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Abstract

Stochastic fluctuations in power injections from distributed energy resources

(DERs) combined with load variability can cause constraint violations (e.g.,

exceeded voltage limits) in electric distribution systems. To monitor grid

operations, sensors are placed to measure important quantities such as the

voltage magnitudes. In this paper, we consider a sensor placement problem

which seeks to identify locations for installing sensors that can capture all

possible violations of voltage magnitude limits. We formulate a bilevel op-

timization problem that minimizes the number of sensors and avoids false

sensor alarms in the upper level while ensuring detection of any voltage vio-

lations in the lower level. This problem is challenging due to the nonlinearity

of the power flow equations and the presence of binary variables. Accord-

ingly, we employ recently developed conservative linear approximations of the
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power flow equations that overestimate or underestimate the voltage mag-

nitudes. By replacing the nonlinear power flow equations with conservative

linear approximations, we can ensure that the resulting sensor locations and

thresholds are sufficient to identify any constraint violations. Additionally,

we apply various problem reformulations to significantly improve computa-

tional tractability while simultaneously ensuring an appropriate placement

of sensors. Lastly, we improve the quality of the results via an approximate

gradient descent method that adjusts the sensor thresholds. We demonstrate

the effectiveness of our proposed method for several test cases, including a

system with multiple switching configurations.

Keywords: Keywords, Sensor placement, voltage violations, bilevel

optimization, approximate gradient descent.

1. Introduction

Distributed energy resources (DERs) are being rapidly deployed in dis-

tribution systems. Fluctuations in DER power outputs and varying load

demands can potentially cause violations of voltage limits, i.e., voltages out-

side the bounds imposed in the ANSI C84.1 standard. These violations can

cause equipment malfunctions, failures of electrical components, and, in se-

vere situations, power outages.

To mitigate the impacts of violations, distribution system operators (DSOs)

must identify when power injection fluctuations lead to voltages exceeding

their limits. To do so, sensors are placed within the distribution system to
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measure and communicate the voltage magnitudes at their locations. Due

to the cost of sensor hardware and communication infrastructure and the

structure of distribution systems, sensors are not placed at all buses. The

question arises whether a voltage violation at a location without a sensor can

nevertheless be detected.

1.1. Related work

Various studies have proposed sensor siting methods to capture constraint

violations and outages in power systems. For instance, [1] and [2] focus on

a cost minimization problem that aims to capture all node (e.g., voltage

magnitude) and line (e.g., power flow) outages. However, these references

assume that a power source/generation is only located at the root node, which

is not always the case, especially in the distribution systems where DERs can

be located further down a feeder. Additional research efforts such as [3, 4, 5,

6] seek to locate the minimum number of sensors to achieve full observability

for the system. Alternatively, instead of considering full observability for

the entire system, [7] considers satisfying observability requirements given a

probability of observability at each bus. This is related to adjacent research

efforts, such as [8, 9, 10, 11], which focus on model-based voltage control

schemes that prevent voltage violations. We refer the reader to [12] for

a survey. In parallel, there is also research on siting phasor measurement

units (PMUs) and micro phasor measurement units (µ-PMUs), which are

utilized as sensors in power grids [13, 14, 15]. This research complements

3



the discussion on sensor placement strategies by exploring alternative sensor

technologies and their deployment strategies within power systems. Existing

smart meters installed at customer locations measure power consumption

over a long period of time (e.g., a day to a month). Reference [16] discusses

the potential benefits of using smart meters to report voltages and currents

at higher resolutions. However, handling large amounts of data remains

challenging, necessitating methods to selectively site high-resolution sensors.

Growing numbers of sensing devices in electric distribution networks have

fueled a broad range of applications. Exemplifying use cases of the mea-

surements from these sensors are in control [12, 17, 18], state estimation

[19, 20, 21], topology identification [22, 23], and non-intrusive load mon-

itoring (NILM) [24]. Our work contributes to this rich literature. Some

measurement-based voltage control approaches, such as [17, 18] utilize ap-

proximate representations of the power flow equations recovered from data;

like our work, this approach is an abstract way to model an unknown dis-

tribution network. In contrast, network identification works such as [22, 25]

seek to recover the network topology itself, in tandem with admittance [22] or

impedance [25] parameters. We refer the reader to [23] for a comprehensive

review of this topic.

