
On the Impacts of Different Consistency
Constraint Formulations for

Distributed Optimal Power Flow
Rachel Harris∗, Mohannad Alkhraijah∗, David Huggins†, and Daniel K. Molzahn∗

∗School of Electrical and Computer Engineering, Georgia Institute of Technology
†Georgia Tech Research Institute, Georgia Institue of Technology

Abstract—The optimal power flow (OPF) problem finds the
least costly operating point which meets the power grid’s
operational limits and obeys physical power flow laws. Com-
plementing today’s centralized optimization paradigm, future
power grids may rely on distributed optimization where
multiple agents work together to determine an acceptable
operating point. In distributed algorithms, local agents solve
subproblems to optimize their region of the system and share
data to achieve consistency with their neighboring agents’
subproblems. This paper investigates how different methods
of enforcing power flow consistency constraints between local
areas in distributed optimal power flow impact convergence
rate and a classifier’s ability to detect malicious cyberattack.
The distributed OPF problem is solved with the alternating
direction method of multipliers (ADMM) algorithm. First, the
ADMM algorithm’s convergence rate is compared for three
different consistency constraint formulations. Next, the paper
considers a cyberattack in which the integrity of information
shared between agents is compromised, causing the algorithm
to exhibit unacceptable behavior. A support vector machine
(SVM) classifier is trained to detect the presence of ma-
nipulated data from such cyberattacks. Results demonstrate
that consistency constraint formulation impacts the classifier’s
detection performance; for certain formulations, detection is
highly accurate.

Index Terms—Distributed optimization, smart grid, optimal
power flow, cyber threat, cyber security

I. INTRODUCTION

The electric power grid is undergoing fundamental
changes in power generation, storage, and transmission.
The widespread integration of distributed energy resources
(DERs), increasing network complexity and the need for
privacy motivate the use of distributed control and optimiza-
tion methods to complement traditional centralized operation
[1]. Distributed algorithms assign portions of the problem
to multiple computing agents, reducing the computational
burden of each agent. These agents solve their subproblems
in parallel so that large-scale problems can be solved more
quickly. In addition, parameters in the cost function and
system constraints remain private to individual agents.

The optimal power flow (OPF) problem finds the least
costly operating point for a power system which obeys phys-
ical power flow laws and meets grid operational constraints.
Solving OPF problems in a distributed manner requires de-
composing the power system into local areas and formulating
constraints to enforce physical power flow consistency across

all areas. This paper investigates the impact of constraint
formulation on algorithm convergence rate and malicious
attack detectability. Consistency constraints should support
fast convergence so that large-scale OPF problems can be
solved within minutes on the future smart grid. In addition,
cyberattacks are a significant threat to the emerging smart
grid [2]. A distributed algorithm may be vulnerable to
attacks in which a local agent or communication link is
compromised and an attacker manipulates the shared data.

This paper compares three different methods proposed in
previous work for enforcing consistency constraints between
local areas in the power network. Section II summarizes
existing literature and outlines the paper’s contributions.
Section III formulates the distributed optimization algorithm,
the consistency constraint methods, and the cyberattack
model by which the adversary steers the solution to some
desired target. Section IV formulates the support vector
classification model for attack detection. Section V compares
convergence rate and malicious attack detection performance
for the three consistency constraint methods. The results
are based on distributed OPF algorithms implemented with
the three consistency constraint formulations. The number
of algorithm iterations required to reach convergence is
compared for several test cases. Next, the classifier’s attack
detection precision, recall and accuracy are computed for
each method to assess and compare performance. Section
V-C provides details on how these statistics are computed.
The results show that engineers should consider both con-
vergence rate and attack detectability when deciding how to
enforce consistency between local areas for power system
distributed optimization.

