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Abstract—The Fast Decoupled Power Flow (FDPF) method has
been widely adopted due to its computational speed advantages
relative to the Newton-Raphson method for many practically
relevant power flow problems. The FDPF method relies on
the assumption that the lines are highly inductive, i.e., have
small R/X ratios. When this assumption does not hold (e.g.,
for distribution systems and some subtransmission systems), the
FDPF method may exhibit slow convergence or fail to converge
entirely. To address such cases, previous work has proposed an
axis rotation method which rescales the complex power injections
and the bus admittances by a unit-magnitude complex scalar
parameter. Since this complex parameter adjusts the lines’ R/X
ratios, an appropriate choice for this parameter can improve the
FDPF method’s performance. In contrast to previous work that
only introduces one complex parameter for the entire system
(or one complex parameter per large subsystem), we propose
and analyze an axis rotation method that introduces different
complex parameters at each bus. The additional degrees of free-
dom provided in this more granular approach are particularly
valuable for systems where the lines have wider ranges of R/X
ratios. To obtain appropriate values for the complex parameters,
we propose to minimize the sum of the squared errors associated
with the FDPF approximations. This method can also be adapted
for cases with large voltage angle differences. Our simulation
results demonstrate the effectiveness of the proposed method.

Index Terms—Fast Decoupled Power Flow, Axis Rotation,
Theta Compensation.

I. INTRODUCTION

Power flow computations are essential tools for many power

system analyses (e.g., contingency screening, expansion plan-

ning, initializing dynamic simulations, etc.). Since the power

flow equations are nonlinear, iterative methods are typically

used to compute the unknown states, e.g., voltage magnitudes

and angles. The Fast Decoupled Power Flow (FDPF) is a

widely used iterative power flow solution method that has

computational speed advantages for many problems [1].

The FDPF method assumes that the lines’ series resistances

and shunt reactances are negligible and that the angle dif-

ferences between connected buses are small. Based on these

assumptions, the FDPF method derives constant matrices that

are used in each iteration and thus only need to be factorized

once. However, some systems like distribution systems and

certain subtransmission systems have highly resistive lines,

which, in turn, worsen the FDPF method’s convergence per-

formance. Joint analyses of these systems with transmission

systems are crucial due to the ongoing increase in distributed

energy resources in distribution and subtransmission systems.
Previous research efforts have analyzed the convergence

performance of the FDPF method. Convergence conditions for

the FDPF method and an upper bound on the error at each

iteration are presented in [2]. Prior work in [3] explores how

the FDPF method’s performance is affected when the lines’

series resistances and shunt reactances are not neglected. The

authors in [3] also emphasize that large R/X ratios lead to

slow convergence or failure of the FDPF method.
Researchers have proposed methods for improving the

FDPF method’s performance in systems with high R/X ratios

using the concept of axis rotation [4], [5]. Axis rotation

normalizes the power flow equations using a unit-magnitude

complex parameter. This concept is also framed as complex per
unit (cpu) normalization, which introduces the axis rotation in

terms of the base complex power and base admittance [6]–[9].
These concepts presented in previous work consider one

axis rotation for an entire system or a subsystem. To the best

of our knowledge, no prior work has applied different axis

rotations at each bus in order to address various ranges of R/X
ratios across a system. Hence, we aim to improve the FDPF

method’s convergence performance by exploiting the ability

to choose different axis rotations at each bus. We also aim to

efficiently and reliably apply our modified FDPF method to

systems with lines that have widely varying R/X ratios.
We propose a method that pre-calculates all axis rotations

in an offline manner for a given system topology and line

impedances; thus, our method has limited computational re-

quirements. The axis rotations at each bus are calculated

by minimizing the sum of squared errors associated with

the off-diagonal entries of the Jacobian matrix, which are

approximated to zero in the traditional FDPF method.
The main contributions of this paper are:

(i) A FDPF formulation that permits distinct axis rotations at

each bus along with a method for selecting appropriate values

for these rotations.

(ii) An analysis of the axis rotations’ impact on the conver-

gence of the FDPF method in cases where the small angle

difference and small R/X assumptions do not hold.

(iii) Numerical demonstrations of the axis rotations.

The rest of the paper is organized as follows. Section II

provides background on the power flow equations and the
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FDPF method. Section III discusses the FDPF method using

axis rotations and the method to calculate the axis rotations

at each bus. Section IV describes our numerical results.

Section V concludes the paper and discusses future work.