1.2. Overview of approach

In this paper, we consider a sensor placement problem which seeks to

locate the minimum number of sensors and determine corresponding sensor
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alarm thresholds in order to reliably identify all possible violations of voltage

magnitude limits in a distribution system. We formulate this sensor place-

ment problem as a bilevel optimization with an upper level that minimizes

the number of sensors and chooses sensor alarm thresholds and a lower level

that computes the most extreme voltage magnitudes within given ranges of

power injection variability. This problem additionally aims to reduce the

number of false positive alarms, i.e., violations of the sensors’ alarm thresh-

olds that do not correspond to an actual voltage limit violation.

In contrast to previous work, this problem does not attempt to ensure

full observability of the distribution system. Rather, we seek to locate (a po-

tentially smaller number of) sensors that can nevertheless identify all voltage

limit violations for any power injections within a specified range of power

injection variability. With a small number of sensors, the proposed formu-

lation also provides a simple means to design corrective actions if voltage

violations are encountered in real-time operations. By restoring voltages at

these few critical locations to within their alarm thresholds, the system op-

erator can guarantee feasibility of the voltage limits for the full system. This

guarantee is obtained by our sensor placement method purely by analyzing

the geometric properties of the feasible set. We do not consider the design

details of the feedback control protocol and thus dynamic properties of the

sensors such as latency are not relevant in our approach.

Due to the nonlinear nature of the AC power flow equations, comput-

ing a globally optimal solution is challenging. We utilize conservative linear
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approximations of the power flow equations to convert the lower-level prob-

lem to a linear program [26]. This bilevel problem can be reformulated to a

single-level problem using the Karush-Kuhn-Tucker (KKT) conditions with

binary variables via a big-M formulation [27, 28]. In this paper, we consider

a duality-based approach, which has substantial computational advantages

over traditional KKT-based approaches to solving the bilevel problem. The

conservative linear approximations can incorporate the behavior of more com-

plex components such as tap-changing transformers, smart inverters, etc., as

long has we have access to a power flow solver for the system. By using these

linear approximations as the first step, we are able to treat the power flow

solver as a black-box. Consequently, all complexities of component behav-

ior and power flow physics are absorbed by the power flow solver and the

complexity of the resulting sensor placement formulation remains unaffected.

Note that conservativeness from the conservative linear approximations

may increase the number of false positive alarms. We therefore propose an

approximate gradient descent method as a post-processing step to further

improve the quality of the results. This method iteratively adjusts the sen-

sor thresholds while ensuring that all violations are still detected. The full

version of this paper can be found in [29].

1.3. Contributions and article outline

In summary, our main contributions are:

(i) A bilevel optimization formulation for a sensor placement problem that
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minimizes the number of sensors needed to capture all possible viola-

tions of voltage limits while minimizing the number of false positive

alarms.

(ii) Reformulations that substantially improve the computational tractabil-

ity of this bilevel problem.

(iii) An approximate gradient descent method to improve solution quality.ß

(iv) Numerical demonstration of our proposed problem formulations for a

variety of test cases, including networks with multiple switching con-

figurations.

This paper is organized as follows. Section 2 formulates the sensor place-

ment problem using bilevel optimization. Section 3 proposes different tech-

niques to reformulate the optimization problem. Section 4 provides our nu-

merical tests. Section 5 concludes the paper and discusses future work.

2. Sensor Placement Problem

This section describes the sensor placement problem by introducing nota-

tion, presenting the bilevel programming formulation that is the focus of this

paper, and detailing the objective function that simultaneously minimizes

the number of sensors and reduces the number of false positive alarms.
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2.1. Notation

Consider an n-bus power system. The sets of buses and lines are denoted

as N = {1, . . . , n} and L, respectively. One bus in the system is specified as

the slack bus where the voltage is 1∠0° per unit. For the sake of simplicity,

the remaining buses are modeled as PQ buses with given values for their

active (P ) and reactive (Q) power injections. Extensions to consider PV

buses, which have given values for the active power (P ) and the voltage

magnitude (V ), are straightforward. (The controlled voltage magnitudes at

PV buses imply that voltage violations cannot occur at these buses so long

as the voltage magnitude setpoints are within the voltage limits.) The set of

all nonslack buses is denoted as NPQ. The set of neighboring buses to bus i

is defined as Ni := {k | (i, k) ∈ L}. Subscript (·)i denotes a quantity at bus

i, and subscript (·)ik denotes a quantity associated with the line from bus i

to bus k, unless otherwise stated. Conductance (susceptance) is denoted as

G (B) as the real (imaginary) part of the admittance.

To illustrate the main concepts in this paper, we consider a balanced

single-phase equivalent network representation rather than introducing the

additional notation and complexity needed to model an unbalanced three-

phase network. Our work does not require assumptions regarding a radial

network structure, and we are able to handle multiple network configurations.