II. BACKGROUND AND LITERATURE REVIEW

Distributed algorithms such as the popular alternating
direction method of multipliers (ADMM) [3], [4] and the
auxiliary problem principle (APP) [6] have been successfully
applied to optimal power flow. Any distributed algorithm
must enforce power flow consistency between local areas.
This paper considers three different methods for enforcing
consistency proposed in previous work. The first method du-
plicates the voltage phasors across the tie lines [3]–[5]. The
second method adds dummy buses at the endpoints of the tie
lines [6]–[8], while the third method splits areas through the
buses [9]–[11]. Section III-A provides more details on these978-1-6654-7902-8/22/$31.00 ©2022 IEEE

methods. This paper characterizes how these methods differ
in convergence rate and impact a classifier’s ability to detect
malicious attack. To the best of our knowledge, there has
not yet been a comparison between these possible methods
in previous literature.

Past work on distributed OPF cyberattacks demonstrated
the financial threat posed by an adversary who steers the
solution to some desired target [12]. Our previous work
formulated multiple attack models and analyzed how quickly
and effectively they converged to the target operating point
[15]. Another study devised an algorithm resilient to such
attacks in which agents use information propagated from
their two-hop neighbors to detect and replace suspicious data
[13]. This is a promising method, but is only demonstrated
for one type of attack on a static network. To provide ad-
equate protection against cyber threats, defensive strategies
should be robust to changes in the network and perform well
against multiple types of attacks.

This paper uses a machine learning classifier to flag
suspicious data. Machine learning for smart grid cyber-
security is not a new concept; such methods have been
used, for instance, to detect false data injection attacks on
system measurements [14]. However, there has been little
exploration of machine learning for detection of economic
attacks in distributed optimal power flow. This paper makes
the following contributions:

1) Characterization of the impact of different consistency
constraint formulations on convergence rates.

2) Use of a machine learning based detection algorithm
to identify attacks.

3) Analysis of the impact of different consistency con-
straint formulations with respect to cybersecurity.

For the sake of simplicity and notational brevity, this
paper applies distributed optimization to the DC optimal
power flow problem. Each of the three methods for enforcing
consistency could be generalized to the AC power flow
equations as well as various power flow relaxations and
approximations by extending the variables that are shared
between agents. Thus, in addition to showing valuable results
for the widely used DC power flow approximation, this paper
provides a starting point for our future work in generalizing
the results presented here to other power flow formulations.

III. PROPOSED METHOD

This section formulates the consistency constraints and
ADMM distributed optimization algorithm used to solve the
DC OPF, as well as the cyberattack model.

A. Problem Formulation

The OPF problem seeks to optimize performance while
meeting operational limits and obeying physical power flow
laws. In this paper, the objective is to minimize generation
cost, and the power flow law is the linearized DC approxi-
mation.

(a) Method 1: Split across tie-line; add copy of neighboring
bus

(b) Method 2: Split across tie-line; insert dummy bus with
artificial generation

(c) Method 3: Split through the bus; each area keeps a copy
of the bus

Fig. 1: Three Decomposition Methods

1) Consistency Constraints: To decompose the OPF
problem across multiple computing agents, the power system
is divided into < regions. Consistency constraints ensure
valid power flow at the boundaries. As shown in Figure 1,
three different constraint formulations are considered in this
paper. The first method splits the system through the tie-
line and gives boundary buses copies of their neighbor’s
phase angle to ensure they agree. In method 2, a dummy
bus is inserted at the break in the tie-line with artificial
generation to allow for power injection from a neighboring
area. Neighboring agents must agree on the phase angle at
and power flow through the dummy bus. For method 3, the
system is split through a bus rather than the tie-line. The
phase angle at all copies of the bus must be identical and
the net power injection must be zero.

2) Distributed Optimization: Agents seek to minimize
generation cost in their region while obeying OPF con-
straints. Let the areas under control of separate agents be
numbered < = 1, 2, .., =. Let �< denote the set of generators
in area <, each with cost function 56 (?6), real power
generation ?6, and generation lower limit %<8=6 and upper
limit %<0G6 . Let (be an index set for all shared variables with
(< ⊂ (containing indices of shared variables with copies
kept by agent <. For any of agent <’s shared variables GB ,
B ∈ (<, there is a corresponding ḠB computed by minimizing
the difference between copies of GB across all agents : for
which B ∈ (: . For method 1, the shared variables are the
phase angles at boundary buses. For method 2, the shared
variables consist of phase angles at and power flow through

the dummy bus inserted at the tie-line break. For method
3, the shared variables are the phase angles and net power
injections at buses through which the system was split.

