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Abstract—This paper proposes a framework for fairly cur-
tailing photovoltaic (PV) plants in response to the over-voltage
problem in PV-rich distribution networks. The framework im-
poses PV generation limits to avoid overvoltages. These limits
are computed a day ahead of real-time operations by solving an
offline stochastic optimization problem using forecasted scenarios
for PV generation and load demand. The framework minimizes
the overall curtailment while considering fairness by reducing
disparities in curtailments among different PV owners. We model
the distribution grid constraints using a conservative linear
approximation (CLA) of the AC power flow equations which
is computed using a set of sampled power injections from the
day-ahead predicted scenarios. The proposed framework is nu-
merically validated on a CIGRE benchmark network interfaced
with a large number of PV plants. We compare the performance
of the proposed framework versus an alternative formulation
that does not incorporate fairness considerations. To this end,
we assess tradeoffs between fairness, as quantified with the Jain
Fairness Index (JFI), and the total curtailed energy.

Index Terms—Photovoltaic curtailment, Voltage regulation,
Fairness-aware control, Conservative linear approximation.

I. INTRODUCTION

Distribution system operators (DSOs) face the challenge of
securely operating their grids amidst the rapid integration of
photovoltaic (PV) plants. This involves ensuring the quality
of supply (QoS) and adhering to the network’s physical limits
[1]–[3]. In the existing literature, this issue has been tackled by
curtailment of the excess PV generation by real-time control
schemes [4]–[8]. However, such real-time controls require
advanced communication and monitoring infrastructure which
is not always available in distribution systems. This issue has
been often addressed by imposing fixed generation limits on
the PV inverters to avoid over-voltage problems. For example,
in [9], [10], a percentage of the DC power module was used as
generation limit. In [10], the export limits were computed by
formulating an optimal power flow (OPF) problem. However,
in all the above works, the fairness aspect was not considered
in the computation of these limits.

Fairness is an important factor to consider while computing
these generation limits since PV plants connected at different
locations in the network face different grid conditions, leading
to dissimilar curtailments. For example, customers located at
the end of the feeder are likely to face more curtailments
compared to ones near the substation. Therefore, in this paper,

we propose to compute fairness-aware PV generation limits by
incorporating a fairness objective in the optimization problem.

Recently, researchers have increasingly studied fairness in
the context of control schemes. For example, different fairness-
aware control schemes are proposed in [4], [11]–[13]. How-
ever, all these schemes rely on real-time control of the PV
inverters which may not be practical in systems that lack
sufficient communication infrastructure. In contrast, communi-
cating PV generation limits once a day is more feasible since
it does not require a low-latency communication network.
Therefore, instead of real-time control, we propose computing
offline PV generation limits (a day ahead of real-time opera-
tions) using a scenario-based stochastic optimization scheme
which sends limits to the PV inverters once a day. To tackle
disparities in curtailment among different PV owners, we add
a fairness objective that minimizes differences in curtailments
among consumers while respecting the grid constraints. We
model the grid constraints using linearizations of the AC power
flow equations known as “conservative linear approximations”
(CLA) that are designed to respect grid constraints [14].
The CLAs are computed using sampled active/reactive power
injections, which in our case are obtained using day-ahead
forecasts of the PV generation and load demands. Thanks to
the CLAs, the optimization scheme is a linear program (LP)
that can be effectively solved. We numerically validate the
proposed scheme for a benchmark network connected with
several PV plants. We also benchmark the proposed scheme
with respect to a case that does not consider fairness.

The key contributions of the proposed work are threefold.
First, it develops an offline scenario-based stochastic optimiza-
tion problem that can be solved and communicated once a
day to curtail PV inverters. Second, it incorporates fairness
in curtailments among different PV owners by minimizing
disparities. Third, it employs the CLA approach to model
grid constraints, linearizing the problem formulation while
preserving the accuracy of the power flow model without
causing violations.

The paper is organized as follows. Section II describes the
problem statement, grid model, PV plant model, and the day-
ahead optimization problem. Section III presents the numerical
validation. Section IV concludes the work.