Extensions to consider other limits such as restrictions on line flows, budget

uncertainty sets, and unbalanced three-phase network models impose limited

additional complexity.
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2.2. Bilevel optimization formulation

The main goal of this problem is to find sensor location(s) such that

sensor(s) can capture all possible voltage violations. This paper assumes that

the voltages read by the sensors are accurate and noise-free measurements.

We formulate this problem as a bilevel optimization with the following upper-

level and lower-level problems.

• Upper level: Determine sensor locations and alarm thresholds such

that when the voltages at the sensors are within the chosen thresholds,

the voltages at all other buses are within pre-specified safety limits.

• Lower level: Find the extreme achievable voltages at all buses given

the sensor locations, sensor alarm thresholds, and the specified range

of power injection variability.

The sensor locations and alarm thresholds output from the upper-level

problem are input to the lower-level problem, and the extreme achievable

voltage magnitudes output from the lower-level problem are used to evalu-

ate the bounds in the upper-level problem. We first introduce notation for

various quantities associated with the voltage at bus i:

V˜ i (Ṽi) : Lower (Upper) sensor alarm threshold.

V i (V i) : Lowest (Highest) achievable voltage

obtained from the lower-level problem.

U˜ i (Ũi) : Translation of lower (upper) sensor

threshold via a big-M formulation; see (1c).
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V min
i (V max

i ) : Specified lower (upper) voltage limit.

We formulate the following bilevel optimization formulation:

min
s,Ṽ,V˜

c(s, Ṽ,V˜ ) (1a)

s.t. (∀i ∈ NPQ)

V i ≥ V min
i , V i ≤ V max

i , (1b)

U˜ i = V˜ isi, Ũi = Ṽisi +M(1− si), (1c)

V i = Li(s, Ũ,U˜ ), V i = Ui(s, Ũ,U˜ ), (1d)

where c is the cost function associated with the placement of sensors including

costs for the hardware, installation, communication network, etc. and s is a

vector of sensor locations modeled as binary variables (1 if a sensor is placed,

0 otherwise). All bold quantities are vectors. The quantities Li(s, Ũ,U˜ )
and Ui(s, Ũ,U˜ ) are the solutions to the lower-level problems which, for each

i ∈ NPQ, are given by

Li(s, Ũ,U˜ ) = min
Vi

Vi (Ui(s, Ũ,U˜ ) = max
Vi

Vi) (2a)

s.t. (∀j ∈ NPQ)

Pj = Vj

∑
k∈Nj

Vk(Gjk cos(θjk) +Bjk sin(θjk)), (2b)

Qj = Vj

∑
k∈Nj

Vk(Gjk sin(θjk)−Bjk cos(θjk)), (2c)
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U˜ j ≤ Vj ≤ Ũj, (2d)

Pmin
j ≤ Pj ≤ Pmax

j , (2e)

Qmin
j ≤ Qj ≤ Qmax

j , (2f)

where Pj and Qj denote the active and reactive power injections at bus j

within a particular lower-level problem, θjk := θj − θk denotes the voltage

angle difference between buses j and k, and superscripts max and min denote

upper and lower limits, respectively, on the corresponding quantity. The

quantities Li and Ui are functions of s, Ũ, and U˜ as shown in (1d), but these

dependencies are hereafter omitted for the sake of notational brevity. For the

upper-level problem, the objective function in (1a) minimizes a cost function

c(s, Ṽ,V˜ ) associated with the sensor locations s and alarm thresholds Ṽ,

V˜ while ensuring that the extreme achievable voltage magnitudes calculated

in the lower-level problem, V i, V i are within safety limits as shown in (1b).

The cost function c(s, Ṽ,V˜ ) will be detailed in the following subsection. In

the lower-level problem, the objective function (2a) computes the maximum

or minimum voltage magnitude for each PQ bus i ∈ NPQ. For each lower-

level problem, constraints (2b)–(2c) are the power flow equations at each bus

j, constraint (2d) forces the voltage magnitudes to be within voltage alarm

thresholds if a sensor is placed at the corresponding bus, and constraints

(2e)–(2f) model the range of variability in the net power injections. We

typically set θ1 = 0 as the angle reference.
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2.3. Cost function

