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Abstract—The inherent nonlinearity of the power flow equa-
tions poses significant challenges in accurately modeling power
systems, particularly when employing linearized approximations.
Although power flow linearizations provide computational effi-
ciency, they can fail to fully capture nonlinear behavior across
diverse operating conditions. To improve approximation accu-
racy, we propose conservative piecewise linear approximations
(CPLA) of the power flow equations, which are designed to con-
sistently over- or under-estimate the quantity of interest, ensuring
conservative behavior in optimization. The flexibility provided by
piecewise linear functions can yield improved accuracy relative
to standard linear approximations. However, applying CPLA
across all dimensions of the power flow equations could introduce
significant computational complexity, especially for large-scale
optimization problems. In this paper, we propose a strategy that
selectively targets dimensions exhibiting significant nonlinearities.
Using a second-order sensitivity analysis, we identify the direc-
tions where the power flow equations exhibit the most significant
curvature and tailor the CPLAs to improve accuracy in these
specific directions. This approach reduces the computational
burden while maintaining high accuracy, making it particularly
well-suited for mixed-integer programming problems involving
the power flow equations.

Index Terms—Conservative piecewise linear approximation;
Second-order sensitivities; Power flow approximation

I. INTRODUCTION

Describing the steady-state relationships between bus volt-
ages and power injections, the power flow equations are
fundamental to the operation, analysis, and planning of power
systems. The inherent nonlinearity of these equations intro-
duces non-convexities that lead to challenging optimization
problems. This complexity is even more pronounced when
dealing with mixed-integer problems or uncertainty quantifi-
cation for systems with stochastic behavior.

To mitigate these challenges, various linearization tech-
niques are used to simplify power flow representations. Meth-
ods such as DC power flow for transmission systems [1],
LinDistFlow for distribution networks [2], and first-order
Taylor expansions of the AC power flow equations are com-
monly employed. These approximations offer computational
tractability but are often based on limiting assumptions such
as near-nominal voltage magnitudes and small voltage angle
differences. Although such assumptions may hold in certain
operating conditions, they can lead to inaccuracies when
applied to more complex or broader system conditions.
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Recent research has increasingly focused on adaptive linear
power flow approximations, which are tailored to provide
greater accuracy for a specific system and operating range of
interest. Approaches in this area include optimization-based
methods [3] and data-driven techniques [4]–[8]; see the recent
surveys in [9], [10]. These methods aim to strike a balance be-
tween computational efficiency and accuracy by customizing
linearization coefficients to better capture power flow nonlin-
earities. Unlike traditional approaches such as DC power flow,
LinDistFlow, or first-order Taylor expansions—which prior-
itize simplicity and computational speed but often sacrifice
accuracy—adaptive methods allocate additional computational
resources upfront to calculate coefficients that align with spe-
cific operating conditions. This upfront effort proves especially
advantageous in applications with an offline/online split, where
coefficients can be precomputed offline using forecasted data
and later applied in real-time computations. By improving the
precision of linearized models, adaptive approximations enable
efficient solutions to complex optimization problems, such as
infrastructure planning [11], [12], AC unit commitment [13],
and sensor placement optimization [14], where traditional
linearization methods may lead to significant inaccuracies.

Building on this foundation, sample-based conservative lin-
ear approximations (CLAs) were introduced to further enhance
the usefulness of adaptive methods by incorporating conserva-
tiveness into the construction process [4]. These approxima-
tions are designed to systematically over- or under-estimate
specific quantities, such as voltage magnitudes, to ensure
robust constraint enforcement in optimization problems. By
embedding conservativeness during their formulation, CLAs
improve the reliability of inequality constraints, such as those
imposed by voltage or power flow limits, making them espe-
cially effective in applications where strict adherence to con-
straints is critical; see [12], [14], [15] for relevant applications.

In this paper, we introduce the conservative piecewise linear
approximation (CPLA) as an extension of the CLA approach
to better capture the inherent nonlinearity of the power flow
equations. While CLAs provide linear approximations that are
conservative by design, they are limited in their ability to adapt
to highly nonlinear regions. CPLA addresses this limitation by
introducing piecewise linear approximations, which enable a
more precise representation of nonlinear behavior.

