEM AND BUS 33 IN THE 33-BUS SYSTEM

C
as

e Number Average errors (×10−2) in per unit
of Underestimate Overestimate

Breakpoints CLA Actual CLA Actual

6-
bu

s 1 12.59 3.331 4.56 1.215
10 4.80 1.335 2.59 0.723
100 4.11 1.251 2.27 0.674
500 4.05 1.251 2.20 0.682

ca
se

33
bw 1 1.99 0.137 0.62 0.043

10 0.83 0.057 0.32 0.022
100 0.76 0.053 0.30 0.020
500 0.72 0.051 0.28 0.019

22nd Power Systems Computation Conference

PSCC 2022

Porto, Portugal — June 27 – July 1, 2022



8

0 2 4 6 8 10

Number of iterations

0

0.2

0.4

0.6

0.8

V
io

la
te

d
 p

o
in

ts
 i
n

 %

Without sample selection

Sample selection

(a) 6-bus system at bus 6
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(b) 33-bus system at bus 33
Fig. 6. Plots showing the percentage of violated samples (vertical axis) after
applying sample selection in each iteration (horizontal axis). The red lines and
the blue lines show the results with and without applying sample selection,
respectively, considering the same number of additional samples in each case.
Note that each iteration uses different sets of samples.

D. Sample selection

The accuracy of the CLA depends on the samples input
to (9). Increasing the number of samples improves the accu-
racy of the CLA but reduces the computational tractability
of (9), thus motivating the sample selection method discussed
in Section III-D which iteratively updates the CLA with vio-
lated samples. To demonstrate the effectiveness of this method,
Fig. 6 presents the reduction in number of violated samples
using an out-of-sample validation after applying the sample
selection method for the 6- and 33-bus systems. Drawing
10000 samples for each iteration, the sample selection method
reduces the percentage of violated samples from 0.49% to
0.04% after 10 iterations for the 6-bus system and from
2.40% to 0.21% after 10 iterations for the 33-bus system. The
results show that sample selection significantly improves the
convergence rate of the error compared to random sampling.

E. Scalability: CLA in larger systems

We have so far shown results from the 6- and 33-bus
systems, which represent a small transmission system and a
small radial distribution system, respectively. We next use the
larger IEEE 300-bus system provided in MATPOWER to show
the consistency of some of the properties analyzed in the
previous sections. This simulation focuses on bus 250. Only
average actual errors are computed as they are the quantities of
interest. The piecewise linear function has 1000 breakpoints.

TABLE III
RESULTS COMPARING ACTUAL ERRORS FROM DIFFERENT CLA

FUNCTIONS AT BUS 250 IN THE IEEE 300-BUS SYSTEM

Function
Average actual errors (×10−3) in per unit
Underestimate (**) Overestimate (**)

Quartic 5.961 (27.79%) 4.884 (17.65%)
Cubic 5.957 (27.84%) 4.676 (21.16%)

Quadratic 5.801 (29.73%) 4.650 (21.60%)
Piecewise 6.026 (27.00%) 4.768 (19.61%)

Linear 8.255 (0%) 5.931 (0%)
Taylor 22.8§

**The values in ( ) show the percentage reductions in the actual errors
compared to the actual errors from a linear function.
§ The errors from the first-order Taylor approximation are the average absolute
value of the errors caused by the approximation.

Table III compares the average actual errors for different
CLA functions. For the voltage underestimation, the piecewise
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Fig. 7. Sample selection method for CLA at bus 250 in the 300-bus system.

TABLE IV
RESULTS COMPARING SOLUTIONS FROM AC-, DC-, LA-, AND CLA-OPF

Case
case6ww case9 case14

AC-OPF 2986.04 1456.83 5368.30
DC-OPF 2995.15 (0.31%) 1502.82 (3.16%) 5368.52 (0.004%)
Violation V (0.029 pu) - -
LA-OPF 2987.28 (0.04%) 1468.48 (0.88%) 5368.52 (0.004%)
Violation - - V (0.004 pu)

CLA-OPF 2987.51 (0.05%) 1469.68 (0.88%) 5368.52 (0.004%)
Violation - - -

linear functions and other polynomials with degree two or
more reduce the average actual errors by 27% to 29.73%
from the linear function. Similarly, these errors reduce by
17.65% to 21.60% for the voltage overestimation. These out-
put functions thus notably increase the accuracy in the voltage
approximation. For the first-order Taylor approximation, which
is not conservative, the average errors are significantly greater,
approximately by a factor of three to four compared to the
other CLA functions.

Fig. 7 shows the results from the sample selection method.
We use sufficient iterations to ensure that the probability of
violation is less than 1%. In each iteration, 10000 samples
are randomly drawn for out-of-sample testing. The percentage
of violated points reduces from 7.39% to 0.92% after 12
iterations of sample selection. Although the larger system re-
quires more samples to achieve a low violation probability, the
iterative sample selection approach still reduces the violation
probability significantly faster than using random samples.