In this paper, the objective is to minimize generation cost.
The consistency constraints are relaxed with the augmented
Lagrangian technique, and the iterative ADMM algorithm is
used to find the optimal solution. The subproblem solved by
agent < at iteration : is given in equations (1a)-(1e).

min
?:+16 , \:+1 ,G:+1B

∑
6∈�<

56 (?:+16) +
∑
B∈(<

_:B (Ḡ:B − G:+1B)

+ d
2
(Ḡ:B − G:+1B)2 (1a)

s.t. ?:+16,8 − ?3,8 =
∑
9∈#<

%:+18 9 , ∀8 ∈ #< (1b)

%:+18 9 = �8 9 (\:+18 − \:+19), ∀(8, 9) ∈ !< (1c)

?<8=6 ≤ ?:+16 ≤ ?<0G6 , ∀6 ∈ �< (1d)

− %<0G8 9 ≤ %:+18 9 ≤ %<0G8 9 , ∀(8, 9) ∈ !< (1e)

#< is the set of buses in area <, �8 9 is the susceptance
of line (8, 9), !< is the set of lines in area < and %8 9 ,<0G is
the maximum active power flow along branch (8, 9). The first
term in the objective function (1a) minimizes the generation
cost for the agent and the latter terms correspond to the
augmented Lagrangian formulation. Constraint (1b) enforces
power balance at each bus, constraint (1c) defines the line
power flow, constraint (1d) enforces generation limits, and
constraint (1e) enforces line flow limits.

After each agent solves their subproblem, agents send
their computed shared variables and the corresponding dual
variables to their neighbors. Then, each agent < updates the
ḠB variables according to (2).

min
Ḡ:+1B

∑
B∈(

_:B (Ḡ:+1B − G:+1B) +
d

2
(Ḡ:+1B − G:+1B)2 (2)

Finally, each agent < updates their Lagrange multipliers
as shown in (3).

_:+1B = _:B + d(Ḡ:+1B − G:+1B). (3)

Thus the iterative algorithm alternates between minimiz-
ing the local agents’ subproblems in (1), minimizing the
difference between shared variable ḠB and all local copies of
GB in (2), and updating dual variables in (3). The stopping
criterion is the mismatch between local shared variable
values GB and the values ḠB computed with neighboring
agents’ data. At iteration : , each agent < records the norm
of the mismatches across all its shared variables as shown
in (4).

n =

√ ∑
B∈(<
(Ḡ:B − G:B)2 (4)

The algorithm terminates when each agent reports mis-
matches n less than some tolerance n0.

B. Attack Model

This paper considers attacks by an adversary who seeks to
steer the solution to a specific target, perhaps for economic
gain. We determine the attacker’s target operating point
by solving a system-wide OPF problem with a certain
generator’s active power output constrained to the desired
value. The attacker saves the results which fall within its
local area as the target variable values and uses one of two
methods proposed in [15] to guide the final result to the
desired target.

The attacker’s simplest strategy is to directly send the
desired values for shared variables to neighboring agents.
However, this is simple to detect. For a more subtle attack,
the attacker can employ a proportional-integral-derivative
(PID) control method. For each shared variable G: at itera-
tion : , the attacker computes the error 4: as the difference
between the target value and the current value from its
neighbors:

4: = G:C0A64C − G: .

Then, the attacker computes a correction term using three
tuned parameters: the proportional gain : ? , the derivative
gain :3 , and the integral gain :8 . After adding this correc-
tion term, the computed shared variable value for the next
iteration is

G:+1 = G: + : ?4: + :3 (4: − 4:−1) + :8
:∑
8=1

48 .