II. BACKGROUND

Consider an n-bus power system. The sets of buses and lines

are N = {1, . . . , n} and L, respectively. Each bus is classified

as either a slack bus with specified voltage magnitude and

angle, typically 1∠0°; a PV bus, which specifies the real power

and the voltage magnitude; or a PQ bus, which specifies the

real and reactive power. We define Ni′ := {k | (i, k) ∈ L}
as the set of all buses that neighbor bus i. The set of bus i
and its neighbors is denoted as Ni := {k | (i, k) ∈ L} ∪ {i}.

Subscript (·)ik denotes that quantity from/connecting bus i to

bus k. Subscript (·)i denotes a quantity at bus i. The complex

power injection at bus i, denoted as Si, is:

Si = Vi(
∑
k∈Ni

YikVk)
∗, (1)

where Vi := |Vi|∠θi is the voltage phasor. The bus admittance

is denoted as Yik = Gik + jBik, where Gik (Bik) is the

conductance (susceptance). The asterisk symbol (*) denotes

the complex conjugate, i.e., (a+jb)∗ = a−jb, where j =
√−1.

Other quantities written in bold are matrices. All quantities are

given in per unit (pu) representation.

Subtracting the left hand side of (1) and taking real and

imaginary parts yields the power mismatch equations, which

indicate the mismatch between the calculated and specified

power at bus i:

ΔPi =
∑
k∈Ni

|Vi||Vk|(Gik cos θik +Bik sin θik)− Pi, (2a)

ΔQi =
∑
k∈Ni

|Vi||Vk|(Gik sin θik −Bik cos θik)−Qi, (2b)

where Pi (Qi) is the real (reactive) power injection from

bus i, and θik := θi − θk is the voltage angle difference

between buses i and k. We define ΔPi (ΔQi) as the real

(reactive) power mismatch. Iterative algorithms such as the

FDPF method attempt to compute the voltage magnitudes and

angles by reducing the power mismatch to zero (within a

specified tolerance).

The system of equations in (2a) and (2b) is nonlinear and

differentiable. This system can be solved by the Newton-

Raphson (NR) method [10]. The system of equations at the

mth-iteration, where m ∈ Z
+, to solve this problem is:[

Δθ
Δ|V |

]m
= −J(θm, |V |m)−1

[
ΔP
ΔQ

]m
, (3)

where J is the Jacobian matrix for this system of equations:

J(θm,V m) =

[∂ΔP
∂θ

∂ΔP
∂|V |

∂ΔQ
∂θ

∂ΔQ
∂|V |

]m

. (4)

The Jacobian matrix can be written in four separate blocks,

as shown in (4). We update the voltage angles and magnitudes

by: θm+1 = θm + Δθm and |V |m+1 = |V |m + Δ|V |m.

The FDPF method approximates the Jacobian matrix using

the following assumptions:

Assumption 1. All lines have small resistances relative to
their reactances. Thus, |Gik/Bik| � 1, ∀k ∈ Ni.

Assumption 2. The voltage angle differences between con-
nected buses (i, k) ∈ L are small, thus implying that
cos θik ≈ 1 and sin θik ≈ θik.

Assumption 3. The voltage magnitude at each bus is approx-
imately 1 pu.

From Assumptions 1 and 2, the following approximations

at bus i ∈ N are valid:

Gij ≈ 0 ; Gij cos θij +Bij sin θij ≈ 0 ; ∀j ∈ Ni. (5)

With all these approximations, the real power is decoupled

from the voltage magnitude and the reactive power is decou-

pled from the voltage angle as follows:

ΔP

|V | ≈ B′Δθ, (6a)

ΔQ

|V | ≈ B′′Δ|V |, (6b)

where B′ and B′′ are constant matrices.1 The decoupled

relationships in (6) yield computational advantages as the B′

and B′′ matrices are smaller in size than the Jacobian matrix J
and are only factored once. The FDPF method iterates on (6a)

and (6b) and then updates the mismatch by plugging the new

values of voltage magnitudes and voltage angles into (2) [1].

III. FAST DECOUPLED POWER FLOW VIA AXIS ROTATION

This section formulates our proposed FDPF with axis rota-

tion and presents our method for computing appropriate axis

rotations φi at each bus i ∈ N . As shown in Fig. 1, our axis

rotation computations are implemented as a preprocessing step

that occurs prior to the traditional FDPF method.

A. Axis Rotation

In the FDPF method, the line resistances are assumed to be

much smaller than the line reactances (refer to Assumption 1).

