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Abstract— Power flow models are fundamental to power
systems analyses ranging from short-term market clearing and
voltage stability studies to long-term planning. Due to the
nonlinear nature of the AC power flow equations and the
associated computational challenges, linearized approximations
(like the DC power flow) have been widely used to solve
these problems in a computationally tractable manner. The
linearized approximations have been justified using traditional
engineering assumptions that under “normal” operating con-
ditions, voltage magnitudes do not significantly deviate from
nominal values and phase differences are “small”. However,
there is only limited work on rigorously quantifying when it is
safe to use these linearized approximations. In this paper, we
propose an algorithm capable of computing rigorous bounds
on the approximation error in the DC power flow (and, in
future extensions, more general linearized approximations)
using convex relaxation techniques. Given a set of operational
constraints (limits on the voltage magnitudes, phase angle
differences, and power injections), the algorithm determines
an upper bound on the difference in injections at each bus
computed by the AC and DC power flow power flow models
within this domain. We test our approach on several IEEE
benchmark networks. Our experimental results show that the
bounds are reasonably tight (i.e., there are points within the
domain of interest that are close to achieving the bound) over
a range of operating conditions.

NOMENCLATURE

∠x: The phase of the complex number x (∈ [−π, π))
MH: Hermitian conjugate (conjugate transpose) of a ma-

trix M
(x)

H : Conjugate of the complex number x
j: The imaginary unit,

√
−1

Im (x): Imaginary part of the complex number x
Re (x): Real part of the complex number x

I. INTRODUCTION

Power flow models are integral to the operation of electric
power systems: some form of power flow analysis is used in
all operational aspects of the power grid (state estimation,
market clearing, transmission switching, etc.). In several
applications, the nonlinear nature of the AC power flow equa-
tions presents computational and convergence challenges.
Particularly in applications like transmission switching [1]
or post-blackout restoration [2] (where a power flow model
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needs to be solved iteratively within a mixed-integer pro-
gram) and market clearing (where it is imperative to have
an algorithm that consistently converges to well-defined,
unique Locational Marginal Prices), the AC power flow
model is not acceptable. Although great advances have been
made in convexifying the AC power flow model (e.g., [3]–
[7]), these techniques have not yet achieved the degrees
of reliability and scalability that are necessary for practical
system operations.

Thus, for several applications, linearized power flow
approximations have been more appropriate and seen
widespread adoption. The DC power flow is the most popular
approximation. This is a linearization of the active power
flow equations that ignores reactive power flows and trans-
mission losses and assumes zero deviations from nominal
voltage magnitudes and small phase angle differences. Sev-
eral studies have been done on the validity of the DC power
flow approximation (and more accurate variants of it) for
various applications [8]–[10]. The papers conclude that the
accuracy of the DC power flow depends on the application
setting and range of test cases considered. In fact, the authors
of [10] note that “At no stage in the tests were we able to
discern any statistical patterns in the dc-flow error scatters.
This defeated all our attempts to find concise, meaningful
indices with which to characterize and display dc-model
accuracies.” Thus, it is clear that characterizing DC power
flow errors is an involved task and cannot be boiled down
to simple rules of thumb or analytical measures.

Another motivation comes from changes in power system
operations. As power systems undergo transformations with
greater demand-side participation and the inclusion of dis-
tributed energy resources, the assumptions justifying linear
approximations may break down more often. For example, it
has been shown that under flow-reversal conditions, a power
system can enter modes where it is stuck at a low-voltage
solution [11]. Given the possibility for this and other non-
standard behavior, it is likely that the assumptions justifying
the use of linear power flow models will break down more
often in future power grids with bidirectional flows, and early
detection of such behavior is important.

Thus, irrespective of the details of the linear approximation
used, it is of interest to quantify the error in the DC approx-
imation and other linear approximations of the power flow
equations. To date, to the best of our knowledge, there has
not been much work that rigorously quantifies error bounds
on linear power flow approximations. A notable exception is
the work presented in [12], where the authors develop a new
linear power flow approximation for distribution networks



and prove a bound on the approximation error under the
assumption that the injections are contained within a ball
centered at zero injections. Recently, researchers have studied
alternative linearizations of the AC power flow equations and
related error bounds, using both rectangular coordinates [13]
and an implicit linearization scheme [14]. The error bound
in the implicit linearization scheme proposed in [14] requires
the computation of uniform bounds on the second derivatives
of an appropriate representation of the power flow equations,
which may itself be a computationally difficult problem.
Additionally, [2] proposes another linear approximation of
the AC power flow equations that is suitable for inclusion
in mixed-integer problems (e.g., post-blackout restoration,
transmission switching, etc.) but does not develop error
bounds. Our proposed approach is applicable to bounding
the error for these linear approximations and can also be
combined with mixed-integer programming solvers to handle
problems with discrete variables.