To identify these nonlinear regions, we leverage a second-
order sensitivity analysis to compute the directions in which
the power flow equations exhibit the greatest curvature. The



results from [5] indicate that there are only a few dominant
nonlinear directions. Thus, CPLA focuses on implementing
piecewise linear approximations in a few highly nonlinear di-
rections, while conservative linear approximations are applied
in the remaining directions to manage computational com-
plexity. This targeted approach balances improved accuracy
in capturing nonlinearities with computational tractability.

In summary, the main contributions of this paper are:
(i) Introduction and formulation of a conservative piecewise

linear approximation (CPLA) of the power flow equations
based on a second-order sensitivity analysis.

(ii) Variable reduction using continuity of the piecewise lin-
earization to improve tractability of the CPLA, reducing
the number of decision variables from exponential to
polynomial in the number of highly nonlinear directions.

(iii) Numerical studies on how the number of nonlinear di-
rections and piecewise linearization breakpoints in the
CPLAs impact approximation accuracy across test cases.

The remainder of this paper is organized as follows. Sec-
tion II covers background material on the power flow equations
as well as conservative linear approximations and second-order
sensitivity analysis. Section III introduces the conservative
piecewise linear approximation approach. Section IV provides
the numerical results of our approach. Section V concludes
the paper and discusses directions for future work.

II. BACKGROUND

This section provides background on the AC power flow
equations, recently developed conservative linear approxima-
tions of these equations, and the second-order sensitivity
analysis used to capture the power flow nonlinearities.

A. The power flow equations

Let V and θ denote the vectors of voltage magnitudes and
angles. Let P and Q denote the active and reactive power
injections. At each bus i, the power flow equations are:

Pi = V 2
i Gii +

∑
k∈Bi

ViVk(Gik cos θik +Bik sin θik), (1a)

Qi = −V 2
i Bii +

∑
k∈Bi

ViVk(Gik sin θik −Bik cos θik), (1b)

where θik := θi − θk. The subscript (·)i denotes a quantity at
bus i, the subscript (·)ik denotes a quantity from or connecting
bus i to k, and Bi denotes the set of all neighboring buses to
bus i, inclusive of bus i itself. Here, G and B represent the real
and imaginary parts, respectively, of the admittance matrix.

B. Conservative linear approximations

The nonlinear nature of power flow equations in (1) presents
significant challenges for optimization problems where these
equations act as constraints. Conservative linear approxima-
tions (CLAs) [4] simplify this complexity by providing linear
models that over- or underestimate quantities like voltage
magnitudes and current flows (Fig. 1), ensuring constraint
satisfaction in optimization. By adopting a sample-based ap-
proach, CLAs can be tailored to specific power systems and
operating conditions, allowing for efficient approximations
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Fig. 1. The figure presents a visual comparison between a standard linear
approximation (depicted on the left) and CLAs (depicted on the right).
The solid line represents the nonlinear function being analyzed. In the
left illustration, the dotted line portrays a conventional first-order Taylor
approximation centered at point ×, whereas in the right illustration, the dotted
line above (below) signifies an over- (under-)estimating approximation.

within defined ranges of power injections and loads. For ex-
ample, CLAs may sample loads within a predetermined range
S = {Pmin

d ≤ Pd ≤ Pmax
d , Qmin

d ≤ Qd ≤ Qmax
d for all d ∈

ND} using the uniform distribution, where ( · )d denotes the
load demand, ND denotes the set of all load demands, and the
superscripts max (min) indicate upper (lower) limits.

In addition to simplifying the representation of the power
flow equations, CLAs can implicitly incorporate the charac-
teristics of various devices, such as transformers and smart
inverters [14]. This enhances CLAs accuracy in reflecting the
behavior of complex systems.

Let bold quantities denote vectors and matrices. To facilitate
the integration of CLAs into optimization frameworks, we
denote the quantity of interest as γ. For instance, γ could be
a particular voltage magnitude or line flow that one wishes
to model as a linear function of the power injections. An
overestimating CLA can be expressed as:

γ ≤ a0 + aT
1

[
P
Q

]
, (2)

where a0 and a1 are coefficients of a CLA, and T is transpose.
Assuming that (2) is indeed satisfied for all power injections
P and Q in the operating range of interest, we can ensure that
the constraint γ ≤ γmax is also satisfied via enforcing a linear
constraint:

a0 + aT
1

[
P
Q

]
≤ γmax. (3)