Overly restrictive sensor thresholds can potentially trigger an alarm even

when there are no voltage violations actually occurring in the system, thus

resulting in a false positive. To reduce both the number of sensors and

the number of false positive alarms due to unnecessarily restrictive alarm

thresholds, our cost function, c(s,V˜ , Ṽ), is:

c(s,V˜ , Ṽ) =
∑
i∈N

ci(si, V˜ i, Ṽi) (3)

where

ci(si, V˜ i, Ṽi) =


(V˜ i − V min

i ) + (V max
i − Ṽi) + δ; si = 1,

0; si = 0,

(4)

where δ is a specified cost of placing a sensor. When si = 1, the objec-

tive c(s,V˜ , Ṽ) in (4) seeks to reduce the restrictiveness of the sensor alarm

thresholds to have fewer false positives. Changing the value of δ in (4) mod-

els the tradeoff between placing an additional sensor and making the sensor

range more restrictive. This is a crucial part of our formulation since our

main goal is to identify a small number of critical locations that carry suf-

ficient information about the feasibility of the entire network. Beyond the

clear financial benefit of having to place fewer sensors, this also provides a

simple and practical mechanism for deploying corrective actions in real-time.

Indeed, when the system operator encounters a voltage violation, a reactive
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power compensation protocol that brings the voltages at these few critical lo-

cations to within the alarm thresholds will guarantee feasibility of the voltage

limits for the entire network.

3. Reformulations of the Sensor Location Problem

The bilevel problem (1) is computationally challenging due to the non-

convexity in the lower-level problem induced by the AC power flow equations

in (2b)–(2c) and the presence of two levels. In this section, we provide meth-

ods for obtaining a tractable version of the bilevel sensor placement problem.

We first use the conservative linear approximations of the power flow equa-

tions to convert the lower-level problem to a more tractable linear program-

ming formulation that nevertheless retains characteristics from the nonlinear

AC power flow equations. This bilevel problem can be reformulated to a

single-level problem using the Karush-Kuhn-Tucker (KKT) conditions with

binary variables via a big-M formulation [27, 28]. However, as we will show

numerically in Section 4, traditional methods for reformulating the bilevel

problem into a single-level problem suitable for standard solvers using the

KKT conditions turn out to yield computationally burdensome problems.

(The full problem setup using the KKT conditions is shown in Appendix A

of [29].) We then use various additional reformulation techniques that yield

significantly more tractable problems than standard KKT-based reformula-

tions. These reformulations first yield a (single-level) mixed-integer bilinear

programming formulation that can be solved using commercial mixed-integer
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programming solvers like Gurobi. We further discretize the sensor alarm

thresholds and transform the bilinear terms to a mixed-integer linear pro-

gram (MILP).

3.1. Conservative linear power flow approximations

To address challenges associated with power flow nonlinearities, we em-

ploy a linear approximation of the power flow equations that is adaptive (i.e.,

tailored to a specific system and a range of load variability) and conserva-

tive (i.e., intend to over- or under-estimate a quantity of interest to avoid

constraint violations). These linear approximations are called conservative

linear approximations (CLAs) and were first proposed in [26]. As a sample-

based approach, the CLAs are computed using the solution to a constrained

regression problem across all samples within the range of power injection

variability. They linearly relate the voltage magnitudes at a particular bus

to the power injections at all PQ buses. These linear approximations can also

effectively incorporate the characteristics of more complex components (e.g.,

tap-changing transformers, smart inverters, etc.), only requiring the ability

to apply a power flow solver to the system. Additionally, in the context

of long-term planning, the CLAs can be readily computed with knowledge

of expected DER locations and their potential power injection ranges. The

accuracy and conservativeness of our proposed method is based on the in-

formation of the location of DERs and their power injections variability. As

inputs, our method uses the net load profiles including the size of PVs when
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computing the CLAs. In practice, this data can be obtained by leveraging the

extensive existing research on load modeling and monitoring to identify the

locations and capabilities of behind-the-meter devices (refer to, e.g., [30, 31]).

An example of an overestimating CLA of the voltage magnitude at bus i

is the linear expression

ai,0 + aT
i,1

P

Q


such that the following relationship is satisfied for some specified range of

power injections P and Q:

Vi −

ai,0 + aT
i,1

P

Q


 ≤ 0, (5)

where a0 and a1 are the coefficients of the CLA computed by solving a

constrained regression problem (refer to [26]) and superscript T denotes the

transpose. We replace the AC power flow equations in (2b)–(2c) with a CLA

as in (5) for all i ∈ NPQ. The quantities Li and Ui in (2a) become:

Li = min
P,Q

ai,0 + aT
i,1

P

Q


i (
Ui = max

P,Q
ai,0 + aT

i,1

P

Q


i )

(6)

where superscripts i denote quantities associated with the ith lower-level

problem. Using conservative linear approximations yields a linear program-

ming formulation for the lower-level problem rather than the non-convex
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lower-level problem in (2). By assuming that the conservative linear approx-

imations do indeed reliably over- or under- estimate the voltage magnitudes,

it is sufficient to ensure satisfaction of (1b). As a result, solving the reformu-

lation will compute sensor locations and thresholds where alarms will always

be raised if there are indeed violations of the voltage limits.