IV. ATTACK DETECTION

We use a trained support vector machine (SVM) to
classify a sequence of shared variable mismatches as either
normal or under attack. Support vector classification (SVC)
performs well in high-dimensional spaces [20], which is
desirable for attack detection because a significant number
of mismatches must be recorded before the difference in
attacked mismatch trajectories becomes clear. SVM imple-
mentations are also memory efficient compared to algorithms
such as k-nearest neighbors, which is important for algo-
rithms which could be deployed in embedded computing
systems on the smart grid. In addition, SVC provides a user-
controlled regularization parameter that can help prevent
over-fitting by reducing decision surface complexity [20].
The binary SVC algorithm seeks a hyperplane which divides
the two classes of vectors with a maximum distance between
the plane and the nearest vector of either class [21]. Let
the training vectors be written as x8 ∈ R= for 8 = 1, ..., <,
each corresponding to a label H8 ∈ {1,−1}. For the attack
detection in this paper, each training vector x8 consists of the
shared variable mismatches from 100 consecutive iterations
of the distributed OPF algorithm. The label for each training
vector is H8 = 1 if the shared variable mismatches are from
an algorithm under attack, and H8 = −1 if the mismatches are
from an algorithm which is not under attack. The separating
hyperplane is defined by solving (5).

min
w,1, b

1
2
| |w| |2 + �

<∑
8=1

b8

s.t. H8 (w · q(x8) + 1) ≥ 1 − b8
b8 ≥ 0, 8 = 1, ..., <

(5)

Here, w is the vector normal to the hyperplane which
separates positive and negative training samples. The slack
variables b8 allow for non-separable data sets in which no
boundary can perfectly divide the positive and negative train-
ing samples. Thus nonzero b8 variables represent training
errors, which are penalized by adding the term �

∑<
8=1 b8 to

the objective function. The regularization parameter � > 0
controls the magnitude of the penalty on such errors. Larger
values of C thus produce a more complex decision surface
which results in greater accuracy during training but also
potential over-fitting. The function q(x) maps data from
R= to some higher dimensional space �, allowing for
nonlinear SVMs in which the decision function is not a
linear function of the training data. In practice, the mapping
q(x) is not explicitly defined; rather, a kernel function
 (x8 , x 9) such that (x8 , x 9) = q(x8) · q(x 9) is used to
compute dot products in the higher dimensional space �.
For this paper, we use the popular Gaussian radial basis
kernel (x8 , x 9) = exp (−W | |x8 − x 9 | |2), where the parameter
W > 0 defines the radius of influence of individual training
samples on the resulting decision function.

Standard SVM techniques solve the dual of the problem
in (5) to obtain the decision function

5 (x) = sgn(
<∑
8=1

H8U8 (x8 , x) + 1)

where sgn(G) denotes the signum function and U8 represents
the dual variables.

V. NUMERICAL RESULTS

This section describes the implementation and the power
system test cases used to evaluate algorithm performance.
Next, the numerical results for convergence rate and attack
detection are presented.

A. Implementation and Case Description

The distributed optimization algorithm is implemented in
Julia using the PowerModels library [16] to parse power
system test case data and the JuMP optimization library
[17] with the Gurobi solver. Inputs to the algorithm include
the power network data in MATPOWER format [18] and a
predefined division of the system into separate areas.

The convergence rate is compared for the three different
consistency constraint formulations on the IEEE 14-bus
system [19] divided into 3 and 4 areas and the IEEE 118-
bus system [19] divided into 4 and 5 areas. For attack
detection, the paper focuses on the IEEE 14-bus system
with 4 areas. The malicious attacker takes control of agent 1
and seeks to increase output at generator 2 from 38 MW to
100 MW, increasing the total generation cost from $7642.59
to $8767.82. For the PID attack, the tuned parameters
described in section III-B are : ? = 0.4, :3 = 0.005 and

:8 = 0.001. These parameters were selected after exploring
values in the range 10−4 − 1 to find those that enabled
the algorithm to converge to the desired target with shared
variable mismatches most similar to those under no attack.

To generate training data for attack detection, 150 different
test cases were created from the original power network.
New cases were created by perturbing the active power
demand at each load to be : times its original value, where
: is a randomly selected value between 0 and 2. The
distributed OPF algorithm was run three times on each of
the 150 variable-load test cases: first under normal operation,
second under the simple attack, and third under the PID
attack. For each run, the time at which the attack begins
was randomly chosen to be some iteration between 1 and
700.