The CLA approach allows us to handle nonlinear AC power
flow constraints while maintaining linear constraints within the
optimization framework. To determine the coefficients a0 and
a1 in (2), we formulate the following regression problem that
minimizes the error between the actual quantity of interest,
denoted as γ, and its linear approximation:

min
a0, a1

1

S

S∑
s=1

L

γs −

a0 + aT
1

[
Ps

Qs

]
 (4a)

s.t. γs −

a0 + aT
1

[
Ps

Qs

] ≤ 0, ∀s = 1, . . . , S. (4b)



The subscript ( · )s represents the sth sample and S represents
the number of samples. The function L( · ) corresponds to a
loss function, typically chosen to reflect the desired behavior
of the approximation, such as the absolute value for ℓ1 loss or
the square for squared-ℓ2 loss. The objective function in (4a)
minimizes the mismatch between the approximated and actual
quantities across all samples, while constraint (4b) ensures
that the approximated quantity consistently overestimates the
actual quantity for all samples. For underestimating CLAs, a
similar process is followed, with the key distinction being the
reversal of the inequality direction in (4b).

C. Second-order sensitivity of the power flow equations

Many traditional linearizations often neglect second-order
and higher-order terms, assuming that the system behavior
remains adequately approximated by linear models within the
operating range of interest. While these linear approximations
can provide reasonable estimates under certain conditions,
their accuracy inherently depends on the curvature of the
power flow equations within these operating ranges.

As power systems exhibit nonlinear behavior, particu-
larly under highly varying operating conditions, overlooking
second-order effects can lead to inaccuracies in the analysis
results. To address this limitation, it becomes imperative
to examine the second-order sensitivity of the power flow
equations [5]. By considering the curvature and higher-order
effects, we can gain deeper insights into the system behavior
and refine their approximations accordingly.

Let g be a vector-valued function, denoted as g(x), where x
represents a vector input, yielding a vector output. To simplify
the representation of variables in the power flow equations, let
us define these as follows:

x =

[
P
Q

]
, y =

[
θ
V

]
. (5)

We rewrite the power flow equations given in (1) as:

x = g(y). (6)

Assume that a specific quantity of interest yk can be written
as f(x). Let ∇xf(x0) denote the gradient of f at x = x0.
The second-order Taylor approximation of yk around x0 is:

yk ≈ f(x0)+∇f(x0)
T (x−x0)+

1

2
(x−x0)

TΛyk
(x−x0),

(7)
where Λyk

is the second-order sensitivity matrix for yk around
x0, which can be expressed as follows:

Λyk
=


∂2yk

∂x1∂x1

∂2yk

∂x1∂x2
· · ·

∂2yk

∂x1∂x2N
...

...
. . .

...
∂2yk

∂x2N∂x1

∂2yk

∂x2N∂x2
· · ·

∂2yk

∂x2N∂x2N

 . (8)

The explicit form of the second-order sensitivity for voltages
and its derivation can be found in [5]. We will use the second-
order sensitivities to tailor the CLPA’s piecewise linearizations
based on the directions with the most significant nonlinearities.

III. CONSERVATIVE PIECEWISE LINEAR APPROXIMATIONS

This section introduces conservative piecewise linear ap-
proximation (CPLAs) to improve the accuracy of power flow
linearizations beyond what the CLA can offer. While CPLAs
can provide more accurate representations by introducing mul-
tiple linear segments, applying CPLAs along all dimensions
of the power flow equations can become computationally
expensive, especially for large-scale optimization problems. In
this section, we present the CPLA regression formulation and
an efficient methodology that focuses on critical directions and
variable reduction to lower the computational complexity.

A. Overall computational steps and parallel scalability

The CPLA computation consists of two main steps: identi-
fying highly nonlinear directions via a second-order sensitivity
analysis and solving the regression problem in (9) to construct
piecewise linear approximations. These steps ensure that the
approximations are tailored to accurately capture the nonlinear
behavior of power flow equations. The flowchart in Fig. 2
illustrates the overall steps involved in computing the CPLA.

The approach is highly parallelizable, making it efficient
for large-scale systems. The second-order sensitivity matrix
computations for each bus and the power flow calculations for
each sample are independent. Thus, they can be performed
in parallel. Similarly, the regression problems for determining
approximation coefficients are tractable linear problems that
are independent across buses, enabling further parallelization.
Furthermore, voltage solutions obtained from power flow
computations can be reused across buses, reducing redundant
calculations. This parallel structure ensures scalability and
computational efficiency for large systems.