3.2. Duality of the lower-level problem

One can reformulate a bilevel problem into a single-level problem by du-

alizing the lower-level problem. This technique can only be usefully applied

to problems with specific structure where the optimal objective value of the

lower-level problem is constrained in the upper-level problem in the appro-

priate sense (max ≤ · or min ≥ ·). In this special case, we can significantly

improve tractability compared to the KKT formulation.

Let y˜i be the vector of all dual variables associated with the lower-level

problem Li and ỹi be the vector of all dual variables associated with lower-

level problem Ui. Let I be the identity matrix of appropriate dimension.

By dualizing the lower-level problem (6) with conservative linear power flow

approximations as constraints, we obtain the following:

Li = max
y˜i

bTy˜i + ai,0 (7a)

s.t. Ay˜i = ai,1, (7b)

y˜i ≥ 0, (7c)

Ui = min
ỹi

bT ỹi + ai,0 (8a)

s.t. Aỹi = ai,1, (8b)

ỹi ≤ 0, (8c)

where
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A =
[
−I, I,a1,1, . . . ,an,1,−a1,1, . . . ,−an,1

]
,

b = [(−Pmax)T , (−Qmax)T , (Pmin)T , (Qmin)T , U˜ 1 − a1,0, . . . , U˜n − an,0,

− Ũ1 + a1,0, . . . ,−Ũn + an,0]
T .

Due to strong duality of the linear lower-level problem, the dual (7a) (and

(8a)) has the same objective value as (6) and does not directly provide any

advantages. However, the problem has a specific structure where objectives

from each lower-level problem (7a) and (8a) only appear in a single inequality

constraint (1b). Hence, we only need to show that there exists some choice

of duals y˜i and ỹi for which (1b) is feasible. This allows us to obtain a

single-level formulation by defining the lower-level coupling quantities via

the following set of constraints:

Li = bTy˜i + ai,0, (9a)

Ay˜i = ai,1, (9b)

y˜i ≥ 0. (9c)

Ui = bT ỹi + ai,0, (10a)

A ỹi = ai,1, (10b)

ỹi ≤ 0. (10c)

We refer to the formulation using (9) and (10) as the “bilinear formula-

tion” due to the bilinear product of the sensor threshold variables (U˜ and

Ũ) and the dual variables y˜i and ỹi in (9a) and (10a). Using (9) and (10)

leads to a single-level optimization problem. However, the latter has the

major advantage that no additional binary variables are required (beyond

those associated with the sensor locations in the upper-level problem) since

there are no analogous equations to the complementarity condition as in the
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KKT reformulation. Our bilinear formulation can be further converted into

an MILP by discretizing the continuous-valued sensor thresholds. This for-

mulation has the advantage of being within the scope of a larger range of

mixed-integer programming solvers since not all of them can handle billinear

forms. To further improve tractability, we can remove unnecessary binary

variables associated with some sensor thresholds by inspecting data from the

samples of power injections used to compute the conservative linear approxi-

mations of the power flow equations. The details for this MILP reformulation

and the removal of unnecessary binary variables from discretizing the sensor

thresholds (referred to as binary variable removal (BVR)) are described in

Appendix B of [29]. Further details about the comparison of each problem

formulation provided in this paper, including the use of the KKT conditions,

are in Appendix C of [29]. Our numerical results in Section 4 show that mod-

ern mixed-integer programming packages like Gurobi can solve the bilinear

and the MILP formulations for much larger systems than are possible with

the standard KKT formulation.

3.3. Approximate gradient descent

Solving any of the reformulated bilevel optimization problems may lead

to false positives. This is both due to the limited number of sensors and

the conservative nature of the linear power flow approximations used in the

lower-level problem. To reduce the number of false positives, we propose a

post-processing step that iteratively adjusts the sensor thresholds that result
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from the reformulated bilevel optimization problems. We refer to this post-

processing step as the Approximate Gradient Descent (AGD) method.