II. PROBLEM FORMULATION

We consider a generic distribution network interfaced with
multiple PV plants facing the problem of over-voltages in the979-8-3503-3120-2/24/$31.00 ©2024 IEEE
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case of substantial PV generation. The problem is tackled
via curtailing the PV generation by imposing limits on the
PV inverters. To avoid real-time communication and moni-
toring requirements, we propose offline computations of PV
generation limits which are performed a day ahead of real-
time operation based on forecasted scenarios. The proposed
scheme accounts for fairness among different PV owners with
respect to the curtailment by adding a fairness objective in
the optimization problem. To model the grid constraints, we
use conservative linear approximations (CLA) of the power
flow equations, resulting in a linear problem formulation. The
proposed scheme is schematically shown in Fig. 1; first the
day-ahead scenarios are used to calculate the CLA coefficients
using the method described in [14], and then the scenarios are
used to compute the PV generation limits.

Day-ahead demand
and Irradiance

forecasts

Conservative linear
approximation of
Power-flow model

Fairness-aware
optimization of
Photovoltaic

generation limits

Fig. 1. Flow chart for the computation of day-ahead PV generation limits.

In the next subsections, we describe the models used for
the distribution grid, PV generation, and demand. Then, we
present our proposed fairness-aware day-ahead optimization
problem for computing the PV generation limits.

A. Grid model

We employ linearizations of the power flow equations
known as conservative linear approximations (CLAs) to ad-
dress challenges arising from the nonlinearity of power flow
constraints. These CLAs, introduced in [14], are adaptive
(i.e., tailored to specific systems and varying load conditions)
and conservative (i.e., aim to either over- or under-estimate
a quantity of interest to prevent constraint violations). The
CLAs are constructed using samples of the active and reactive
power injections over a specified range of operations. As
described in [14], the CLAs’ coefficients are computed by
solving a constrained regression problem, establishing linear
relationships between, for example, the voltage magnitudes1

at a particular node and the power injections at all nodes.
Rather than solely considering the voltage magnitudes them-

selves, the CLA approach’s accuracy can be enhanced by
considering functions of voltage magnitudes, such as squared
voltage magnitudes (v2). These approximations maintain lin-
earity in constraints (e.g., v ≤ vmax implies v2 ≤ v2max); see
[14] for further details. Since approximations of the squared
voltage magnitudes tend to perform better than approxima-
tions of the voltage magnitudes themselves, we use these for
our constraints. For the j–th node in a distribution network

1The CLA method can be applied to compute approximations for other
quantities of interest, including line flows, using the same approach. This
paper uses CLAs to model voltages.

with Nb nodes, the constraints for over- and under-estimated
squared voltages using CLA are

v̄2j = āj,0 + ā⊤j,1

(
p
q

)
≤ v2max, (1a)

v2j = aj,0 + a⊤j,1

(
p
q

)
≥ v2min, (1b)

where v̄2j and v2j denote over- and under-estimating CLAs
parameterized with coefficients āj,0 ∈ R, āj,1 ∈ R2(Nb−1),
and aj,0 ∈ R,aj,1 ∈ R2(Nb−1), respectively. The symbols
vmin and vmax represent the minimum and maximum voltage
bounds. The superscript ⊤ denotes the transpose. The symbols
p ∈ R(Nb−1) and q ∈ R(Nb−1) denote the nodal active
and reactive power injection vectors (excluding the slack
node injections). Equations (1a) and (1b) imply that if the
overestimating and underestimating voltages are within the
limits, the actual voltage remains within the limits, assuming
the computed CLAs are indeed conservative.

In our example involving voltages, we compute sample-
based CLAs by randomly sampling power generation outputs
from PV plants and demand within a specified range. These
samples are derived from the day-ahead predictions of the
PV generation and loads. Using these samples, we calculate
the corresponding node voltages by solving the power flow
equations for each sample. The power generation samples in
day-ahead PV scenarios are obtained using specified proba-
bility distributions. The active power injections are sampled
from a uniform probability distribution function with active
power varying between 0 and p̂pv

max, where p̂pv
max is maximum

PV power available (subject to solar irradiance). The reactive
power from the PV plant is modeled as 33% of the active
power potential (corresponding to the imposed power-factor
of 0.95). Section III-C3 discusses the CLA’s accuracy.