B. Results

1) Convergence Rate: Using the DC OPF results com-
puted using PowerModels [16], we validated the solutions
obtained using the distributed optimization algorithm for all
test cases. Convergence rates for the three consistency con-
straint formulations are compared by recording the number
of algorithm iterations required to achieve average shared
variable mismatch less than 10−4 radians for phase angles,
and 10−4 per unit (with base power of 100 MVA) for power
flows and power injections. Figure 2 shows the number of
iterations performed before convergence for each method on
the four test cases, and shows the total computation time in
seconds at the top of each bar.

Fig. 2: Number of iterations required for convergence for
three network decomposition methods, with total computa-
tion time in seconds above each bar.

Based on these empirical results, as the size of the system
increases, method 1 converges more quickly than methods
2 and 3. This is likely because method 1 builds in the most
overlap between regions as copies of all neighboring buses
are included in the local agent’s system. In contrast, method
2 adds entirely new variables to the system without this
overlap when it inserts a dummy bus at the tie-line break.
Method 3 splits areas at the bus, requiring more complicated
power injection computations as part of the consistency
constraints. Therefore, method 1 provides the most overlap
between regions with the simplest constraint formulation.

(a) Decomposition method 1 shared variable mismatches

(b) Decomposition method 2 shared variable mismatches

(c) Decomposition method 3 shared variable mismatches

Fig. 3: Shared variable mismatches for three network de-
composition methods

2) Attack Detection Performance: The trajectory of the
average shared variable mismatches follow different patterns
under normal operation and under attack. The mismatches
from the first 1000 iterations for normal operation and the
two attack models are plotted in Figure 3.

Therefore, machine learning can be used to flag unusual
behavior and thus detect a malicious attack. The shared
variable mismatches are recorded for 1000 iterations of the
algorithm. The detection process operates on vectors of 100
shared variable mismatch values. Every ten iterations, the
last 100 shared mismatch values are sent to the classifier,
which determines whether or not they indicate malicious

attack. Thus the classifier operates on values from iterations
1-100, then 11-110, then 21-120, and so on across the 1000
algorithm iterations. As described in section V-B, we use
150 test cases and record data from solving the distributed
optimal power flow three times on each test case: under no
attack, simple attack, and PID attack. Since there are 91 100-
iteration mismatch vectors extracted at 10-iteration intervals
from each test case, the result is 40,950 input vectors, each
labeled either “1” for attacked or “-1” for not attacked.
Sixty percent of these vectors are used for training and forty
percent are reserved for testing the trained classifier.

The attack detection performance is recorded for each
of the three different consistency constraint methods. There
are three statistics of interest for the detection performance:
precision, recall, and total accuracy. These are computed as

?A428B8>= =
C ?

C ? + 5 ? , A420;; =
C ?

C ? + 5 =
022DA02H =

C ? + C=
C ? + 5 ? + 5 = + C=

where C ? denotes true positives, 5 ? denotes false positives,
5 = denotes false negatives and C= denotes true negatives as
defined in Table 1. Thus precision decreases when normal
operation is misclassified as attacked and recall decreases
when a real attack is not detected. Practically, a detection
mechanism with a low precision statistic leads to wasted
effort reacting to false alarms. On the other hand, a low recall
statistic means that some attacks are undetected, resulting in
economic loss.

TABLE I: Definition of performance statistics

Attacked Normal
Classified as Attacked true positive false positive
Classified as Normal false negative true negative

The results for testing the trained classifier are shown
in Table 2. The attack detection performs best for method
2 at 98% accuracy. The precision for methods 1 and 3 is
lower than ideal at 92%, which means there are some false
alarms in which the classifier confuses normal algorithm
behavior with a system under attack. While method 1 has
the best convergence rate, attack detection on method 1 is
inferior in both precision and recall compared to the other
two methods. The observed difference is likely caused by the
sudden rapid convergence to the attacker’s target solution
for methods 2 and 3 when the attack begins; the shared
variable mismatches soon become orders of magnitude lower
than they would be under no attack. However, the method
1 mismatch magnitudes under attack do not exhibit such
marked difference from those under no attack. Our ongoing
work includes defining why the difference between method
1 mismatch magnitudes under attack and under no attack is
less significant. The results motivate future work to improve
detection for method 1 so that algorithms can operate with
fast convergence as well as highly accurate attack detection.