Fig. 2. Flowchart illustrating the computation processes for the CPLA method.
Red-dashed boxes highlight the steps involving the second-order sensitivity
matrix. Steps marked with ∗ indicate parallelizable processes.



Fig. 3. An example of a CPLA is shown, where the yellow and red planes
(each referred to as a “region” in this paper) underestimate the quadratic
function y = −4x2

1 + x2 (blue manifold). The breakpoint is at x1 = −2,
with x1 ≤ −2 and x1 > −2 referred to as two segments. The yellow (red)
plane corresponds to the function y = 12x1 + x2 + 16 (y = 4x1 + x2).

B. Problem formulation

CPLAs enhance the accuracy of power flow linearizations
by addressing nonlinear behavior through multiple linear seg-
ments. However, not all dimensions of the power flow equa-
tions exhibit significant nonlinearity. Most directions display
only mild curvature, while a select few are predominantly
nonlinear and contribute substantially to the overall system be-
havior. To conceptually illustrate this concept, Fig. 3 presents
an underestimating CPLA for a quadratic function with one
highly nonlinear direction (x1) and one linear direction (x2).
In this case, a piecewise linear function is only necessary along
x1, as x2 exhibits linear curvature, highlighting the efficiency
of focusing on critical dimensions.

Recognizing which dimensions require piecewise lineariza-
tion is crucial for improving computational efficiency without
sacrificing accuracy. This is where second-order sensitivity
analysis becomes invaluable. By examining the second-order
sensitivities of the power flow equations, we can identify and
prioritize directions with pronounced nonlinear effects.

Let [P ′
s ;Q

′
s] represent the vector of rotated power injections

(discussed in Section III-D) corresponding to highly nonlinear
directions calculated from a second-order sensitivity analysis.
Similar to the regression problem in (4), the formulation for
computing a sample-based overestimating CPLA is as follows:

min
h( · )

1

S

S∑
s=1

L

γs − h

[Ps

Qs

]
,

[
P ′

s

Q′
s

]
, bs


 (9a)

s.t. γs − h

[Ps

Qs

]
,

[
P ′

s

Q′
s

]
, bs

 ≤ 0, (9b)

h

[Ps

Qs

]
,

[
P ′

s

Q′
s

]
, bs

 = a0 + aT
1

[
Ps

Qs

]
+ g

[P ′
s

Q′
s

]
, bs

 ,

(9c)
∀s = 1, . . . , S,

where bs denotes the segment which the sth sample belongs
to, h( · ) represents the CPLA that consists of a CLA and a

purely CPLA, denoted as g( · ), which represents the piecewise
linear function for which we optimize the coefficients across
all segments (shown in Section III-C). Note that breakpoint
locations in each direction are determined by evenly partition-
ing the sample space, allowing samples to share a segment
in one direction but belong to different segments in another.
By determining the breakpoint locations based on the drawn
samples before solving for a CPLA in (9), we can effectively
assign each sample to its corresponding segment.

We need to ensure that there are multiple samples within
each region of the piecewise linear approximation. To avoid
overfitting in the piecewise linear approximation, it is crucial
to ensure that sufficient sample data exists within each region
defined by the multidimensional piecewise linear functions.
Overfitting is particularly likely when multiple highly nonlin-
ear directions and several breakpoints in each direction are
considered, as regions with sparse or no samples can lead
to poorly generalized approximations. To address this, we
propose the following two approaches:

1) Ensure an adequate number of drawn samples. Let C
represent the number of regions and S represent the num-
ber of samples. Define ϵ as a predefined small positive
confidence value. We ensure that the probability of the
undesirable event where there are one or more regions
with no samples is bounded by ϵ:

C

(
1−

1

C

)S

≤ ϵ. (10)

Assuming C is large, the bound on S is:

S ≥ C log
C

ϵ
. (11)

Note that this inequality approximates the probability that
there is a region with no sample. This approximation is
used to simplify the computation of the inequality in (10).

2) Use regularization by enforcing convexity or concavity
in each direction, which can be determined by analyzing
the singular values obtained from SVD. This approach
reduces the required samples and, consequently, the com-
putation time compared to the first approach.