In this paper, we develop computational approaches based
on convex optimization that provide upper bounds on the
error of the linearized power flow equations relative to the
nonlinear AC power flow equations. This paper focuses on
the DC power flow approximation. Future extensions will
consider a wider range of linearizations. The error bounds are
valid over a range of operational conditions (limits on voltage
magnitude, phase angle differences, and active/reactive injec-
tions). Numerical experiments show that we can obtain fairly
tight bounds (with an gap of less than few MW between
the upper bound from the convex relaxation and a lower
bound from a feasible point) over a relatively wide range
of operational conditions. We envision that this approach
will provide an effective computational test of when it is
safe to use linearized power flow equations as a substitute
for the nonlinear AC equations, and hopefully also yield
insights into designing better linear approximations tailored
to particular operating conditions and system characteristics.

II. POWER FLOW MODEL AND APPROXIMATIONS

We use the standard bus-injection AC power flow model.
The network is described as an undirected graph with a set of
vertices N = {1, . . . , n} (vertices are also known as buses),
and a set of edges E = {(i, j)} (edges are also known as
lines). We write i ∼ k to denote that i and k are neighbors
in the network.

The power network is characterized by a complex sym-
metric (but not necessarily Hermitian) admittance matrix
Y ∈ Cn×n, where C denotes the set of complex numbers.
The matrix Y retains the sparsity structure of the network:
Yik 6= 0 if and only if (i, k) ∈ E . The off-diagonal
elements of Y are related to resistance and reactance of the
transmission lines:

Yik = − 1

(rik + jxik)
H

=
−rik + jxik
r2ik + x2ik

where j =
√
−1 and the line connecting buses i and k

has series impedance rik+ jxik.1 The diagonal elements are
Yii = gsh,i+ jbsh,i−

∑
k∼i Yik, where gsh,i+ jbsh,i denotes

the shunt admittance at bus i.
At each bus in the network, there is a complex voltage

phasor (Vi) that represents the steady-state sinusoidal voltage
at that bus. Denote the magnitude and angle of Vi as |Vi|
and θi, respectively. Each bus also has a complex net power
injection pi + jqi. The AC power flow equations are∑

k∈N

(Yik)
H
Vi(Vk)

H
= pi + jqi ∀i ∈ N (1)

We ignore the traditional distinctions between slack, PV,
and PQ buses here because our application scenario in-
volves bounding the error of a linearized approximation of
the power flow equations over a wide range of operating
conditions offline (at a time scale over which the voltage
magnitude setpoints and possibly even the designation of
the slack bus may change). However, it is not difficult to
incorporate PV buses into our approach. In fact, this will
only improve the quality of our error bounds since the
voltage magnitude constraints significantly restrict the range
of allowed operating conditions.

The equations (1) constitute a system of nonlinear
(quadratic) equations in the variables {Re (Vi) , Im (Vi)}ni=1.
Due to the difficulties arising from the nonlinear nature of
the AC power flow equations, a linearization of the AC
power flow model is typically used as a proxy for the true
nonlinear model. The DC power flow model is a commonly
used approximation that employs the following assumptions:

a. Reactive power flows can be neglected.
b. The transmission lines are lossless (i.e., their resistance

can be ignored), so

Yik = jIm (Yik) = −jBik = − j

xik
.

Shunt elements are ignored as well, so Yii =
−
∑
k∼i Yik.

c. The voltage magnitudes at all buses are approximately
equal, so we can assume |Vi| = 1 at all buses.

d. There are small angle differences between connected
buses such that sin (θi − θk) ≈ θi − θk, ∀ (i, k) ∈ E .

Under these assumptions, the AC power flow equations (1)
reduce to the DC power flow equations:∑

k∼i

Bik (θi − θk) = pi ∀i ∈ N (2)

There are several variants of DC power flow:
a. Cold start (linearization about a fixed point like a flat

voltage profile, as in (2)) or warm start (linearization
about a specified AC power flow solution).

b. Augmentation with linear approximations of active
power losses.

c. Accounting for transformers, shunt elements, etc.