Let superscript k denote the kth iteration of the AGD method. Let ϵAGD

be a step size for adjusting the sensor thresholds and fk be the vector of

the number of false positives from the sampled power injections. Using the

sampled power injections, this method computes an “approximate gradient”

indicating how small changes to the sensor alarm thresholds affect the number

of false positives. The approximate gradient at iteration k is given by gk. We

denote the set of buses with sensors as Ns. Subscripts give the bus number.

Let ∆fk
i represent the change in the number of false positives among

the sampled power injections using the sensor thresholds in the kth iteration

when the sensor alarm threshold i is changed by ϵAGD (leaving all other

sensor thresholds unchanged). We then compute an approximate gradient

gk by comparing the values of ∆fk
i across different buses i:

gk =
∆fk√∑

i∈Ns
(∆fk

i )
2
. (11)

In each iteration, we update the sensor thresholds as follows:

V˜ k+1 = V˜ k + ϵAGD · gk (Ṽk+1 = Ṽk + ϵAGD · gk). (12)

The AGD method stops when taking an additional step would result in

the appearance of false negatives, i.e., undetected violations of voltage limits.
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4. Numerical Tests

This section describes numerical experiments on a number of test cases

to analyze the sensor locations and thresholds, demonstrate the advantages

of our problem reformulations and the post-processing step, and compare

results and computational efficiency from different problem formulations.

The test cases we use in these experiments are the 10-bus system case10ba,

the 33-bus system case33bw, and the 141-bus system case141 fromMatpower

[32]. For the CLAs, we minimize the ℓ1 error with 1000 samples in the first it-

eration and 4000 additional samples in a sample selection step, and we choose

a quadratic output function of voltage magnitude. (See [26] for a discussion

on computationally efficient iterative methods for computing CLAs and vari-

ants of CLAs that approximate different quantities in order to improve their

accuracy.) All power injections vary within 50% to 150% of the load demand

values given in the Matpower files except for case33bw where we consider

a variant with solar panels at buses 18 and 33. The active power demands

at these two buses vary within -200% to 150% of the nominal values. Note

that a manufacturer can provide actual data regarding the range of power

injections from DERs like solar PV.

We implement the single-level reformulations of the sensor placement

problem in MATLAB using YALMIP [33] and use Gurobi as a solver with a

MIP gap tolerance of 0.5%. The AGD step size is ϵAGD = 2× 10−4 per unit.

The value of δ (i.e., cost of placing a sensor) in the objective (4) is 0.02. In

case10ba, case33bw, and case141, the lower voltage limits are 0.90, 0.91, and
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Table 1: Results showing sensor alarm thresholds and number of false positives from KKT,
bilinear, and MILP formulations.

KKT§ Bilinear MILP
case10ba case10ba case33bw case141 case10ba case33bw case141

Computation Optimality 26.7 1.96 4.47 46.52 1.54 2.87 22.95
time [s] AGD — 0.11 0.31 18.3 — 0.43 13.8
Sensor location(s) 10 10 14, 15, 17, 31 79, 80, 82, 85 10 14, 30 80, 86

Sensor threshold(s) 0.9 0.9017
0.91, 0.91, 0.92, 0.9213,

0.9
0.9195 0.929

0.9118, 0.9126 0.93, 0.93 0.9185 0.9295

with AGD — 0.9
0.91, 0.91, 0.92, 0.9212,

—
0.9163 0.9213

0.9107, 0.9112 0.9218, 0.9201 0.9161 0.9201
# feasible points 7317 7317 9753 9955 7317 9753 9955
% false positive(s) 0% 4.01% 1.91% 72.07% 0% 7.64% 66.64%

with AGD — 0% 0.24% 0.03% — 1.34% 0.01%
% false negatives 0% 0% 0% 0% 0% 0% 0%

§The solver does not find a solution to case33bw and case141 within 55000 seconds.
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Figure 1: Bar graphs showing the computation times for solving various problem formu-
lations and executing the approximate gradient descent method.

0.92, respectively, and the computation times for the CLAs are 58, 198, and

1415 seconds, respectively.

4.1. Sensor locations

We compare the quality of results and the computation time from the

following reformulations: (i) the KKT formulation, (ii) the duality-based

bilinear formulation (9) and (10), and (iii) the MILP formulation.

The first test case is the 10-bus system case10ba, a simple single-branch
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network. We consider a variant where the nominal loads are 60% of the

values in the Matpower file. The results from each formulation place a

sensor at the end of the branch (furthest bus from the substation) with an

alarm threshold of 0.9 per unit (at the voltage limit). Fig. 1a compares

computation times from the three formulations. The the KKT formulation

takes 26.7 seconds while the bilinear and MILP formulations take 1.96 and

1.54 seconds, respectively. Since the sensor threshold for the KKT and MILP

formulations is at the voltage limit, AGD is not needed. Conversely, the

bilinear formulation gives a higher alarm threshold. As a result, the AGD

method is applied as a post-processing step to achieve the lowest possible

threshold without introducing false alarms. The number of false positives

reduces from 5.48% to 0%. Executing the AGD method takes 0.11 seconds.

