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Abstract—This research paper presents an algorithmic
approach to optimizing state estimation errors in unbalanced
distribution networks as the integration of renewable energy
sources such as solar and wind increases. These resources
introduce uncertainty into grid models, challenging the
satisfaction of engineering constraints.

The study focuses on the impacts of this randomness
on power flow equations and aims to enhance grid state
estimation by combining electric grid physics with techniques
from probability theory. The goal is to develop methodologies
that effectively utilize uncertain measurement data, optimizing
the accuracy and efficiency of smart meter data streams.

The algorithm implementation aims to learn the optimal
line parameters (resistance and reactance) in a three-phase
unbalanced distribution system by minimizing the discrepancy
between predicted and measured voltage values. It leverages
the LinDistgFlow power flow approximation model to simulate
voltage magnitudes, and formulates a loss function repre-
senting the squared error between the predicted and noisy
measurements. The ADAM optimization algorithm iteratively
minimizes this loss function, adjusting the parameters to
achieve the best fit to observed data. This contributes to
improving the accuracy of power flow modeling under noisy
and unbalanced conditions.

Index Terms—estimation; distribution systems; smart meter
measurements; probability theory

I. INTRODUCTION

Efficient use of smart meter bandwidth is an emerging
challenge in distribution systems engineering. Ongoing
research has explored this topic in distribution networks
with limited communication bandwidth [1]. By applying
mathematically robust theories to practical challenges in
distribution system state estimation, optimization, and
control, the aim is to overcome these hurdles effectively.

The modern electric grid is transitioning from a central-
ized to a more distributed architecture, presenting new
operational challenges due to the anticipated rapid growth
of diverse distributed energy resources (DER), including
rooftop photovoltaics, electric vehicles, and storage systems
at the edge of the grid [2]. This shift also introduces multiple
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decision-makers who could manipulate the system under
decentralized electricity market designs.

State estimation errors occur when there are discrepan-
cies between the actual state of a distribution network
and the estimated values derived from measurements.
Accurate estimation is critical for maintaining grid stability
and optimizing operations, especially as the adoption of
renewable energy sources introduces uncertainty.

The inherent randomness of renewable energy resources
causes it to be challenging to generate realistic power flow
solutions. While classical approaches to solving the power
flow equations with a large suite of possible renewable sce-
narios can generate useful synthetic data, this approach is
challenged by numerous limitations. This includes the large
amount of data processing and computational resources
required and the limitation of sample-based approaches to
generalized to unseen data.

II. BACKGROUND

This research aims to propagate the uncertainty of
renewable generation scenarios through physics-informed
power flow models, specifically utilizing the LinDistFlow
approximation. In this context, linear matrices are used to
map n-dimensional power injection vectors to corresponding
voltages, where the power injections are modeled as random
variables drawn from a given distribution. The goal is to
demonstrate that, for a random vector of power injections,
the expected value of the maximum voltage across the grid
is bounded—a key result in ensuring grid stability.

Additionally, this study will differentiate between dis-
tribution networks and transmission networks, focusing
on the implications of randomness in the context of
distribution grids, where renewable power is injected at
various points. By leveraging the operator norm of the
admittance matrix, the research will provide insights into
future scenarios in which large sections of the grid randomly
inject renewable power, highlighting both the opportunities
and risks associated with such a system. In Fig. [1] we
illustrate the high-level idea behind this research.

An important aspect of the research is a grid model-
informed machine learning (ML) tool that integrates het-
erogeneous data streams and creates synchronous measure-
ment snapshots for use by a hybrid robust state estimator
[3]. This framework not only provides accurate state
estimates but also real-time feedback for the refinement of
machine learning models, leading to improved monitoring
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Fig. 1. Ilustration of the problem: Dynamic sampling of streaming smart
meters to expose extreme voltage magnitude perturbations with high
probability.

performance [3]]. This has been experimentally validated
through simulated scenarios on an electric utility’s dis-
tribution system [3]]. By combining computational tools
and techniques, the complex challenges presented by the
integration of renewable resources into modern electric
distribution grids are acknowledged.