1Our approach is easily extensible to more general line models which
include shunt admittances, non-zero phase shifts, and off-nominal voltage
ratios. The numerical experiments in Section IV are implemented using the
line model in MATPOWER [15].
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Fig. 1: A power flow model viewed as a mapping from
voltages to power injections

These modifications are studied in detail in [10]. We do not
get into the details of these more accurate approximations in
this paper, but note that our techniques can easily be extended
to analyze more sophisticated DC power flow models. Most
transmission operators use one of these variants for the
purposes of market clearing and only use the AC power
flow model to check feasibility post-hoc. Hence, we will
focus on quantifying the error bounds on the DC power
flow model. Our technique also generalizes in principle to
other linear approximations (e.g., the Linearized DistFlow
[16] approximation that arises from a linearization of the
Baran-Wu [17] model of distribution networks), but we leave
concrete developments and applications for future work.

III. MAIN TECHNICAL RESULTS

This section first provides a conceptual overview and then
the technical details for our approach to bounding the DC
power flow approximation error.

A. Overview of Our Approach

Given its widespread use and popularity, we focus on
bounding the error in the DC power flow model relative to
the AC power flow model. We view power flow models as
mappings from the space of complex voltages to the space
of power injections (see Fig. 1). In this view, the mappings
are explicit: inputting the voltages in equations (1) and (2)
yields power injections as outputs (either active and reactive
power injections for the AC power flow model or just active
power injections for the DC power flow model).

We envision our approach being applied to an operational
power systems setting as follows. The system operator knows
the current operating state of the network (complex voltages
and power injections) and, from any appropriate load predic-
tion algorithm, a range of expected operating conditions over
the next few hours. The question of interest then is whether
the DC power flow model will give satisfactory results over
the range of expected future operating conditions. To give a
quantitative answer to this question, we propose to solve the
following optimization problem (stated in words here, with
the exact mathematical formulation in Section III-B):

max
i

∣∣pACi (|V |, θ)− pDCi (θ)
∣∣

subject to operational bounds on V, θ, pAC , and q

where pACi (|V |, θ) refers to the active power injection at
bus i from the AC power flow model with inputs |V | and θ,
pDCi (θ) refers to the active injection at bus i from the DC
power flow model with input θ, and | · | is the absolute value
operator. The global solution to this optimization problem
yields a guaranteed bound on the difference between the
outputs (i.e., power injections) of the AC and DC power flow
models with the same inputs (i.e., angles θ), provided that

the system remains within the operational bounds on voltage
magnitudes, phase angle differences, and power injections
predicted by the system operator. If the maximum difference
in outputs is small enough, one can confidently use the
DC power flow model as a proxy for the AC power flow
model. If not, the approximation may need to be refined,
and the optimization algorithm can provide guidance on the
refinement by suggesting parameter values (voltage magni-
tudes/angles/injections) at which the difference between the
DC and AC power flow models can be large.

A similar approach could also be used in longer-term
planning studies, where the computational burden of solving
many scenarios and the possible formulation of bilevel/multi-
stage optimization problems necessitates the use of linear
power flow approximations. The proposed approach can
quantify when DC power flow models can safely be used.
If the DC power flow model is not shown to be sufficiently
accurate, the proposed approach can suggest regions of the
parameter space for refinement of the approximation.

We note that the viewpoint of power flow models as
nonlinear mappings from voltages to power injections is the
converse of the way power flow models are often used in
practice. System operators typically specify power injections
and solve the power flow equations to determine the corre-
sponding voltages and flows. While it would be desirable to
work with the reverse map directly (i.e., constrain injections
to be the same in both the AC and DC power flow models and
bound the differences in the voltage magnitudes and phase
angles), the existence of multiple power flow solutions in
the AC model complicates matters. When we maximize the
difference between the outputs of the AC and DC power
flow models, an optimization algorithm may choose a low-
voltage, unstable solution of the AC power flow equations
to maximize the difference from the DC power flow model.
Since the system will be operated in a state corresponding to
a high-voltage, stable power flow solution, selection of a low-
voltage, unstable solution in the error bounding algorithm
would result in an overestimate of the worst-case error
between the AC and DC power flow models. One approach
to dealing with this issue is to impose operational constraints
on the AC model so that it is forced to pick the high-voltage
solution (assuming that there indeed exists a unique high-
voltage power flow solution). It is possible to extend our
approach this setting, but we leave this for future work.

B. Mathematical Formulation of Error Quantification

We now formalize our approach. Consider the set of
operational constraints on voltage magnitudes, phase angle
differences, and active and reactive power injections:

(vi)
2 ≤ |Vi|2 ≤ (vi)

2 ∀i ∈ N (3a)

θik ≤ θi − θk ≤ θik ∀ (i, k) ∈ E (3b)
p
i
≤ pi ≤ pi ∀i ∈ N (3c)

q
i
≤ qi ≤ qi ∀i ∈ N (3d)

where ( · ) and ( · ) denote specified upper and lower limits,
respectively, on the corresponding quantities. Note that the



active and reactive power injection limits in (3) are not
necessarily generation capacity limits. Typically, we consider
a range of injections around a nominal AC power flow
solution, with the range determined by a forecast of how
much load demands and generator outputs are expected to
change over the time period of interest. The angle difference
and voltage magnitude constraints typically correspond to
network-defined limits. In practice, operator actions and
automatic controllers will work to ensure that voltage mag-
nitudes and angle differences are within reasonable limits.