B. PV model

In the problem formulation, we model PV generation using
day-ahead forecasts derived from the global horizontal irradi-
ance (GHI) and air temperature predictions that are available
from standard weather forecasting tools, e.g., Solcast [15].
To convert the GHI to the PV generation, we utilize already
existing PV-lib models [16], [17]. This involves projecting
GHI onto an inclined plane using the PV panels’ tilts (assumed
to be known in this work). Then, the inclined GHI and
temperature data is fed to the PV-lib model which also requires
the configuration of the PV plant such as nominal power and
azimuth angles (known parameters in the forecasting model).
The obtained PV generation forecasts, denoted by p̂pv, provide
the maximum power point (MPP) for a PV plant given the
GHI. Let the uncertain scenarios for a PV plant be indexed
by ω ∈ Ω, where Ω represents the scenario set. Let t ∈ T
represent the time index and T be the set of time indices
during a day. The PV plants are indexed by symbol j contained
in set Npv. Then, the MPP of the j–th PV plant for time t and
scenario ω is denoted by p̂pv

j,t,ω .
For the case of voltage regulation, we consider PV plants

to be controllable, i.e., their active power generation can
be reduced from the available peak power (i.e., MPP). We
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also consider controllable reactive power injections. Let the
symbols ppv

j,t,ω and qpv
j,t,ω denote the active and reactive powers

for the j–th PV plant at time t in scenario ω. Then, the
curtailability is defined by the following constraint which
states that the generation can vary between 0 kW and the
generation potential:

0 ≤ ppv
j,t,ω ≤ p̂pv

j,t,ω ∀t, ω, j. (2a)

The PV power plants can also inject/consume reactive
power, and we thus have an additional constraint on the
capability curve of the PV plant’s inverter that limits the
apparent power capacity to Spv

j,max:

(ppv
j,t,ω)

2 + (qpv
j,t,ω)

2 ≤ (Spv
j,max)

2 ∀t, ω, j.

If a linear formulation is desired, the quadratic capability
constraint can be piece-wise linearized by re-writing it as:

ml(p
pv
j,t,ω) + qpv

j,t,ω ≤ nl l = 1, . . . , L, ∀t, ω, j, (2b)

where ml and nl denote the linearization coefficients for l–
th segment in the piece-wise linearization and L denotes the
number of linear segments.

Furthermore, we also consider the minimum power factor
constraint (for simplicity, we assume that all the PV plants
have the same power factor):

qpv
j,t,ω ≤ ppv

j,t,ωζ ∀t, ω, j (2c)

− qpv
j,t,ω ≤ ppv

j,t,ωζ ∀t, ω, j, (2d)

where ζ =
√
(1− PF2

min)/PF2
min with PFmin denoting the

minimum power factor allowed for the operation of each
PV plant. For the sake of simplicity, we consider the same
minimum power factor of 0.95 on all PV plants in the network.

C. Demand model

We model the electricity demand to be uncontrollable but
predictable based on day-ahead forecasts. We use the mul-
tivariate Gaussian model proposed in [18], [19] for demand
forecasting. This model is constructed using historical mea-
surements that are clustered into different day types based
on the day of the week. For each cluster, a multivariate
distribution is trained considering time correlations, which is
then used for sampling new scenarios. The scenarios for active
and reactive loads for node index n ∈ Nload are denoted by
pload
n,t,ω and qload

n,t,ω , respectively for time t and scenario ω.

D. Day-ahead optimization problem for fairness-aware PV
generation limits

We consider the distribution network to have Npv con-
trollable PV plants indexed by j in set Npv ⊂ Nb, where
Nb = {1, . . . , Nb} is the set of all node indices. The objective
of the day-ahead optimization problem is to compute the PV
generation limits p̄pv

j for each PV plant to mitigate overvolt-
ages. These limits should account for the uncertainty in the PV
generation and electricity demand and also be fair with respect
to the PV curtailment among different PV owners. The prob-
lem is formulated as scenario-based stochastic optimization
where the scenarios model uncertainties in both demand and

generation. Let the vectors ppv
j,ω ∈ R|T | and p̂pv

j,ω ∈ R|T | be the
decision variables and MPP, respectively across all timesteps
for the j–th PV plant in scenario ω. The PV active power
generation is constrained by the PV generation limit p̄pv

j , which
is also a decision variable. The constraint is

ppv
j,t,ω ≤ p̄pv

j , ∀t, ω, j. (3)

The optimization problem minimizes a multi-objective func-
tion given by2

f op(x,Θ) =
∑
j∈Npv

{
α1 ×

( ∑
ω∈Ω

∥∥ppv
j,ω − p̂pv

j,ω

∥∥
1
+ p̄pv

j

)
+

+ α2 ×
∑
ω∈Ω

∥∥∥γω − Γ(ppv
j,ω, p̂

pv
j,ω)

∥∥∥
2

}
.