C. Discussion and Future Work

This paper compared convergence rate and malicious
attack detectability for distributed DC optimal power flow

TABLE II: Attack Detection Performance

Precision Recall Accuracy
Method 1 0.92 0.96 0.93
Method 2 0.96 0.99 0.98
Method 3 0.92 0.99 0.95

under three different network decomposition methods. Nu-
merical results demonstrate that as the system size increases,
method 1 converges in the fewest number of iterations.
This paper also showed that an SVM classifier can be
trained to identify OPF algorithms under attack with high
accuracy. The classifier exhibits best detection performance
for algorithms with network decomposition method 2. Since
method 1 is the best choice for convergence rate, future work
should improve the detection mechanism for method 1. The
list below summarizes how the attack detection proposed in
this paper could be improved and used to develop resilient
distributed algorithms.

1) Improved Detection Performance for Method 1:
Adding features such as dual variable trajectories to the
shared variable mismatches could produce a more robust
detection system. In addition, a more complex mechanism
could train a different decision function for different algo-
rithm segments, since the shared variable trajectories look
very different at the beginning of the iterative algorithm than
at the end.

2) System Variability: This paper did not investigate how
well detection generalizes to network changes such as line
or generator outages. In the future, the classifier could be
trained with data from test networks adjusted to reflect
typical power system contingencies.

3) Attack Mitigation: Although a method to detect an
attack was presented, no method to mitigate the effects of
the attack by preventing solution manipulation has been
described. To develop a resilient distributed OPF algorithm,
it must be determined which agent has been compromised
and how to replace the false data. For the ADMM algorithm
presented in this paper, this may require developing an
estimator for the true shared variable values.

VI. CONCLUSION

Distributed algorithms for operation of the emerging smart
grid must be made resilient to cyber-attack. This paper has
demonstrated a distributed optimal power flow algorithm and
investigated how different methods of enforcing consistency
between local areas impact convergence rate and a defender’s
ability to detect malicious attacks. Three different consis-
tency constraint formulations were tested. The formulation
denoted as “method 1” in this paper, in which agents are
given copies of their neighbors’ voltage angles and must
agree on their values, converged most quickly. However, the
classifier did not perform as well at detecting attacks on
method 1 compared to the other methods. Future work will
seek to improve the detection mechanism to make it highly
accurate for method 1. In addition, future work will include
generalizing the detection method to system changes and
developing strategies to mitigate the attack’s financial threat.

The resulting resilient distributed optimization algorithms
can be deployed on future smart grids with low risk of
economic loss from a malicious attack.

REFERENCES

[1] D. K. Molzahn et al., “A Survey of Distributed Optimization and
Control Algorithms for Electric Power Systems,” in IEEE Trans. Smart
Grid, vol. 8, no. 6, pp. 2941-2962, Nov. 2017.

[2] T. Nguyen, M. Alhazmi, M. Nazemi, A. Estebsari and P. Dehbhanian,
“Electric Power Grid Resilience to Cyber Adversaries: State of the
Art,” in IEEE Access, vol. 8, pp. 87592-87608, 2020.

[3] Y. Wang, L. Wu and S. Wang, “A Fully-Decentralized Consensus-
Based ADMM Approach for DC-OPF With Demand Response,” in
IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2637-2647, Nov. 2017.

[4] K. Sun and X. A. Sun, “A Two-Level ADMM Algorithm for AC OPF
With Global Convergence Guarantees,” in IEEE Trans. Power Syst.,
vol. 36, no. 6, pp. 5271-5281, Nov. 2021.

[5] W. Lu, M. Liu, S. Lin and L. Li, “Fully Decentralized Optimal
Power Flow of Multi-Area Interconnected Power Systems Based on
Distributed Interior Point Method,” in IEEE Trans. Smart Grid, vol.
33, no. 1, pp. 901-910, Jan. 2018.