C. Variable reduction from continuity
In this section, we consider a piecewise linear function

in N dimensions with M breakpoints, resulting in M + 1
segments within each dimension. Let t1, t2, . . . , tN represent
the N directions and b1, b2, . . . , bN with bi ∈ {0, 1, 2, . . . ,M}
represent the index of the segment in each direction. We define
t = [t1, t2, . . . , tN ]T and b = [b1, b2, . . . , bN ]. The piecewise
linear function g(t, b) is expressed as follows:

g(t, b) =ab1b2...bN0 + ab1b2...bN1 t1 + . . .+ ab1b2...bNN tN , (12)

where the coefficients ab1b2...bN0 , ab1b2...bN1 , . . . , ab1b2...bNN cor-
respond to a0, a1, . . . , aN for the region defined by the seg-
ments b1, b2, . . . , bN . For instance, in Fig. 3, since there is
only one nonlinear direction x1, we have a single segment
index b1 ∈ {0, 1}, representing two segments. Specifically,
a00 = 16 and a01 = 12 for the first segment (b1 = 0), which



corresponds to x < −2. The values of t1, t2, . . . , tN fall within
the specified range defined by the breakpoints.

We begin by examining the first breakpoint in the t1
direction, denoted as t01. At the point where t1 = t01, the
continuity condition can be stated as follows:

a0b2...bN0 + a0b2...bN1 t01 + . . .+ a0b2...bNN tN =

a1b2...bN0 + a1b2...bN1 t01 + . . .+ a1b2...bNN tN . (13)

Therefore, we can conclude that:

a0b2...bN0 + a0b2...bN1 t01 = a1b2...bN0 + a1b2...bN1 t01, (14a)

a0b2...bN2 = a1b2...bN2 , (14b)
...

a0b2...bNN = a1b2...bNN . (14c)

We apply a similar approach to all other breakpoints in the t1
direction. For instance, considering the mth breakpoint yields:

a
(m−1)b2...bN
0 + a

(m−1)b2...bN
1 tm−1

1 = amb2...bN
0 + amb2...bN

1 tm−1
1 ,

(15a)

a
(m−1)b2...bN
2 = amb2...bN

2 , (15b)
...

a
(m−1)b2...bN
N = amb2...bN

N . (15c)

By combining (14b)–(14c) and (15b)–(15c) for all m =
0, 1, 2, . . . ,M − 1, we obtain:

a
b′1b2...bN
0 =

b′1−1∑
i=0

ti1(a
ib2...bN
0 − a

(i+1)b2...bN
0 ) + a0b2...bN0 ,

(16a)

ab1b2...bN2 = a
b′1b2...bN
2 , (16b)

...

ab1b2...bNN = a
b′1b2...bN
N , (16c)

for any b1 ∈ {0, 1, 2, . . . ,M} and b′1 ∈ {1, 2, . . . ,M}.
We first focus specifically on the coefficient a2 and make

a claim regarding the other coefficients. By examining the
breakpoints in the direction of t3 and following an approach
similar to the one outlined in equations (16b) to (16c), we
derive an equality for the coefficient a2 as follows:

ab1b2b3...bN2 = a
b1b2b

′
3...bN

2 , (17)

for any b3, b
′
3 ∈ {0, 1, 2, . . . ,M}.

Combining (16b) with (17), we obtain:

ab1b2b3...bN2 = a
b′1b2b3...bN
2 = a

b1b2b
′
3...bN

2 . (18)

Proceeding with the analysis, if we perform the same
simplification across all directions except for direction t2, we
find that the coefficient a2 is solely dependent on the segment
b2. Similarly, each coefficient an depends exclusively on its
respective segment bn for all n = 1, 2, . . . , N .

Now, we analyze the coefficient a0 and observe how it
changes with directions. Utilizing the fact that an is dependent

solely on direction tn, coupled with information from (16a),
a0 is given by:

ab1b2...bN0 =

N∑
k=1

bk−1∑
b′k=0

t
b′k
k (a

b′k
k − a

b′k+1
k )

+ a00...00 . (19)

Consequently, the piecewise linear function in (12) can be
represented in a simplified form as:

g(t, b) = ab1b2...bN0 + ab11 t1 + ab22 t2 + . . .+ abNN tN . (20)

Leveraging continuity allows independent selection of
breakpoints and simplifies the decision variables from (N +
1)× (M + 1)N to (N + 1)× (M + 1).