(4)

The symbol x collects all the decision variables, i.e., x =
[ppv

j,ω , ∀j, ω, p̄pv
j ,∀j], and Θ refers to the set of parameters,

i.e, α1, α2 and p̂pv
j,ω , ∀j, ω. In (4), the first term (weighted by

α1) minimizes the curtailments with respect to the available
MPP (given by the day-ahead forecasts p̂pv

j,ω). The term p̄pv
j in

the objective ensures that the constraint in (3) is binding. The
second term (weighted by α2) in (4) seeks to impose fairness
in curtailments across PV plants. Here, γω is a common metric
(per scenario) that enforces fairness among different PV plants
using a fairness function Γ. The function Γ can be any generic
metric to enforce fairness among different PV plant owners;
in this work, we define Γ as the ratio of total energy produced
and maximum available energy, i.e.,

Γ(ppv
j,ω, p̂

pv
j,ω) =

∑
t∈T ppv

j,t,ω∑
t∈T p̂pv

j,t,ω

. (5)

The symbols α1 and α2 are weights3 corresponding to the two
objectives. The day-ahead optimization problem is

minimize
x

fop(x,Θ) (6a)

subject to:

āj,0 + ā⊤j,1

(
pt,ω

qt,ω

)
≤ v2max, ∀t, ω, j (6b)

aj,0 + a⊤j,1

(
pt,ω

qt,ω

)
≥ v2min, ∀t, ω, j (6c)

(2), (3), (6d)

where the symbols pt,ω ∈ R(Nb−1) and qt,ω ∈ R(Nb−1)

denote the nodal active and reactive power injection vectors
for time index t and scenario ω. These nodal vectors contain
the power injections for Npv controllable PV plants and Nload
uncontrollable loads as per their locations defined by sets Npv
and Nload, respectively.

III. NUMERICAL VALIDATION

This section numerically validates the proposed framework.
We describe the distribution system test case, the scenarios
used for the simulations, and the obtained results.

2∥.∥p refers to p-norm.
3A sensitivity analysis with different values of the weights is presented by

the results in Section III-C2.
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Fig. 2. CIGRE benchmark low-voltage distribution grid with multiple PV plants that result in over-voltage problems.

A. Grid data

We numerically validate the proposed framework on the
CIGRE low-voltage benchmark distribution network [2] aug-
mented with multiple PV plants so that the system experiences
over-voltage problems. The network is a three-phase balanced
400V/400kVA system. The network also hosts uncontrollable
active and reactive demands. Fig. 2 illustrates the locations
and nominal capacities of PV plants and demands.

B. Day-ahead scenarios

As mentioned previously, our framework relies on day-
ahead scenarios for the PV generation and demand. While
the optimization problem is generic enough to consider any
number of scenarios, we represent the uncertainty of the
generation and demand by two extreme scenarios. The PV
generation is computed using the day-ahead GHI forecasts
represented by their upper and lower predictions corresponding

(a) PV generation potential (MPP) scenarios for different nodes.

(b) Active demand scenarios for different nodes.

(c) Reactive demand scenarios for different nodes.

Fig. 3. Day-ahead scenarios of (a) PV generation, (b) active power demand,
and (c) reactive power demand. The tags ‘low’ and ‘up’ correspond to the
10-th and 90-th percentile of the predictions in each case.

to the 90-th and 10-th percentile. The GHI profiles are obtained
from Solcast [15] at a sampling of 15-minutes. These GHI
profiles are then used to compute the MPP of each PV plant
using the PV model described in Section II-B. The computed
MPP profiles for the upper and lower scenarios for a subset
of the nodes are shown in Fig. 3a.

We also model the demand by two extreme profiles corre-
sponding to the 90-th and 10-th percentiles. These scenarios
are obtained at a sampling of 15-minutes using the forecasting
approach described in Section II-C, and are shown in Figs. 3b
and 3c for the active and reactive power demands, respectively.
To consider the extreme case with respect to the voltage
problem in the distribution network, we couple the low PV
generation scenario with high demand and vice-versa, and then
we choose the two resulting extreme scenarios.

Note that these day-ahead scenarios of the PV generation
and demand are used as inputs for sampling the power
injections per node when computing the CLA coefficients as
described in Section II-A.