The second test case is the 33-bus system case33bw, which has multiple

branches. In this example, we demonstrate the efficacy of our approach in

handling a system with complex components through the implementation of

volt-VAR control, which represents smarter inverter behavior (whose char-

acteristics are described in [34]). To incorporate the behavior of volt-VAR

control, we enhance the power flow solver used to compute the CLAs by

integrating an additional fixed-point iterative method. Table 1 shows the

computation times for the bilinear and the two MILP formulations. We ex-

clude the computation time for the KKT formulation since the solver fails to

find even a feasible (but potentially suboptimal) point within 55000 seconds

(15 hours). Our final test case is the 141-bus system case141. Similar to the
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33-bus system, the solver could not find the optimal solution for the KKT

formulation within a time limit of 15 hours. It is evident the KKT formu-

lation is intractable. Table 1 again shows the results for this test case, and

Figs. 1b and 1c compare the computation times for the bilinear and MILP

formulations.

Table 1 shows both the computation times and the results of randomly

drawing sampled power injections within the specified range of variability,

computing the associated voltages by solving the power flow equations, and

finding the number of false positive alarms (i.e., the voltage at a bus with

a sensor is outside the sensor’s threshold but there are no voltage violations

in the system). The results for the 33-bus and 141-bus test cases given in

Table 1 illustrate the performance of the proposed reformulations. Whereas

the KKT formulation is computationally intractable, our proposed reformu-

lations find solutions within approximately one minute, where the MILP

formulation typically exhibits the fastest performance. The solutions to the

reformulated problems place a small number of sensors (two to four sensors

in systems with an order of magnitude or more buses). No solutions suf-

fer from false negatives since all samples where there is a voltage violation

trigger an alarm. There are a number of false alarms prior to applying the

AGD that after its application decrease dramatically to a small fraction of

the total number of samples (1.34% and 0.01% in the 33-bus and the 141-bus

systems, respectively). These observations suggest that our sensor place-

ment formulations provide a computationally efficient method for identifying
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a small number of sensor locations and associated alarm thresholds that re-

liably identify voltage constraint violations with no false negatives (missed

alarms) and few false positives (spurious alarms).

4.2. Multiple configurations

The previous results described the sensor placements for the case10ba,

case33bw, and case141 systems in their nominal network topologies. We next

demonstrate the effectiveness of our problem reformulations for variants of

these systems with multiple network configurations. We consider a variant of

the case33bw system with three distinct network configurations and two solar

PV generators installed at buses 18 and 33, as an illustrative example. Other

network configurations are not included from this study, as they either exhibit

no violations or yield identical optimal solutions. The first configuration is

the nominal topology given in the Matpower version of the test case. In the

second configuration, the line connecting buses 6 and 7 is removed and a new

line connecting buses 4 and 18 is added. The third configuration removes

the line connecting buses 6 and 26 and adds a new line connecting buses 25

and 33. All network configurations are displayed in Fig. 2.

Table 2 shows the results from using the bilinear and MILP formulations

to solve the multiple-configuration problem for this case. The results gen-

erally mirror those from the single-network-configuration test cases shown

earlier in that computation times are still reasonable (approximately a factor

of four larger) and there are no false negatives and a small number of false
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Figure 2: The case33bw system with three different network configurations. A dash line
means that line is removed when a solid line with the same color is added such that the
system has a radial topology in each configuration.

Table 2: Results for the case33bw system with three network configurations.
Bilinear MILP

Config 1 Config 2 Config 3 Config 1 Config 2 Config 3

Computation Optimality ––––––––––––––– 20.1 ––––––––––––––– ––––––––––––––– 7.93 –––––––––––––––
time [s] AGD 0.53 0.55 0.10 0.86 0.93 0.40
Sensor location(s) –––––––––– 8, 14, 26, 33 –––––––––– ––––––––––––––– 9, 14, 30 –––––––––––––––

Sensor thresholds
0.91, 0.919, 0.9126, 0.91, 0.91, 0.91, 0.91, 0.919, 0.9185, 0.91, 0.91, 0.91,
0.91, 0.9113 0.91, 0.9111 0.9106, 0.9137 0.919 0.919 0.9165

with AGD
0.91, 0.9167, 0.9117, 0.91, 0.91, 0.91, 0.91, 0.9167, 0.9166, 0.91, 0.91, 0.91,
0.91, 0.9104 0.91, 0.9109 0.9101, 0.9136 0.9168 0.9189 0.9151

# feasible points 9560 8292 9112 9560 8292 9112
% false positives 6.19% 4.86% 1.28% 9.19% 12.38% 6.55%

with AGD 1.86% 1.21% 0.05% 2.87% 3.38% 2.38%
% false negatives 0% 0% 0% 0% 0% 0%

positives after applying the AGD method.