D. Rotating coordinates from singular value decomposition

The directions of high curvature are identified using the
significant singular values obtained from singular value de-
composition (SVD) of the second-order sensitivity matrix Λ
in (8). The singular vectors corresponding to these significant
singular values are the directions in which we implement the
CPLA. Let Λ = USUT be the singular value decomposition
of Λ and Ũ be the sub-matrix of U obtained by selecting
the columns corresponding to the significant singular values.
Let w denote the complete vector of power injections. The
vector of rotated power injections, t in (20), which represents
the directions of high curvature is given by t = ŨTw.

Since the segment indices bi are automatically determined
from the samples, the regression problem in (9a) using the
representation of g( · ) in (20) has a polyhedral constraint set
and can be solved efficiently for several loss functions L( · ).

IV. NUMERICAL RESULTS

In this section, we present numerical results to evaluate the
effectiveness of the CPLA approach for approximating nonlin-
ear power flow equations. The analysis is structured into three
parts: examining the impact of singular vectors associated with
dominant singular values, analyzing the effect of varying the
number of segments, and exploring the combined influence of
these factors to optimize performance.

Simulations are conducted on the case30, case33bw,
case141, and case2383wp test cases from MATPOWER [16],
with optimization problems solved using the YALMIP tool-
box [17]. For each case, 10,000 samples are drawn by varying
power injections within 50% to 150% of their nominal values.
Reported voltages are in per unit (pu), and the ℓ1 norm,
denoted by L( · ), is used as the loss function. All computations
are performed on a MacBook Pro with an Apple M1 Pro chip
(10 cores, 16 GB RAM).

A. Effects of nonlinear directions and breakpoints

Piecewise linear approximation accuracy is strongly influ-
enced by the specific nonlinear directions being considered.
These directions are derived from the singular vectors corre-
sponding to the dominant singular values of the system, with
each singular vector representing a unique nonlinear direction.
The amount of curvature in a given direction, as captured
by its corresponding singular value, determines how well the



approximation performs along that direction. Highly nonlinear
directions are more challenging to approximate accurately.
Analyzing one direction at a time provides insights into their
influence on approximation quality.

In addition to the choice of nonlinear directions, the number
of breakpoints used to represent a nonlinear function is another
critical factor influencing the accuracy of a piecewise linear
approximation. A finer segmentation can capture the under-
lying nonlinearity more effectively, resulting in significantly
reduced approximation errors. However, this comes with the
trade-off of increased computational demands. In this section,
we analyze how the individual nonlinear directions and the
number of breakpoints impact approximation accuracy.

Fig. 4 shows the error reduction compared to the CLA
results as a function of the number of breakpoints for the
141-bus system at bus 80. Different lines represent the re-
sults obtained using various singular vectors. The singular
vector associated with the most dominant singular value yields
the greatest accuracy improvement. Increasing the number
of breakpoints significantly reduces approximation errors for
all singular vectors; however, this improvement diminishes
beyond five breakpoints, where the error reduction stabilizes.
For the most dominant singular vector, the error reduction
reaches 72.22%, highlighting its substantial contribution to
improving CPLA accuracy (refer to Fig. 4a). The improvement
is particularly pronounced for the singular vector associated
with the most dominant singular value, which achieves a
significant error reduction. In contrast, other singular vectors
provide smaller improvements, with the second singular vector
achieving a maximum error reduction of about 5%, while
subsequent singular vectors contribute even less.

Considering two singular vectors, Fig. 4b illustrates the
error reduction for the CPLA of voltages at bus 80 of the
141-bus system. The results show that implementing CPLA in
the directions of the first two singular vectors, corresponding
to the two most dominant singular values, achieves a combined
improvement of up to 90.07%. In particular, incorporating two
singular vectors provides additional improvement over using
only the first singular vector, demonstrating the advantage of
capturing multiple high-curvature directions.

Table I presents the detailed approximation errors, error re-
ductions, and computation times for computing the underesti-
mating voltages by selecting the singular vector corresponding
to the most dominant singular value in the case30, case33bw,
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Fig. 4. Percentage error reduction of voltage magnitudes vs. number of
breakpoints in the 141-bus system at bus 80 when considered (a) one singular
vector and (b) two singular vectors.