C. Results
We next present the results simulated for the CIGRE bench-

mark network. We compare the performance against the case
when fairness is not considered in the objective. Then, we
perform sensitivity analyses with respect to the choice of
the weights (α1, α2) in terms of fairness and curtailments.
Finally, we validate the CLA approach against the true non-
linear AC power flow solutions. The results are only presented
for the over-voltage case, i.e., for the day-ahead scenario
corresponding to larger PV generation and lower demand. We
do not present the results of the other day-ahead scenario, as
it did not cause any voltage issues, i.e., no PV curtailments
were required.

1) Without and with fairness: Figs. 4 and 5 present the
results when the fairness objective is not considered (i.e., α2 =
0) and when fairness is considered (α2 = 7), respectively.
The first panels (Figs. 4a and 5a) show the curtailed PV and
corresponding MPP in lineplots and shaded areas, respectively.
The second panels (Figs. 4b and 5b) show the reactive power
injections by the PV inverters. The bottom panels (Figs. 4c
and 5c) show the nodal voltage magnitudes. Lineplots (shaded
grey) correspond to voltages with (without) PV curtailment.
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(a) Curtailed and MPP PV generation.

(b) Reactive power from PV plants.

(c) Nodal voltage magnitudes.

Fig. 4. Simulation results for the case when fairness is not considered i.e.,
(α2 = 0).

As seen from the Figs. 4c and 5c, the PV curtailment results
in satisfying the voltage limits of [0.95, 1.05] per unit in both
cases. However, the PV active and reactive profiles in the two
cases are different. By comparing the plots in Figs. 4b and
5b, we observe that some PV plants suffer significantly higher
curtailment (in the first case) compared to others, whereas in
the case of fairness-aware curtailment, all the PV plants are
equally curtailed. This is evident from the comparison of the
energy produced as a percentage of the maximum available
energy, which is shown via the barplot in Fig. 6. Specifically,
without considering fairness concerns, the PV plants located at
nodes 11, 17, 18, and 19 suffer significantly higher curtailment
than others. In contrast, all of the PV plants are equally
curtailed in the fairness-aware case.

To quantify fairness, we use Jain’s Fairness Index (JFI) [20]
which is a metric to quantify the spread of benefits to each
consumer using different control schemes. JFI values vary
between 0 and 1, where JFI = 0 and JFI = 1 refer to completely
unfair and fair cases, respectively. The JFI is given by

JFI =
(
∑

j∈Npv
βj)

2

|Npv|
∑

j∈Npv
β2
j

(7)

where βj refers to the percentage of PV energy produced, i.e.,

βj = Γ(p∗pv
j,ω , p̂

pv
j,ω) =

∑
t p

∗pv
j,t,ω∑

t p̂
pv
j,t,ω

. (8)

In (8), the asterisk symbol ( · )∗ refers to the solution to
optimization problem (6).

Using the above fairness index, Table I compares the
JFI and net curtailment (total curtailed PV as a percentage
of total available energy) for the two cases. Although the
fairness-aware scheme eliminates the disparity in curtailment
among different PV owners, the result is larger overall net
curtailments. Therefore, in the following section, we present a

(a) Curtailed and MPP PV generation.

(b) Reactive power from PV plants.

(c) Nodal voltage magnitudes.

Fig. 5. Simulation results for the case with fairness (α2 = 7).

Fig. 6. Comparison of energy produced by PV plants with and without
considering fairness.

sensitivity analysis with respect to the choice of α2 to evaluate
the trade-offs between curtailment and fairness.

2) Fairness-curtailment trade-off: Sensitivity with respect to
the weights: We compute the JFI and net curtailed energy
while varying the weighing factor α2 from 0 (i.e., no fairness)
to 10. The obtained results are shown in Fig. 7. As expected,
JFI increases with an increase in α2, at the cost of increasing

TABLE I
NET PV CURTAILMENTS WITH AND WITHOUT FAIRNESS.

Metrics Net curtailment (%) JFI
Without Fairness 11.25 0.29

With Fairness 23.01 1

Fig. 7. Sensitivity of fairness vs. net curtailment with respect to weight α2.



6

Fig. 8. Validation of CLA approximation of the voltage model with respect
to true values (obtained by solving the AC power flow equations, post-
optimization, using the optimized power setpoints).

net PV curtailment. The JFI value saturates at 1.0 (i.e., full
fairness) after α2 = 6.3.