Our formulation is intended to quantify the error from the
DC approximation over a range of operational conditions,
which may include variations in the voltage setpoints of gen-
erator buses. Thus, the active and reactive power injections
and voltage magnitudes are all allowed to change.

The optimal objective value of the following problem gives
an error bound on the active power injection at bus i:

max
V,θ,pAC,q,pDC

|pACi − pDCi | subject to (4a)∑
k∈N

(Yik)
H
Vi(Vk)

H
= pACi + jqi ∀i ∈ N (4b)∑

k∼i

−Im (Yik) (θi − θk) = pDCi ∀i ∈ N (4c)

∠Vi = θi ∀i ∈ N (4d)

(vi)
2 ≤ |Vi|2 ≤ (vi)

2 ∀i ∈ N (4e)

θik ≤ θi − θk ≤ θik ∀ (i, k) ∈ E (4f)

p
i
≤ pACi ≤ pi ∀i ∈ N (4g)

q
i
≤ qi ≤ qi ∀i ∈ N (4h)

θ1 = 0 (4i)

Constraint (4b) enforces the AC power flow equations, (4c)
enforces the DC power flow equations, and (4d) enforces
consistency between the AC power flow variables V and
the DC power flow variables θ, where ∠ ( ·) denotes the
phase angle of the corresponding complex variable. Con-
straints (4e)–(4h) correspond to (3). Constraint (4i) sets the
angle reference at bus 1.

While (4) characterizes the DC power flow accuracy in
terms of errors in active power injections, note that our
approach can easily be extended to studying error bounds
on flows or other quantities of interest by modifying the
objective function (4a).

Unfortunately, due to the nonlinear AC power flow con-
straints (4b) and the consistency constraints (4d), (4) is non-
convex and finding the global solution is challenging. Hence,
we propose to use convex relaxation techniques to upper
bound the global solution of (4).

The quadratic nonlinearities in (4b) can be handled using
a semidefinite programming (SDP) relaxation [4], and the
connection between the angles θ and the voltages V can
be handled using the QC relaxation [18]. Applying these
relaxations enlarges the feasible space, therefore providing
an upper bound on the globally optimal objective value
of (4). We also obtain lower bounds by using a nonlinear
programming algorithm to obtain a local optimum of (4). The

combination of these upper and lower bounds characterizes
the worst-case error in the DC power flow approximation.

C. Convex Relaxation of (4)

We now describe the convex relaxation of (4). We define
the Hermitian matrix W = V V H ∈ Cn×n,W = WH.
Further, we introduce the auxiliary variables vi = |Vi| ∈ Rn.
Both the power injection constraints (4b) and the voltage
magnitude constraints (4e) are linear in terms of the entries
of the matrix W . The entries of W can be expressed in terms
of vi and θi:

Wik = vivk (cos (θi − θk) + j sin (θi − θk)) , (5a)

Wii = v2i . (5b)

The QC relaxation constructs convex envelopes for these
nonlinear equality constraints. The right-hand sides of the
conditions in (5) are replaced by a convex set that depends on
the values of v and θ, such that the overall condition becomes
a convex constraint on v, θ, and W . The QC relaxation is
built using a set of templates that are described below.

Given variables x ∈ [x, x] and y ∈ [y, y], define

〈x〉T =
{
t : (x+ x)x− xx ≥ t ≥ x2

}
, (6a)

〈x, y〉M =

t :

t ≥ yx+ xy − xy
t ≥ yx+ xy − xy
t ≤ yx+ xx− xy
t ≤ yx+ xy − xy

 . (6b)

Note that 〈x〉T and 〈x, y〉M are set-valued functions of x
and y, with the sets depending on the bounds x, x, y, and
y. The QC relaxation also defines convex envelopes of the
sine and cosine functions. Define xm = max (|x|, |x|) and

〈x〉S =

{
s :

{
s ≤ cos

(
xm

2

) (
x− xm

2

)
+ sin

(
xm

2

)
s ≥ cos

(
xm

2

) (
x+ xm

2

)
− sin

(
xm

2

) }
,

(7a)

〈x〉C =

{
c :

{
c ≤ 1− 1−cos(xm)

(xm)2
x2

c ≥ cos(x)−cos(x)
x−x (x− x) + cos (x)

}
.