This assumption is not accurate when some lines have high

R/X ratios. The concept of axis rotation (and a closely

related variant known as complex pu (cpu) normalization) were

introduced in [4]–[9] to address high R/X ratios.

Our proposed axis rotation approach multiplies both sides

of (1) by the unit-magnitude complex parameter ejφi :

Sie
jφi = Vi(

∑
k∈Ni

Yike
−jφiVk)

∗. (7)

One technique for computing φi is by calculating the

average angles of diagonal elements of the bus admittance

matrix, i.e., φi = (1/n)
∑

k∈N arctan (−Gkk/Bkk), for all

i ∈ N [12]. However, in contrast to this technique, we allow

1We use the so-called XB version of the FDPF method [11].
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Fig. 1. Diagram of the FDPF method via multiple axis rotations. The dashed-
line box is the axis rotation calculation representing our main addition to the
traditional FDPF method. Our method also updates the calculated reactive
power (underlined). The theta compensation can be added to the axis rotation
before constructing constant matrices B′ and B′′, if needed.

i

ik ikG Bj

G
B

ˆ ˆ
ik ikG Bj

Fig. 2. The axis rotation of bus admittance.

for distinct values of φi at each bus i. Section III-C proposes

our method for computing φi, ∀i ∈ N .

The rotated real and reactive power injections are P̂i :=
Pi cosφi −Qi sinφi and Q̂i := Qi cosφi + Pi sinφi, respec-

tively. From (7), the power mismatch equations in (2) are:

ΔP̂i =
∑
k∈Ni

|Vi||Vk|(Ĝik cos θik + B̂ik sin θik)− P̂i, (8a)

ΔQ̂i =
∑
k∈Ni

|Vi||Vk|(Ĝik sin θik − B̂ik cos θik)− Q̂i, (8b)

where Ĝik = Re(Yike
−jφi) and B̂ik = Im(Yike

−jφi). We de-

note the rotated mismatch real (reactive) power as ΔP̂i (ΔQ̂i).

Fig. 2 shows how the bus admittance Ĝik + jB̂ik = Yike
−jφi

depends on the axis rotation.

Similar to (2), we aim to solve for the unknown voltage

magnitudes and angles in (8) by reducing the rotated power

mismatch to zero within a specified error tolerance.

B. Additional Reactive Power Balance Equation

As discussed in Section II, the traditional FDPF algorithm

does not include reactive power balance equations at PV buses.

However, since the axis rotation couples the real and reactive

power injections at each bus, we must introduce a variable

for the reactive power at PV buses along with an associated

reactive power balance equation:

ΔQi,PV =
∑
k∈Ni

|Vi||Vk|(Gik sin θik −Bik cos θik)− Q̃i, (9)

where Q̃i is a state variable corresponding to the reactive

power injection at bus i. Hence, (6b) becomes:

ΔQ

|V | ≈
[
∂ΔQ/|V |

∂ ˜Q
, B′′

] [
Q̃

Δ|V |
]
, (10)

where B′′ includes terms derived from (9). To maintain the

square size of B′ in (6a) with the decoupled relationships, we

neglect the effect of Q̃i on B′. The additional reactive power

equations have a small impact on the computation times since

we factorize the associated matrices offline once and reuse

them for all power flow problems solved for this system.

C. Axis Rotation via Minimizing the Sum of Squared Errors

In the FDPF method, the off-diagonal entries of the Jacobian

matrix are approximated to zero. They, in fact, are not zero and

may be quite significant when Assumption 1 does not hold.

This can lead the FDPF method to converge more slowly or fail

to converge. Our approach minimizes the sum of the squared

errors associated with the off-diagonal entries.

To analyze the errors caused by violations of Assumption 1,

we start by looking at all four entries in the Jacobian matrix.

Regarding to the construction of constant matrices in (6a) and

(6b), the power mismatch is divided by the voltage magnitude

to partially decouple the voltage magnitudes from the Jacobian

matrix. For any pair of buses i, j ∈ N , the entries of the

Jacobian matrix, i.e., diagonal and off-diagonal entries are:

∂ΔPi
|Vi|
∂θj

=

⎧⎪⎨
⎪⎩
−

∑
k∈Ni′

|Vk|(Gik sin θik −Bik cos θik), if i = j

|Vj |(Gij sin θij −Bij cos θij), otherwise.

(11a)

∂ΔPi
|Vi|

∂|Vj |
=

{
Gii, if i = j

Gij cos θij +Bij sin θij , otherwise.
(11b)

∂ΔQi
|Vi|
∂θj

=

⎧⎪⎨
⎪⎩

∑
k∈Ni′

|Vk|(Gik cos θik +Bik sin θik), if i = j

−|Vj |(Gij cos θij +Bij sin θij), otherwise.