A key contribution is the introduction of a new stochastic
LinDistFlow model that is agnostic to the probability
distributions of nodal power injections. This model helps to
understand the probabilistic concentration of nodal voltage
magnitudes, which are derived from the model and are
explicitly dependent on the topology and parameters of the
network. Furthermore, the LinDistFlow model allows for
a linear approximation of what is originally a nonlinear,
complex problem [4]. The LinDist3Flow model takes this a
step further for 3-phase networks, whose applications are
primarily used for high power-consuming devices [4].

A. Related work

The three-phase unbalanced LinDist3Flow approximation
[[4] is given as

v =1y + Ay ' bdiag(H”)A; Tp + A; ' bdiag(H?)A; " g,

where v € R3" is a vector of squared single-phase voltage
magnitudes for each phase (a,b,c), As is the network
incidence matrix, blkdiag(H”) and blkdiag(H?) are the
block diagonal matrices for each line(i,j), and P and Q
are the active and reactive power injection vectors. The
paper improves on the LinDist3Flow approximation via a
mathematical optimization, extending the work of [4].

III. PROBLEM FORMULATION

The LinDist3Flow approximation is the linearization of the
complex and non-linear AC power flow equations for 3-phase
radial distribution networks [4]] [5] . The LinDistFlow model
linearizes the DistFlow equations by assuming that the active
and reactive line losses are much smaller than the active
and reactive line flows. This linearization makes the model
computationally efficient and suitable for optimization
problems in distribution systems [].

A. The LinDistFlow Model

The LinDistFlow model approximates the nodal voltage
vector as

v=uvy+Rp+Xgq,

where p and g are the active and reactive power injection
vectors, and the nodal matrices R and X are given by

R = A" bldiag(H?) A}, X = A;'bldiag(H?) A;".

Here, for each branch ¢ := (i, j) € &, the local impedance
matrices are defined as
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and bldiag(H”) and bldiag(H?) are block diagonal matri-
ces (of dimensions 3m X 3m, where m is the number of
branches) that aggregate these blocks. In symbols,
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B. Error Minimization in a parameterized LinDist3Flow model

Let y denote the measured nodal voltage vector. The
prediction error (or residual) is then

e=y-v=y—(Rp+Xgq).

We quantify this error using a least-squares loss function:

£, = S lell? = 2 Iy = (R) p+ X () I

Our objective is to minimize this loss, i.e.,
1
min £(r,x) =min = [ly - (R(r) p+ X(x) q)|*.
rXx rx 2

Minimizing £(r, x) adjusts the branch parameters r and
x so that the model’s predicted voltage v closely matches
the measurements y. This process not only enhances the
accuracy of the state estimation but also provides sensitivity
information about how changes in r and x affect the overall
error, thereby calibrating the model to better reflect the
physical system.This optimization process estimates the best-
fitting values of the resistance and reactance vectors, r and
X, to ensure that the predicted voltage profile aligns as
closely as possible with the observed (noisy) measurements.



IV. REsuLTs

This experiment evaluates the performance of the opti-
mization procedure in recovering the best-fitting parameters
6 = [r; x] that describe the physical characteristics of the
network lines.

To implement the optimization, we follow the methodol-
ogy proposed by Babak in Section IV of his paper. Specifically,
we construct the reduced 3-phase incidence matrix As
where each line-phase pair is treated independently. This
design accounts for multigraph structures (i.e., multiple
connections between the same buses) and unbalanced
systems, where some lines may not be present on all
three phases. In Babak’s approach, each bus-phase and line-
phase combination is mapped to a unique row and column,
respectively, and entries in Az are assigned values of +1,
—1, or 0, depending on whether the bus is the sending or
receiving end and whether the phase is active. Using this
matrix, we build the impedance matrices R and X based
on estimated resistance and reactance values, encoded in
the block diagonal matrices H, and H,. These matrices
are constructed by scaling identity blocks according to the
parameter vector 8, and concatenating them using a block
diagonal operation. This structure allows the optimization
process to be phase-aware and topology-consistent, even in
the presence of missing or unbalanced phases.

A. Analytical results

To verify the solution of the new LinDist3Flow model, we
compare our result against the result of an AC Power Flow
Solver. Utilizing the PowerModelsDistribution package in
Julia, we can utilize the built-in functions to find the voltage
magnitudes and phase angles that comprise the solution. We
simply call this function and print the voltage magnitudes
and phase angles at each bus, which can be seen here:
Furthermore, we can write our own implementation of the

EXIT: Optimal Solution Found.