(7b)

The convex envelopes 〈x〉T , 〈x, y〉M , 〈x〉S , and 〈x〉C enclose
the square, bilinear product, sine, and cosine functions,
respectively.

The accuracy of the QC relaxation depends on the tight-
ness of bounds on the voltage magnitudes and angle dif-
ferences. The bounds on the voltage magnitudes and angle
differences specified in the operational constraints (3) may
not actually be achievable due to the limitations imposed by
other constraints. To infer tighter bounds derived from the
potentially weaker bounds specified in the operational con-
straints, we use a bound tightening algorithm [19]. (See [20],
[21] for other bound tightening approaches.) Bound tighten-
ing algorithms identify situations where the combination of
the AC power flow equations with the operational constraints
imply tighter bounds on voltage magnitudes and angle dif-
ferences than those originally specified in the operational



constraints. In order to perform this inference, we solve a
set of optimization problems:

min /max f subject to (1) and (3) (8)

where f is a placeholder for |Vi| at each bus i ∈ N as well
as the phase angle differences θi−θk for each line (i, k) ∈ E .
We can use any relaxation technique to handle the non-
convexity in (8) introduced by the power flow equations (1)
and voltage magnitude limits (3a). Solving a relaxation of (8)
provides a bound on the corresponding quantity f that must
hold at any solution of the AC power flow equations within
the operational constraints (3). If the bound resulting from (8)
is tighter than the previously specified bound, the specified
bound is replaced by the solution to (8).2 Tighter bounds
on certain quantities can improve the bounds for other
quantities, so the bound tightening is performed iteratively
until reaching a fixed point where no further bounds can
be tightened. See [19]–[21] for details regarding efficient
implementations of bound tightening algorithms.3

Using the convex envelopes defined in (6) and (7), we
formulate the following convex relaxation of (4) for σ ∈
{−1,+1}:4

max
W,V prod,v,c,s,θ,pAC,q,pDC

σ
(
pACi − pDCi

)
subject to (9a)∑

k∈N

(Yik)
H
Wik = pACi + jqi ∀i ∈ N (9b)

W � 0, W =WH (9c)∑
k∼i

−Im (Yik) (θi − θk) = pDCi ∀i ∈ N (9d)

Wii ∈ 〈vi〉T ∀i ∈ N (9e)

Re (Wik) ∈
〈
V prod
ik , cik

〉M
∀ (i, k) ∈ E (9f)

Im (Wik) ∈
〈
V prod
ik , sik

〉M
∀ (i, k) ∈ E (9g)

V prod
ik ∈ 〈vi, vk〉M (i, k) ∈ E (9h)

V prod
ii =Wii ∀i ∈ N (9i)

cik ∈ 〈θi − θk〉C ∀ (i, k) ∈ E (9j)

sik ∈ 〈θi − θk〉S ∀ (i, k) ∈ E (9k)(
vmin
i

)2 ≤Wii ≤ (vmax
i )

2 ∀i ∈ N (9l)

vmin
i ≤ vi ≤ vmax

i ∀i ∈ N (9m)

tan (θik) Im (Wik) ≤ Re (Wik) ≤ tan
(
θik
)
Im (Wik)

∀ (i, k) ∈ E (9n)

θik ≤ θi − θk ≤ θik ∀ (i, k) ∈ E (9o)

2Tighter in this context means that maximization of (8) yields a value that
is less than the specified upper bound or that minimization of (8) yields a
value that is greater than the specified lower bound.

3The numerical results in Section IV use the bound tightening algorithm
described in [19], including constraints from both the QC relaxation [18]
and the semidefinite programming relaxation [4].

4Note that the numerical results in Section IV also strengthen (9) using
“Lifted Nonlinear Cuts” and slightly stronger relaxations of the sine and
cosine functions for cases where the upper and lower angle difference limits
θik and θik are either both non-negative or both non-positive for some line
(i, k) ∈ E . See [22] for the formulations of these constraints.

pmin
i ≤ pACi ≤ pmax

i ∀i ∈ N (9p)

qmin
i ≤ qi ≤ qmax

i ∀i ∈ N (9q)
θ1 = 0 (9r)
Im (W1,1) = 0 (9s)

The maximum of the solutions’ objective values for σ =
{−1,+1} gives an upper bound on |pACi − pDCi |. Con-
straints (9b) and (9c) form the SDP relaxation of the
quadratic constraint (4b) (i.e., W = V V H is relaxed to
W � 0). (We also exploit network sparsity using the ap-
proach in [23], [24].) Constraint (9d) formulates the DC
power flow model. Constraints (9e)–(9k) form the QC relax-
ation with variables V prod, v, c, s, and θ and construct the
links to the SDP relaxation’s variable W . Constraints (9l)–
(9q) enforce the operational constraints (3). Constraints (9r)
and (9s) set the angle reference.