[6] D. Hur, J.-K. Park and B. H. Kim, “Evaluation of Convergence Rate
in the Auxiliary Problem Principle Distributed Optimal Power Flow,”
in Proc. Inst. Elect. Eng. Gen. Transm. Distrib., vol. 149, no. 5, pp.
525-532, Sep. 2002.

[7] G. Moon, Y. Wi, K. Lee and S. Joo, “Fault Current Constrained
Decentralized Optimal Power Flow Incorporating Superconducting
Fault Current Limiter (SFCL),” in IEEE Trans. Appl. Supercond., vol.
21, no. 3, pp. 2157-2160, June 2011.

[8] N. Huebner, Y. Rink, M. Suriyah and T. Leibfried, “Distributed AC-DC
Optimal Power Flow in the European Transmission Grid with ADMM,”
in 2020 55th Int. Univ. Power Eng. Conf. UPEC, 2020, pp. 1-6.

[9] C. Feng, Z. Li, M. Shahidehpour, F. Wen, W. Liu and X. Wang, “De-
centralized Short-Term Voltage Control in Active Power Distribution
Systems,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4566-4576, Sept.
2018.

[10] T. R. Alsenani and S. Paudyal, “Distributed Approach for Solving
Optimal Power Flow Problems in Three-phase Unbalanced Distribution
Networks,” 2018 Australas. Univ. Power Eng. Conf. (AUPEC), 2018,
pp. 1-6.

[11] T. AlSkaif and G. van Leeuwen, “Decentralized Optimal Power Flow
in Distribution Networks Using Blockchain,” 2019 2nd Int. Conf. Smart
Energy Syst. Technol. (SEST), 2019.

[12] J. Duan, W. Zeng and M. Chow, “Economic Impact of Data Integrity
Attacks on Distributed DC Optimal Power Flow Algorithm,” 2015 N.
Am. Power Symp. (NAPS), 2015, pp. 1-7.

[13] J. Duan, W. Zeng and M. Chow, “Resilient Distributed DC Optimal
Power Flow Against Data Integrity Attack,” in IEEE Trans. Smart Grid,
vol. 9, no. 4, pp. 3543-3552, July 2018.

[14] M. Ozay, I. Esnaola, F. T. Yarman Vural, S. R. Kulkarni and H. V.
Poor, “Machine Learning Methods for Attack Detection in the Smart
Grid,” in IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 8, pp.
1773-1786, Aug. 2016.

[15] M. Alkhraijah, S. Litchfield, C. Raslawski, D. Huggins, and D.K.
Molzahn, “Analyzing Malicious Data Injection Attacks on Distributed
Optimal Power Flow Algorithms,” submitted for publication, 2021.

[16] C. Coffrin, R. Bent, K. Sundar, Y. Ng and M. Lubin, “PowerModels.
JL: An Open-Source Framework for Exploring Power Flow Formula-
tions,” 2018 Power Syst. Comput. Conf. (PSCC), 2018, pp. 1-8.

[17] I. Dunning, J. Huchette and M. Lubin, “JuMP: A Modeling Language
for Mathematical Optimization,” in SIAM Review, vol. 59, no. 2, pp.
295-320, 2017.

[18] R. Zimmerman, C. Murillo-Sánchez and R. Thomas, “MATPOWER:
Steady-State Operations, Planning, and Analysis Tools for Power
Systems Research and Education,” in IEEE Trans. Power Syst., vol.
99, pp. 1-8, 2011.

[19] Power systems test case archive. [Online]. Available:
https://labs.ece.uw.edu/pstca/.

[20] C. Burges, “A Tutorial on Support Vector Machines for Pattern
Recognition,” in Data Mining and Knowledge Discovery, vol. 2, pp.
1-43, 1998.

[21] K. R. Muller, S. Mika, G. Ratsch, K. Tsuda and B. Scholkopf, “An
Introduction to Kernel-Based Learning Algorithms,” in IEEE Trans.
Neural Netw.*, vol. 12, no. 2, pp. 181-201, March 2001.