F. Simplified OPF

The OPF problem serves as a simple example for an
application of the CLA method. We solve the simplified OPF
problem (discussed in Section III-F) with different approxi-
mation techniques (e.g., DC-OPF and CLA-OPF) to compare
with the solution to the AC-OPF problem. We also compare
our results with linear approximation OPF (LA-OPF), which
minimizes the 1-norm error and follows characteristics 1 and 2,
but is not necessarily conservative. For the LA-OPF and the
CLA-OPF, we choose quadratic output functions.

Table IV compares different approximations of the nonlinear
AC-OPF for the 6-, 9-, and 14-bus systems. The first row in
each cell of this table reports the actual cost corresponding
to the AC-PF feasible solution obtained by using the control
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set points prescribed by the various OPF formulations. The
second row in each cell gives the maximum voltage magnitude
violation for the solution. We see that only the CLA-based
control actions do not have violations, which is attributed to
the conservative nature of the CLAs. With the approximated
voltage magnitude of 1 per unit (pu), the DC-OPF gives the
maximum voltage violation of 0.029 pu in case6ww. For
the LA-OPF, the maximum voltage violation is 0.004 pu in
case14. By minimizing an upper bound on the cost, CLA-
OPF is also able to obtain optimal or near-optimal solutions
with lower costs than the other approximations. The optimality
gaps from the CLA-OPF are comparable to those from the LA-
OPF, and they are significantly smaller than the DC-OPF in
case6ww and case9.

V. CONCLUSION

This paper proposes a power flow linearization approach
that intends to be conservative (overestimate/underestimate
a quantity of interest) and adaptive (due to a sample-based
approach, it is tailored to a specific system and an operational
range). Our proposed method is not limited to a linear output
function as we introduce a higher-degree polynomial as an
independent variable, which maintains linearity. The additional
degrees of freedom from a higher-degree polynomial enable us
to exploit a closer-to-linear relationship to other known quanti-
ties (e.g., power injections). Our numerical results demonstrate
improvements in accuracy relative to other linear approxima-
tions while still being conservative. Additionally, the results in
Section IV-F show the effectiveness of our approach for the
illustrative example application provided by the OPF problem.

Our future work aims to develop alternative output functions
and sample selection methods in order to further improve
CLA accuracy. Furthermore, we will focus on applications of
the CLA methods to power system planning and resiliency
problems formulated as, for instance, bilevel programs.
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Trans. Power Syst., vol. 24, no. 3, pp. 1290–1300, Aug. 2009.

[2] M. E. Baran and F. F. Wu, “Optimal capacitor placement on radial
distribution systems,” IEEE Trans. Power Del., vol. 4, no. 1, pp. 725–
734, Jan. 1989.

[3] D. K. Molzahn and I. A. Hiskens, “A survey of relaxations and
approximations of the power flow equations,” Foundations and Trends
in Electric Energy Systems, vol. 4, no. 1-2, pp. 1–221, Feb. 2019.

[4] S. Misra, D. K. Molzahn, and K. Dvijotham, “Optimal adaptive lin-
earizations of the ac power flow equations,” in 20th Power Syst. Comput.
Conf. (PSCC), June 2018.

[5] T. Mühlpfordt, V. Hagenmeyer, D. K. Molzahn, and S. Misra, “Optimal
adaptive power flow linearizations: Expected error minimization using
polynomial chaos expansion,” in IEEE Milan PowerTech, 2019.

[6] Z. Yang, H. Zhong, A. Bose, T. Zheng, Q. Xia, and C. Kang, “A
linearized OPF model with reactive power and voltage magnitude: A
pathway to improve the MW-only DC OPF,” IEEE Trans. Power Syst.,
vol. 33, no. 2, pp. 1734–1745, Mar. 2018.

[7] Z. Fan, Z. Yang, J. Yu, K. Xie, and G. Yang, “Minimize linearization
error of power flow model based on optimal selection of variable space,”
IEEE Trans. Power Syst., vol. 36, no. 2, pp. 1130–1140, Mar. 2021.

[8] Y. Liu, N. Zhang, Y. Wang, J. Yang, and C. Kang, “Data-driven power
flow linearization: A regression approach,” IEEE Trans. Smart Grid,
vol. 10, no. 3, pp. 2569–2580, May 2019.

[9] S. Wogrin, S. Pineda, and D. A. Tejada-Arango, Applications of Bilevel
Optimization in Energy and Electricity Markets. Cham: Springer
International Publishing, 2020, pp. 139–168.

[10] A. Castillo, C. Laird, C. A. Silva-Monroy, J.-P. Watson, and R. P.
O’Neill, “The unit commitment problem with AC optimal power flow
constraints,” IEEE Trans. Power Syst., vol. 31, no. 6, pp. 4853–4866,
Nov. 2016.

[11] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” in The collected works of Wassily Hoeffding. Springer, 1994,
pp. 409–426.

[12] P. Buason, “Conservative linear approximation test systems,”
https://github.com/pbuason/testcase, 2021.

[13] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas,
“MATPOWER: Steady-State Operations, Planning, and Analysis Tools
for Power Systems Research and Education,” IEEE Trans. Power Syst.,
vol. 26, no. 1, pp. 12–19, Feb. 2011.

22nd Power Systems Computation Conference

PSCC 2022

Porto, Portugal — June 27 – July 1, 2022