We need to solve two convex optimization problems per
bus, which could potentially be computationally intensive.
However, the different problems are independent and can
thus be solved in parallel. Further, the applications discussed
previously only require solving the problem offline once
every few hours.

D. Exactness of Relaxation

The SDP relaxation employed in (9) is exact when its
solution satisfies the condition rank (W ) = 1 [4]. For the
purposes of obtaining an upper bound on the worst-case
error in the DC power flow approximation, exactness of the
relaxation is not necessary: we only use the bound given by
the relaxation’s objective value, not the decision variables.
However, a solution for which rank (W ) = 1 can also
provide a lower bound on the worst-case error in addition to
the upper bound available from the solution’s objective value.
Specifically, in this case, let η be a unit-length eigenvector
corresponding to the non-zero eigenvalue λ of W . The
voltage vector VSDP =

√
λ η is a feasible solution to (4),

and thus the corresponding objective value lower bounds the
worst-case error in the DC power flow approximation. Note
that the potential for differences between the voltages in (9)
associated with the QC and SDP relaxations (i.e., v∠θ for the
QC relaxation and the vector VSDP implied by a rank-one W
matrix for the SDP relaxation) mean that the objective value
associated with VSDP is not necessarily an upper bound
on the worst-case error. In other words, exactness of (9)
requires both the SDP and QC relaxations to be exact, which
is generally not the case.5

IV. NUMERICAL RESULTS

In order to numerically evaluate our approach, we com-
puted a nominal operating point by solving an AC Opti-
mal Power Flow (OPF) problem for the IEEE test cases
in the MATPOWER package [15]. This section compares

5Satisfaction of the rank condition rank (W ) = 1 indicates that tighten-
ing the constraints corresponding to W (using, e.g., higher-order moment
relaxations [5]) will not improve the optimal objective value of (9). However,
even if rank (W ) = 1, it may still be possible to tighten the constraints
in (9) corresponding to the QC relaxation variables V prod, v, c, s, and θ.



Power Injection Error: IEEE 14-Bus System
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Fig. 2: Comparison of upper and lower bound on the worst-
case error in active power injections from applying the DC
power flow approximation to the IEEE 14-bus system. The
proposed algorithm is able to estimate the error bound up to
6 MW while allowing a 50% variation in injections around
the nominal operating point for this system. The blue region
shows the range of worst-case errors from 1000 sets of
active and reactive power injections (in steps of 5% variation)
chosen from a uniform random distribution.

a lower bound on the worst-case error in the DC power
flow approximation (obtained from a local optimum of
(4) calculated using a modification of MATPOWER’s OPF
solver) with the upper bound (obtained from solving (9) for
σ = {1,−1} and taking the maximum of the two optimal
values) for a range of injections around this nominal point.
The computations were performed using MATLAB 2013a,
YALMIP 2015.06.26 [25], and Mosek 7.1.0.28 on a com-
puter with a quad-core 2.70 GHz processor and 16 GB
of RAM.

The values pmin
i , pmax

i , qmin
i , and qmax

i were obtained by
allowing a fixed percentage variation around the nominal
(OPF) solution (that is, the active and reactive injections are
allowed to vary a fixed percentage from their nominal values,
while also remaining within the specified upper and lower
generation limits for buses with generators). The voltage
magnitudes are constrained to the values specified in the test
cases and a maximum angle difference of ±30◦ was enforced
between connected buses.6

For the IEEE 14-bus system, Fig. 2 shows the upper and
lower bounds on the worst-case error in the active power
injections for the DC power flow approximation as a function
of the allowed injection variation. The results show that even
allowing 50% variation in injections, the upper and lower
bounds are within 6 MW of each other. Given the actual
variation in loads on real power systems, this should allow
us to capture the variability over several hours.

Fig. 2 also shows the results of a computational ex-

6The bound tightening approach [19] reduced the ranges of angle differ-
ences and voltage magnitudes in the QC relaxation’s constraints in (9).
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Fig. 3: Comparison of upper and lower bounds on the worst-
case error in active power injections at each bus from apply-
ing the DC power flow approximation to the IEEE 14-bus
system for 5% and 50% allowed injection variation.

periment. Specifically, for each level of allowed injection
variation (in steps of 5%), we considered 1000 sets of active
and reactive power injections that satisfied the operational
constraints (3), randomly selected from a uniform distri-
bution. The blue region in Fig. 2 illustrates the range of
worst-case error between the DC and AC power flow models
among these power injections. The dotted blue line shows
the average value of the worst-case error among the random
injections. With values less than the upper bound from (9),
these results numerically validate the proposed approach. The
results also show that specifically chosen power injections
may induce significantly larger worst-case errors for the DC
power flow as compared to randomly chosen injections.