3) Power flow accuracy validation: We also validate the
CLA approximation of the power flow equation which is used
to model the grid constraints in the day-ahead optimization
problem in (6). The validation is performed by comparing the
optimized solutions with respective “true” solutions obtained
by solving the AC power flow using the optimized solution.

Fig. 8 shows the comparison of under- and over-estimated
voltages by CLAs (v and v̄) and the true values (denoted by
vtrue). As observed, all the voltages are within the imposed
limits of 1.05, and voltages computed by CLAs are close to the
true values. This indicates that there are no voltage violations,
concluding that linear approximations by CLAs perform as
intended. Table II shows the minimum, mean, and maximum
errors on the nodal voltage magnitudes. Moreover, the errors
in the voltage magnitudes computed by the CLA are quite
small, indicating that CLAs provide adequate accuracy for the
presented optimization framework.

TABLE II
ERRORS ON VOLTAGE MAGNITUDES COMPUTED BY CLA.

CLA errors Min (pu) Mean (pu) Max (pu)

v̄ − vtrue (over-estimated) 1× 10−4 1× 10−3 2.4× 10−3

vtrue − v (under-estimated) 4× 10−3 2× 10−3 3.2× 10−3

IV. CONCLUSIONS

This paper proposed an offline optimization framework for
computing fairness-aware PV generation limits for PV invert-
ers in power distribution networks to address over-voltage
problems. Fairness is accounted for by adding an extra term in
the objective which minimizes the disparity in the amount of
curtailment among different PV plants generation. The prob-
lem is solved a day ahead of real-time operation via a scenario-
based stochastic optimization problem where the scenarios
model uncertainties in PV generation and load demands. The
grid constraints are accounted for by a conservative linear
approximation of the AC power flow equations, making the
problem a linear constrained program.

The proposed scheme was numerically validated on a CI-
GRE low-voltage network. The obtained results showed that

the proposed framework successfully achieves fairness with re-
spect to the individual curtailment among different PV owners
while respecting the imposed voltage limit. However, it was
also observed that increasing fairness leads to increased overall
curtailment in the PV generation. Future work will focus on
developing strategies for improving the trade-offs between the
overall net curtailment and fairness considerations.

REFERENCES

[1] Power Quality Application Guide, “Voltage disturbances,” Standard EN,
vol. 50160, 2004.

[2] CIGRE Task Force C6.04.02, “Benchmark systems for network inte-
gration of renewable and distributed energy resources,” CIGRE Interna-
tional Council on large electric systems, Tech. Rep., July 2009.

[3] IEEE Std 1159-2009, “IEEE recommended practice for monitoring
electric power quality,” (Revision of IEEE Std 1159-1995), Tech. Rep.,
June 2009.

[4] M. Z. Liu et al., “On the fairness of PV curtailment schemes in
residential distribution networks,” IEEE Transactions on Smart Grid,
vol. 11, no. 5, pp. 4502–4512, 2020.

[5] R. Luthander, J. Widén, J. Munkhammar, and D. Lingfors, “Self-
consumption enhancement and peak shaving of residential photovoltaics
using storage and curtailment,” Energy, vol. 112, pp. 221–231, 2016.

[6] J. Von Appen and M. Braun, “Strategic decision making of distribu-
tion network operators and investors in residential photovoltaic battery
storage systems,” Applied Energy, vol. 230, pp. 540–550, 2018.

[7] F. R. S. Sevilla et al., “Techno-economic analysis of battery storage and
curtailment in a distribution grid with high PV penetration,” Journal of
Energy Storage, vol. 17, pp. 73–83, 2018.

[8] E. O’Shaughnessy, J. R. Cruce, and K. Xu, “Too much of a good thing?
Global trends in the curtailment of solar PV,” Solar Energy, vol. 208,
pp. 1068–1077, 2020.

[9] T. Aziz and N. Ketjoy, “PV penetration limits in low voltage networks
and voltage variations,” IEEE Access, vol. 5, pp. 16 784–16 792, 2017.

[10] T. R. Ricciardi, K. Petrou, J. F. Franco, and L. F. Ochoa, “Defining
customer export limits in PV-rich low voltage networks,” IEEE Trans-
actions on Power Systems, vol. 34, no. 1, pp. 87–97, 2018.

[11] D. Gebbran, S. Mhanna, Y. Ma, A. C. Chapman, and G. Verbič, “Fair
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