We note that some configurations may not need to utilize all available

sensors. To show this, we describe an experiment that considers each config-

uration separately. In this experiment, we compare the number of sensors and

the locations of the sensors with those in the previous experiment. As Table 3

shows, configurations 1 and 2 require only two sensors while configuration 3

requires only one sensor as opposed to three-sensor solution obtained from
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the multiple-configuration problem. This demonstrates the need to jointly

consider network topologies in one problem for such situations.

Table 3: Results for case33bw with three network configurations where sensor locations
are not necessary the same.

Config 1 Config 2 Config 3

Sensor location(s) 14, 30 9, 31 30

Sensor 0.9195 0.9185
0.9185

threshold(s) 0.9190 0.9185

with AGD
0.9167 0.9164

0.9151
0.9168 0.9186

# feasible points 9560 8292 9112

% false positives 10.48% 12.45% 14.53%

with AGD 2.89% 3.06% 2.38%

% false negatives 0% 0% 0%

5. Conclusion

This paper has formulated a bilevel optimization problem that seeks to

minimize the number of sensors needed to detect violations of voltage mag-

nitude limits in an electric distribution system. We first addressed the power

flow nonlinearities in the lower-level problem via previously developed con-

servative linear approximations of the power flow equations. To handle com-

putational challenges from the bilevel nature, we exploited the structure of

the problem to obtain single-level mixed-integer programming formulations,

thereby avoiding the introduction of unnecessary additional discrete vari-

ables. We also developed a mixed-integer-linear programming (MILP) formu-

lation by discretizing the sensor thresholds. Our MILP reformulation proves

tractable across all test cases, a notable advantage over the traditional KKT
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reformulation, which only remains tractable for the 10-bus system. Further-

more, the MILP formulation yields a reduced number of sensors compared

to the bilinear formulation. Additionally, we extended these reformulations

to accommodate multiple network topologies, wherein several lines can be

opened or closed without any nodes being isolated. Our proposed sensor

placement reformulations significantly reduce computation time compared

to standard techniques.

Furthermore, we developed a post-processing technique to minimize false

alarms using an approximate gradient descent method. The integration of

this technique with our bilevel problem reformulation ensures the computa-

tion of sensor locations and alarm thresholds that yield minimal false alarms

and no missed alarms. This was validated through numerical testing con-

ducted via out-of-sample testing.

For enhanced computational efficiency, we may further expedite compu-

tations by considering sensor placements solely at locations where voltage vi-

olations occurred, utilizing insights from sample-based CLAs. Additionally,

employing a constraint generation approach enables us to explicitly formu-

late constraints associated only with lower-level problems where violations

were observed in the samples used for CLA computation. Essentially, lever-

aging samples from CLA computation minimizes the necessity for explicit

modeling of variables and constraints in the bilevel sensor placement prob-

lem. Subsequently, conducting out-of-sample testing, as demonstrated in our

numerical analyses, can validate the efficacy of these approaches in further
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enhancing tractability.

In our future work, we seek to identify where the violations occur using

the information obtained from CLAs and solutions from the sensor placement

problem. We intend to use the sensor locations and thresholds resulting

from the proposed formulations to design corrective control actions, including

voltage controls, that ensure all voltages remain within safety limits. These

actions may also involve adjustments to generation levels, switching devices,

or control of reactive power sources.

Expanding our research scope, we aim to work on real-time operations,

focusing particularly on optimizing the utilization of the limited commu-

nication bandwidth accessible at smart meters. Our objective is to devise

strategies to efficiently extract the most relevant real-time information from a

network of sensors, therefore enhancing the overall operational effectiveness.

Additionally, we intend to address this challenge while considering potential

cyber threats, such as false data injection attacks [35].

Additionally, it is worth noting that prior research has demonstrated

the tractability of extending the CLA framework to unbalanced three-phase

systems [36]. We intend to explore the extension of our work to three-phase

networks in future work.
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