Plots showing upper and lower error bounds at each bus
in the IEEE 14-bus system are given in Fig. 3a (for 5%
allowed variation) and Fig. 3b (for 50% allowed variation).
This information is valuable because it indicates the buses at
which the DC power flow approximation can have the largest
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Power Injection Error: IEEE 57-Bus System
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Power Injection Error: IEEE 118-Bus System
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Fig. 4: Comparison of upper and lower bounds on the worst-
case error in active power injections from applying the DC
power flow approximation to several IEEE test cases. The
blue region shows the range of worst-case errors from 1000
sets of active and reactive power injections (in steps of 5%
variation) from a uniform random distribution.

error. We observe that the worst-case error varies by bus,
which motivates future work to investigate specific power
system characteristics that are associated with large potential
error in the DC power flow approximation.

Fig. 4 shows the upper and lower bounds for the IEEE 30-,
57-, and 118-bus systems. Results for the IEEE 30- and
57-bus systems are similar to those for the IEEE 14-bus
system in that the upper and lower bounds are relatively close
(less than 10 MW) over a wide range of allowed injection
variation. For the IEEE 118-bus system, the gap between
the bounds is relatively small (less than 10 MW) when the
allowed injection variation is less than 10% but increases
quickly afterwards. As shown in blue, the results for the
computational experiment with random power injections is
repeated for each system, with qualitatively similar results
to those in for the IEEE 14-bus system.

These results motivate future work to improve both the
upper and lower bounds. Tightening the upper bounds may
be possible by enhancing the convex relaxations, using
techniques such as those in [5], [21], [22], [26]. We anticipate
benefits from tightening the constraints associated with both
the SDP relaxation (using, e.g., Lasserre’s moment relaxation
hierarchy [5], [27], which generalizes the SDP relaxation)
and the QC relaxation (using, e.g., the stronger constraints
on the angle variables in [21] and [26]).

Improving the lower bounds may be possible through
better local solution techniques (e.g., initializing the local
solver with the solution to the relaxation). We note that
local solutions to (4) have been observed in the numerical
experiments. Local solutions are evident for the IEEE 30-bus
system in Fig. 4, where the DC power flow approximation
had larger worst-case errors for some sets of random power
injections than injections obtained via local solution of (4).

Computations for the IEEE 14-, 30-, 57-, and 118-bus
systems required an average of approximately 1.0, 2.8,
13.3, and 75.0 minutes, respectively, in total for all 2n
solutions of (9) to calculate an upper bound. The lower
bounds had average solution times of 0.5, 2.4, 5.9, and
39 seconds, respectively, for the four systems. The vast
majority (approximately 98% for the IEEE 118-bus system)
of the solution time for (9) was spent performing the bound
tightening. Alternative bound-tightening approaches (e.g.,
not including the SDP constraints in the bound tightening
procedure, adopting from the approach in [20], etc.) thus
have the potential to significantly reduce the computational
burden of the proposed algorithm. Since all of the bound-
tightening computations and the 2n solutions of (9) can
be performed in parallel, we anticipate that the proposed
approach can be scaled to practical power systems.

V. CONCLUSIONS AND FUTURE WORK

We have presented a novel approach to quantifying errors
in linearized power flow approximations. Preliminary results
on IEEE test cases indicate that our technique is able to
characterize relatively tight bounds on the worst-case error
over a range of operating conditions. Given the motivations
outlined in Section I, we envision that this will eventually



develop into a useful tool for detecting situations where
linearized models cannot be trusted and one needs to resort
to nonlinear power flow models to obtain sufficient accuracy.
However, we acknowledge that the results, while promising,
are preliminary and need to be tested carefully across a wider
range of test cases and error metrics. The following are a few
concrete directions for future work:

1. Alternative power flow linearizations and test cases:
This paper used a basic cold-start DC power flow
approximation. As noted in [10], more sophisticated
variants of the DC power flow approximation often have
better accuracy, and other power flow linearizations
have been developed for particular applications (e.g.,
the Linearized DistFlow model [16], [28] and the lin-
earizations in [2], [12]–[14]). Our approach extends in
a straightforward manner to such linearizations, and we
will investigate our results in this more general context.
Also, we will study the robustness of the results across
a broader set of power system test cases and perform
comparisons to other error bounds [12]–[14].