Fig. 5. Error histograms from the underestimating CLA (blue) and the
underestimating CPLA (red) for voltage magnitudes at bus 20 in the IEEE
30-bus system.
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Fig. 6. (a) Percentage error reduction of voltage magnitudes vs. the number
of nonlinear directions and (b) plot of the first 15 most dominant singular
values for the 141-bus system at bus 80.

case141, and case2383wp test cases at a specific bus. The re-
sults demonstrate that the proposed piecewise linear approach
reduces errors by 41.30% to 71.93% while requiring compara-
ble computation time to CLA, highlighting its effectiveness in
balancing improved accuracy with computational efficiency.
For better visualization, the plot comparing the results of
CLA and CPLA with five breakpoints is shown in Fig. 5,
demonstrating that CPLA provides a better approximation than
CLA.

B. Singular values and their effects to the nonlinear directions

The insights from analyzing nonlinear directions and seg-
mentation granularity from the previous section highlight the
trade-offs in achieving accurate piecewise linear approxima-
tions. Significant accuracy gains come from dominant non-
linear directions, with diminishing returns from subsequent
singular vectors. Similarly, increasing breakpoints improves
accuracy only up to a point, beyond which additional segments
offer minimal benefit. These findings emphasize the need
to balance dominant nonlinear directions with segmentation
granularity. This section explores the impact of varying the
number of nonlinear directions while keeping the number of
breakpoints fixed and examines the trend of singular values.

Fig. 6 illustrates the reduction in error when varying the
number of nonlinear directions with five breakpoints in each
direction, alongside the first 15 most dominant singular values.
The results in Fig. 6a indicate that incorporating up to five
nonlinear directions achieves a significant error reduction
of 89.29%. This performance is comparable to the results
achieved by considering two nonlinear directions with ten
breakpoints in each direction, as shown in Fig. 4b. The singular
values plotted in Fig. 6b reveal a steep decline, dropping from



TABLE I
APPROXIMATION ERRORS FOR UNDERESTIMATING VOLTAGE MAGNITUDES AT A SPECIFIC BUS

Cases Bus tpf [ms]
CLA CPLA

Error/sample time Error/sample for each #breakpoint(s)∗ [pu] tCPLA [s]
[pu] [s] 1 5 10 1 5 10

case30 20 2.26 7.36× 10−3 1.51 4.32× 10−3 4.24× 10−3 4.21× 10−3
1.67 1.72 1.73(41.30%) (42.42%) (42.84%)

case33bw 33 2.43 2.84× 10−4 2.27 1.37× 10−4 1.18× 10−4 1.16× 10−4
2.37 2.38 2.41(51.61%) (58.51%) (59.13%)

case141 80 5.13 6.75× 10−5 5.57 2.31× 10−5 1.92× 10−5 1.90× 10−5
5.95 7.98 8.16(65.86%) (71.63%) (71.93%)

case2383wp 466 169.52 7.45× 10−5 125.16 4.31× 10−5 3.64× 10−5 3.59× 10−5
148.24 175.86 182.47(41.83%) (50.81%) (51.43%)

tpf = Average time required to solve 1 power flow solution in milliseconds.
tCPLA = Time required to compute the second-order sensitivity matrix, perform the SVD, and compute the CPLA for a specified number of breakpoints.

*The percentage reduction in errors compared to the errors from conservative linear approximation (CLA).

0.58 for the most dominant direction to 0.11 for the third,
and continuing to decrease for subsequent directions. This
shows that only a few highly nonlinear directions contribute
significantly to reducing errors, emphasizing the efficiency of
focusing computations on these dominant directions.

V. CONCLUSION AND FUTURE WORK

This paper demonstrates the effectiveness of the CPLA
approach for approximating nonlinear power flow equations,
emphasizing a balance between accuracy and computational
efficiency. The results highlight that only the first few singular
vectors, corresponding to the most dominant singular values,
contribute significantly to improving the accuracy of the
approximation. This observation not only reinforces the im-
portance of targeting key nonlinear directions but also reduces
computational demands by limiting the focus to a small subset
of directions. Furthermore, while increasing the number of
segments improves precision, the diminishing returns observed
beyond a certain point emphasize the need for an optimal
segmentation strategy. This approach provides a practical and
efficient solution for addressing the challenges of nonlinear
power flow equations in optimization problems.

In future work, we aim to apply our CPLA method to power
system planning and resilience tasks, with a focus on capacity
expansion planning problems. Furthermore, we plan to explore
advanced methods for determining breakpoint locations and
develop CPLAs for other quantities, such as current flows, as
well as for systems with varying topologies.
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