Bus primary: Voltage Magnitude = [0.22653762676502015, 0.2284
828000276323, 0.22794679222855124], Phase Angle = [-0.2242550
50717533, -120.11324476955176, 120.12281836393022] degrees
Bus sourcebus: Voltage Magnitude = [0.2299932494710589, 0.229

9932501528472, 0.22999325019670214]1, Phase Angle = [-1.422073
286572225e-6, —120.00000090575658, 119.99999910593104] degree
s

Bus loadbus: Voltage Magnitude = [0.2225213393694953, 0.22672
706378734653, 0.22557738938786964], Phase Angle = [-0.4842383
2883928797, -120.2425346718837, 120.27383544648818] degrees

Fig. 2. Sample AC Power Flow Result: Shows the voltage magnitudes and
phase angles associated with each phase per line

LinDist3Flow model, utilizing our block diagonal matrix
generation in the process. The result of this calculation
is then compared against the solver’s solution, and the
error between the two is calculated to show that the
approximation’s output is within the acceptable bounds
for error (i.e. less than or equal to 2% error).
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Fig. 3. Error vs number of iterations for the Adam solver [6]].

B. Computational results

a) Experiment Description: In this experiment, we
evaluated the robustness of the Optimized LinDist3Flow
parameter estimation algorithm under varying noise condi-
tions. A synthetic 3-phase, 30-bus radial distribution network
was constructed with known resistance and reactance
parameters, denoted by Oyue. Using these parameters, we
generated clean voltage measurements via the LinDist3Flow
model. To simulate measurement noise, zero-mean Gaussian
noise with 30 increasing standard deviation levels ranging
from 0.0 to 0.5 was added to the voltage data. For each noise
level, we performed 30 independent trials of parameter
estimation using the ADAM optimization algorithm and
recorded the ¢»-norm error. The average estimation error
across trials is plotted as a function of the noise level (see
Fig. 3), illustrating the sensitivity and resilience of the
optimization framework.

V. DIiscuUsSION

A spectral sampler algorithm that strategically accounts
for electrical distance without assuming specific probability
distributions is called the "Shine the Flashlight" approach [[7]
. This algorithm selects sensors with the highest confidence
bounds to sample in the next time step. It is designed
to establish concentration inequalities for maximal voltage
perturbations under uncertain power injections.

The algorithm employs a closed-form solution, ensuring
fixed computational costs at each time step and eliminating
the need for an optimization program. It relies on the
LinDistFlow approximation and necessitates computable
uncertainty bounds for power injections. The methodology
provides robust theoretical guarantees and operates with
high probability [3]. Notably, it does not presume specific
probability distributions, making it applicable to various
scenarios in real-time sensor sampling for voltage violation
detection [8].

While the proposed framework for grid state estimation
shows promise, it is essential to recognize that practical
implementation may face challenges. One limitation is the



need for extensive real-world data to validate the efficacy
of the stochastic LinDistFlow model and the spectral bandit
algorithm. Additionally, the computational requirements
and potential scalability issues in large-scale distribution
grids should be considered as limitations. Addressing
these challenges will be crucial in ensuring the successful
implementation of the proposed framework in real-world
electric distribution systems.

VI. CONCLUSION

In conclusion, the integration of renewable energy re-
sources into electric distribution grids requires innovative
approaches to manage the uncertainties they introduce.
The research presents a comprehensive framework for grid
state estimation that combines advanced statistical modeling
with machine learning techniques. The introduction of a
stochastic LinDistFlow model, along with a spectral bandit
algorithm, enhances the ability to monitor voltage stability
effectively.

Future work will focus on optimizing convergence guar-
antees for specific algorithm components and improving
computational efficiency while continuing to quantify un-
certainties within the objective function. It will also focus
on developing distributed algorithms that can handle large-
scale networks while maintaining computational efficiency.
Additionally, advancements in data integration techniques
will address challenges posed by asynchronous smart meter
readings. Through these advances, our goal is to contribute
to more resilient and efficient electric distribution systems
capable of adapting to the dynamics of modern energy
resources.
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