2. Tighter relaxations: Recent literature [5], [21], [22],
[26] has proposed enhancements to the QC and SDP
relaxations used in this work. Using these enhanced re-
laxations should allow us to obtain tighter error bounds
over wider ranges of operational conditions.

3. Error characterization: The proposed approach charac-
terizes the worst-case linearization error for each bus,
and natural extensions to other metrics (e.g., errors in
line flows) can be similarly localized. This capability
suggests the potential for identifying specific aspects
of power system models (e.g., topology characteristics,
electrical parameter values, etc.) that result in good or
poor performance of the power flow approximations.

4. Designing new linearizations: Given a method for ob-
taining upper bounds on the error of linear power flow
approximations, a natural next step is trying to design
“optimal linearizations” that are tailored to a range of
operational conditions. One potential approach may be
to iterate between bound computation (finding a voltage
profile that maximizes the error bound) and optimizing
coefficients of a linear approximation to minimize the
error at the previous worse-case voltage profile.
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Trans. Power Syst., vol. 24, no. 3, pp. 1290–1300, Aug. 2009.

[11] H. Nguyen and K. Turitsyn, “Voltage Multistability and Pulse Emer-
gency Control for Distribution System With Power Flow Reversal,”
IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 2985–2996, Nov. 2015.

[12] S. Bolognani and S. Zampieri, “On the Existence and Linear Approx-
imation of the Power Flow Solution in Power Distribution Networks,”
IEEE Trans. Power Syst., vol. 31, no. 1, pp. 163–172, Jan. 2016.

[13] S. Dhople, S. Guggilam, and Y. Chen, “Linear Approximations to AC
Power Flow in Rectangular Coordinates,” in 53rd Annu. Allerton Conf.
Commun., Control, and Comput., Sept. 2015, pp. 211–217.

[14] S. Bolognani and F. Dörfler, “Fast Power System Analysis via Implicit
Linearization of the Power Flow Manifold,” in 53rd Annu. Allerton
Conf. Commun., Control, and Comput., Sept. 2015, pp. 402–409.

[15] R. Zimmerman, C. Murillo-Sánchez, and R. Thomas, “MATPOWER:
Steady-State Operations, Planning, and Analysis Tools for Power
Systems Research and Education,” IEEE Trans. Power Syst., vol. 26,
no. 1, pp. 12–19, 2011.

[16] M. Farivar, L. Chen, and S. Low, “Equilibrium and Dynamics of Local
Voltage Control in Distribution Systems,” in IEEE 52nd Annu. Conf.
Decis. Control (CDC), Dec. 2013, pp. 4329–4334.

[17] M. Baran and F. Wu, “Optimal Capacitor Placement on Radial
Distribution Systems,” IEEE Trans. Power Del., vol. 4, no. 1, pp.
725–734, Jan. 1989.

[18] C. Coffrin, H. Hijazi, and P. Van Hentenryck, “The QC Relaxation: A
Theoretical and Computational Study on Optimal Power Flow,” IEEE
Trans. Power Syst., vol. 31, no. 4, pp. 3008–3018, July 2016.

[19] ——, “Strengthening Convex Relaxations with Bound Tightening
for Power Network Optimization,” in Principles and Practice of
Constraint Programming, ser. Lecture Notes in Computer Science,
G. Pesant, Ed. Springer, 2015, vol. 9255, pp. 39–57.

[20] C. Chen, A. Atamtürk, and S. S. Oren, “Bound Tightening for the
Alternating Current Optimal Power Flow Problem,” IEEE Trans.
Power Syst., vol. 31, no. 5, pp. 3729–3736, Sept. 2016.

[21] B. Kocuk, S. Dey, and A. Sun, To appear in Oper. Res., preprint
available at arXiv:1504.06770.

[22] C. Coffrin, H. Hijazi, and P. Van Hentenryck, “Strengthening the
SDP Relaxation of AC Power Flows with Convex Envelopes, Bound
Tightening, and Lifted Nonlinear Cuts,” arXiv:1512.04644, Jan. 2016.

[23] R. Jabr, “Exploiting Sparsity in SDP Relaxations of the OPF Problem,”
IEEE Trans. Power Syst., vol. 27, no. 2, pp. 1138–1139, May 2012.

[24] D. Molzahn, J. Holzer, B. Lesieutre, and C. DeMarco, “Imple-
mentation of a Large-Scale Optimal Power Flow Solver Based on
Semidefinite Programming,” IEEE Trans. Power Syst., vol. 28, no. 4,
pp. 3987–3998, 2013.
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