(11c)

∂ΔQi
|Vi|

∂|Vj |
=

⎧⎪⎨
⎪⎩
−Bii, if i = j∑
k∈Ni′

(Gik sin θik −Bik cos θik), otherwise. (11d)

The terms in (11a) and (11d) are the diagonal entries, while

the terms in (11b) and (11c) are the off-diagonal entries. The

expressions below show the off-diagonal entries at bus i with

the axis rotation φi when Assumptions 2 and 3 hold:

Fij,P (φi) = Gij cosφi +Bij sinφi, j = 1, . . . , n. (12a)

Fij,Q(φi) =

⎧⎪⎨⎪⎩
∑

k∈Ni′

(Gik cosφi +Bik sinφi), if i = j

−Gij cosφi −Bij sinφi, otherwise, (12b)

where Fij,P (φi) and Fij,Q(φi) are the rotated off-diagonal

entries from (11b) and (11c), respectively. Since the error in



(12a) is different from (12b), we calculate the axis rotations

for the real and reactive power mismatch equations separately.

We obtain the axis rotation for the real power mismatch

equation at bus i, denoted as φi,P , by minimizing the sum of

the squared errors associated with each off-diagonal entry:

φi,P = argmin
φi

∑
j∈N (Fij,P (φi))

2. (13)

The problem in (13) is solved analytically using the optimal-

ity condition for unconstrained optimization problems [13]:

∂
∑

j∈N (Fij,P (φi))
2

∂φi
= 0. (14)

From (14), the optimal solution to (13) is:

φi,P =
1

2
arctan

(
2

∑
k∈Ni

GikBik∑
k∈Ni

G2
ik −B2

ik

)
. (15)

The solution in (15) is written in terms of the inverse tangent

(arctan), which is periodic. To obtain small Ĝik and negative

B̂ik, we choose 0 ≤ φi,P ≤ π/2 (refer to Fig. 2).
The axis rotation for the reactive power mismatch equation

at bus i, denoted as φi,Q, is obtained similarly to (13).
Specifically, we determine φi,Q via the optimality condition:

∑
k∈Ni′

(
(B2

ik −G2
ik) sin(2φi,Q) + 2BikGik cos(2φi,Q)

)

+ 2 cos(2φi,Q)

( ∑
k∈Ni′

Bik

)
·
( ∑

k∈Ni′

Gik

)

+ sin(2φi,Q)

(( ∑
k∈Ni′

Bik

)2

−
( ∑

k∈Ni′

Gik

)2
)

= 0. (16)

Solving (16) yields:

φi,Q =

1

2
arctan

⎛
⎜⎜⎜⎜⎝2

∑
k∈Ni′

GikBik +
∑

k∈Ni′
Bik

∑
k∈Ni′

Gik

∑
k∈Ni′

(
G2

ik −B2
ik

)
+

( ∑
k∈Ni′

Gik

)2 −
( ∑

k∈Ni′
Bik

)2

⎞
⎟⎟⎟⎟⎠ .

(17)

Similar to φi,P , we choose 0 ≤ φi,Q ≤ π/2. The solutions

obtained from (15) and (17) rotate the bus admittance Yik

such that the absolute value of the rotated conductance Ĝik is

small to improve the FDPF method’s approximation accuracy.

By explicitly minimizing the error in the off-diagonal entries

of the Jacobian approximation used by the FDPF, our method

for choosing the axis rotations also directly reduces the error

caused by assuming small R/X ratios in the diagonal entries.

As shown in Fig. 1, we proceed similarly to the usual FDPF

method after computing the axis rotations from (15) and (17).

D. Analysis of Large Angle Difference

The method described above for computing values for

φi relies on the small angle difference approximation from

Assumption 2. We next consider cases where this assumption

does not hold, i.e., θik 	≈ 0 for some (i, k) ∈ L. In order to

continue applying the small angle approximation, we intro-

duce an additional axis rotation to compensate for the large

voltage angle difference (so-called theta compensation). The

theta compensation Θi is computed by assuming that a good

estimate of the voltage angle at each bus is known.2 Given the

approximated angle differences for each line, θik ; ∀(i, k) ∈ L,

the theta compensation at bus i is:

Θi =

∑
k∈Ni′

θik

Ni
, (18)

where Ni is the number of lines connected to bus i. The

complex power balance equation (7) becomes:

Sie
j(φi−Θi) = Vi(

∑
k∈Ni

Yike
−j(φi−Θi)Vk)

∗. (19)

From (19), the power balance equations (8a) and (8b) with

theta compensation become:

Δ qPi =
∑
k∈Ni

|Vi||Vk|(Ĝik cos(θik −Θi) + B̂ik sin(θik −Θi))

− (P̂i cosΘi + Q̂i sinΘi), (20a)

Δ qQi =
∑
k∈Ni

|Vi||Vk|(Ĝik sin(θik −Θi)− B̂ik cos(θik −Θi))

− (Q̂i cosΘi − P̂i sinΘi), (20b)

where Δ qPi (Δ qQi) is the rotated real (reactive) power mis-

match with the theta compensation.

Let sgn(·) denote the sign function. Since the angle dif-

ferences θik can be positive, negative, or zero, applying

theta compensation Θi is most beneficial when the values of

sgn(θik) are the same for all k ∈ Ni′ . From the DC power

flow approximation, sgn(θik) often identifies the direction of

real power flow [14]. Thus, values for sgn(θik) are usually the

same for all k ∈ Ni′ when real power either flows out from

bus i to all neighboring buses or flows from all neighboring

buses into bus i.

IV. SIMULATION AND RESULTS

This section uses a variety of test cases to demonstrate the

proposed axis rotation method’s ability to improve the conver-

gence characteristics of the FDPF method. First, we compare

the effect of multiple axis rotations in the FDPF method for

cases where the line R/X ratios are high to cases where the

line R/X ratios are low. We compare the performance of

traditional FDPF and our proposed axis rotation FDPF method

in terms of the number of iterations required to achieve a

tolerance of 10−6. Second, we present a comparison of the

convergence performance from our method to the method with

the single axis rotation. Last, we demonstrate the effectiveness

of our proposed method in a system that has large voltage

angle differences. We performed our numerical experiments by

adopting code and selected test cases from MATPOWER [15].

2Methods for estimating the angle differences include using the solution to
a related problem, solving the DC power flow, or examining historical data.



TABLE I
NUMBER OF ITERATIONS OF FDPF WITH DIFFERENT φ AT EACH BUS

COMPARED TO TRADITIONAL FDPF FOR DISTRIBUTION SYSTEMS.

Case FDPF FPDF with
multiple axis rotations

case33bw 9 6
case69 13 6
case85 13 7

TABLE II
NUMBER OF ITERATIONS OF FDPF WITH DIFFERENT φ AT EACH BUS

COMPARED TO TRADITIONAL FDPF FOR TRANSMISSION SYSTEMS.

Case FDPF
FDPF with Increased Resistance

multiple FDPF FDPF with multiple
axis rotations axis rotations

case9 6 6 9 8
case14 6 6 17 10
case30 8 6 15 7

case ieee30 6 6 18 11
case39 7 8 22 18

case89pegase 7 7 14 11
case118 8 7 20 13

A. Effect of Axis Rotations

We first numerically test the axis rotations using ten systems

(three distribution and seven transmission systems). We com-

pare our proposed method with the traditional FDPF method.

Another set of tests is conducted to validate the efficiency

of our proposed method using modified transmission systems

that are more lossy than the original systems, leading to larger

axis rotations. For these tests, all line resistance values are

increased by 40% of their reactance values, i.e., Rnew = R+
0.4X , where Rnew is the increased resistance.

Table I shows the simulation results from the distribution

systems, which have high R/X ratios. The axis rotations intro-

duced by our method effectively reduce the FDPF approxima-

tion errors. Our method requires significantly fewer iterations

than the traditional FDPF method (percentage reductions of

33%, 54% and 46% for case33bw, case69, and case85).

Table II shows the simulation results for the transmission

systems. With the exception of case39 where our method takes

one additional iteration, our proposed method requires the

same number or fewer iterations for all considered test cases.

However, the improvements are modest (reductions of one or

two iterations) for cases with low R/X ratios. For cases with

increased resistance values, our method converges significantly

faster than the traditional FDPF method, with reductions in the

number of iterations ranging from 11% to 53%.

B. Multiple Axis Rotations vs. Single Axis Rotation

We next compare our proposed method to methods in

previous papers that use one axis rotation for the entire system

or subsystem [4]–[7], [9]. For the single axis rotation, we

choose the average angles of diagonal elements of the bus

admittance matrix as suggested by [12]. We consider a 3-bus

system based on case3 lmbd [16], a 4-bus system based on

TABLE III
MULTIPLE AXIS ROTATIONS VS. SINGLE AXIS ROTATION: AXIS ROTATION

AND NUMBER OF ITERATIONS FOR THE 3-, 4-, AND 5-BUS SYSTEMS.

3-bus system 4-bus system 5-bus system

Axis Multiple axis 27.8°, 3.8°, 25.7°, 25.7°, 40.5°, 8.0°, 7.9°,
rotations 26.3° 40.6°, 40.6° 33.0°, 45.0°

rotation Single axis
21.4° 33.3° 27.0°

rotation

Number Multiple axis
15 6 8

rotations
of Single axis

18 8 11
iterations rotation

FDPF 25 11 22

case4gs [15], and a 5-bus system based on case5 [15]. These

systems are described in the appendix (Table V).

Table III shows the axis rotations for the real power

equations at each bus, φi,P , calculated from (15) and the

number of iterations for all three systems. Note that the angles

for the reactive power equations, φi,Q, calculated from (17)

are similar to (15). The angles have a large spread, ranging

from 3.8◦ to 45.0◦. The results in Table III validate the

efficiency of our method. With the single axis rotation for

the entire system, the percentage reductions in the number of

iterations are 28%, 27.27%, and 50% for 3-, 4-, and 5-bus

systems, respectively. By applying the multiple axis rotations,

the percentage reductions in the number of iterations go up

to 40%, 45.45%, and 63.63% for 3-, 4-, and 5-bus systems,

respectively. Allowing each bus to have different axis rotations

thus results in faster convergence.

C. Large Voltage Angle Difference

Consider a system that has large voltage angle differences

between some connected buses. Four test cases are created

based on the 3-bus system shown in Fig. 3. Case 1 and

Case 3 have all lines as shown in Fig. 3, where Case 2 and

Case 4 remove the line connecting buses 2 and 3 (dashed

line). All lines in Case 1 and Case 2 are lossless. Table VI

in the appendix provides the system parameters. The theta

compensation is calculated via (18) under the assumption that

good estimates of all voltage angles are known.

bus 1

bus 2

2DP 3DP

1GP

bus 3

1DP

23 23R Xj

12 12R Xj 13 13R Xj

Fig. 3. The 3-bus system with one generator and two loads. The line
impedance connecting bus i to bus k is expressed as Rik + jXik .

Table IV presents the number of iterations for all cases.

In Case 1 and Case 3, note that the line flows bring power

both into and out of bus 3. As discussed in Section III-D,



TABLE IV
NUMBER OF ITERATIONS OF FDPF WITH A DIFFERENT φ AT EACH BUS

COMPARED TO TRADITIONAL FDPF IN CASES WITH LARGE VOLTAGE

ANGLE DIFFERENCES.

Case 1 Case 2 Case 3 Case 4
Method∗∗∗ #1 12 68 16 17

(Number of #2 12� 68� 13 14
iterations) #3 11 13 11 6

***Method #1: traditional FDPF. Method #2: FDPF with the multiple axis
rotations, but no theta compensation. Method #3: FDPF with multiple axis
rotations and theta compensation.
�Since all lines are lossless for these cases, method #2 takes the same number
of iterations as method #1.

theta compensation at bus 3 is not very beneficial for this

case, as validated by the modest improvements in the number

of iterations for these cases. Conversely, Case 2 and Case 4

show the significant improvements from applying the theta

compensation. The axis rotation without theta compensation

also improves convergence in Case 3 and Case 4. Note that

the convergence performance depends on the accuracy of the

voltage angles used to compute the theta compensation.

V. CONCLUSION AND FUTURE WORK

The FDPF method exhibits convergence challenges in sys-

tems with high R/X ratios, e.g., distribution and some sub-

transmission systems. This paper has formulated and analyzed

an axis rotation method that addresses these convergence

challenges. Our numerical tests show the effectiveness of

the proposed method over the traditional FDPF, especially

when lines have high R/X ratios. Furthermore, allowing for

different axis rotations at each bus can lead to significantly

improved convergence performance relative to prior methods

that use a single axis rotation, particularly when the lines’

R/X ratios widely vary across the system.

Our future work aims to develop alternative algorithms for

calculating the axis rotations in order to further improve the

convergence characteristics. Additionally, we will extend our

method to three-phase network models in order to further study

joint transmission/distribution power flow problems.

APPENDIX

In Tables V and VI, this appendix describes the 3-, 4-, and

5-bus test cases analyzed in Sections IV-B and IV-C.
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