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Abstract—The future power grid may rely on distributed
optimization to determine the set-points for huge numbers of
distributed energy resources. There has been significant work
on applying distributed algorithms to optimal power flow (OPF)
problems, which require separate controllers to agree on shared
boundary variable values. Looser tolerances for the mismatches
in these shared variables generally yield faster convergence at the
expense of exacerbating constraint violations, but there is little
quantitative understanding of how the convergence tolerance
affects solution quality. To address this gap, we first quantify
how convergence tolerance impacts constraint violations when
the distributed OPF solution is applied to the power system.
Using insights from this analysis, we then develop a bound
tightening algorithm which guarantees that operating points
from distributed OPF algorithms will not result in violations
despite the possibility of shared variable mismatches within
the convergence tolerance. We also explore how bounding the
cumulative shared variable mismatches can prevent unneces-
sary conservativeness in the bound tightening. While ensuring
feasibility, the proposed approach enables control of the trade-
off between computational speed, which improves with looser
convergence tolerance, and distributed OPF solution cost, which
degrades with looser convergence tolerance due to tightened
constraints.

Index Terms—Distributed optimization, optimal power flow,
convergence tolerance, bound tightening

I. INTRODUCTION

As we transition to low-carbon power systems, distributed
energy resources (DERs) such as electric vehicles, battery
storage systems, and wind and solar generators will increase
by orders of magnitude, motivating the development of new
optimization and control methods [1]. Traditional power sys-
tem optimization approaches where a central operator collects
system-wide information and computes optimal dispatches for
bulk generation plants may be inadequate for future power
systems with widespread DER integration and consumers
who desire data privacy. Distributed optimization algorithms
can scale to large, complex problems, have the potential
to maintain the privacy and autonomy of consumers, and
avoid a single point of failure. Such distributed algorithms
may be used to coordinate interconnected transmission and
distribution networks [2]–[4], optimally manage aggregations
of small-scale DERs and dispatchable loads [5]–[7], and
leverage parallelization for faster computation of large-scale
OPF-constrained problems [8], [9].

Distributed algorithms require further research and devel-
opment before being applied in practical system operation.
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Some challenges addressed in previous literature improve
convergence performance for non-convex problems [10], [11],
enable asynchronous communication [12], [13] and enhance
cybersecurity [14], [15], including our recent work on detect-
ing and mitigating malicious manipulation of shared data [16].
This paper focuses on the critical challenge of convergence
rate: many distributed optimal power flow (OPF) algorithms
take thousands of iterations to converge for large-scale power
systems [11], [17], [18]. To use such distributed algorithms
to operate future power grids with many rapidly fluctuat-
ing DERs, we must reduce computation time. To accelerate
distributed algorithms, researchers have proposed adaptive
parameter tuning [19]–[21], using machine learning to predict
the final boundary variable values [22], [23], or running
computations on GPUs for massive parallelization [8].

Distributed algorithms decompose the system into sepa-
rate regions, each under the control of different local con-
trollers. These controllers solve local optimization problems
and share boundary variable values to ensure consistency
between regions. The algorithm converges when the norm of
the shared variable mismatch values falls below a convergence
tolerance ϵ. The authors of [24] provide some guidance on
how to select ϵ based on scale of the variables, and most
researchers select ϵ ∈ [10−5, 10−3]. However, to the best of
our knowledge, the literature contains no detailed analysis of
the impact of convergence tolerance on constraint violations
after a distributed OPF solution is applied to the power grid.

One simple way to reduce convergence time is to select
a larger convergence tolerance ϵ. As we will demonstrate in
this paper, looser tolerances can significantly decrease the
number of iterations required to converge and thus reduce
computation times. However, before loosening the tolerance,
we must ensure the resulting distributed OPF solution provides
a safe operating point that will not cause constraint violations.
In this paper, we assess the impacts of convergence tolerance
on constraint violations and develop a bound tightening algo-
rithm which prevents these violations. We focus on the AC
OPF problem solved with the alternating direction method of
multipliers (ADMM) distributed algorithm, but our method
can be applied without any conceptual changes to other power
flow formulations or distributed algorithms.

The main contributions of this paper are as follows:
1) We formulate an optimization problem to find the max-

imum possible violations of engineering constraints at
the system operating point selected by a distributed OPF
algorithm terminated at a given convergence tolerance.

2) We develop a bound tightening algorithm to prevent
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engineering constraint violations in a power system
under distributed OPF dispatch, where the distributed
algorithm converged to a given tolerance. The operator
performing optimization can select a larger convergence
tolerance to decrease computation time and run the
bound tightening algorithm offline. During real-time op-
eration, distributed OPF using the tightened bounds will
not result in any constraint violations once converged to
the given tolerance.

3) We present numerical results from several representa-
tive test cases, including both models of transmission
networks and balanced distribution networks. We show
that running distributed OPF on the bound-tightened
cases significantly decreases computation time without
resulting in constraint violations.

The remainder of this paper is organized as follows. In
Section II, we describe the distributed OPF formulation and
discuss how the choice of convergence tolerance impacts
computation speed and the result’s feasibility. Section IV
formulates an optimization problem which finds the worst-case
constraint violations that may result from selecting a certain
convergence tolerance for the distributed OPF computation.
We present a bound tightening algorithm which iteratively
solves this optimization problem and tightens constraints until
there can be no violations of the original constraints when the
distributed OPF solution converged to the given tolerance is
applied to the system. The algorithm may be augmented with
bounds on cumulative mismatches so that bound tightening is
less conservative. In Section V, we present numerical results,
including solution costs for constraint-tightened test cases
and relationships between cumulative mismatch bounds and
violations. We conclude and discuss future work in Section VI.

II. DISTRIBUTED OPF FORMULATION

This section provides background material by formulating
the OPF problem and reviewing distributed OPF algorithms.

A. Optimal Power Flow

The OPF problem optimizes power system performance
subject to engineering constraints and equations that model
physical power flows through the system. We formulate OPF
using the AC power flow equations and an objective which
minimizes generation cost. However, the analysis and methods
presented in the paper could be used for other OPF formula-
tions without major conceptual changes.

The OPF problem is

min
pg,qg,p,
q,θ,v

∑
i∈N

fi(p
g
i ) (1a)

s.t. θi = 0 for i ∈ S, (1b)
∀i ∈ N , ∀(i, j) ∈ E :

pgi − pdi =
∑

(i,j)∈E

pij + gshi v2i , (1c)

qgi − qdi =
∑

(i,j)∈E

qij − bshi v2i , (1d)

pij = v2iGij

− vivj
[
Gij cos(θij) +Bij sin(θij)

]
,

(1e)

qij = −v2i (Bsh
ij +Bij)

− vivj
[
Gij sin(θij)−Bij cos(θij)

]
,

(1f)

P g
i ≤ pgi ≤ P

g

i , Qg

i
≤ qgi ≤ Q

g

i , (1g)

V i ≤ vi ≤ V i, (1h)

p2ij + q2ij ≤
(
Sij

)2
, (1i)

where the set of buses is N and the set of lines is E . For
each line (i, j) ∈ E , we denote the series conductance and
susceptance as Gij and Bij , and the line’s thermal limit as Sij .
The angle difference between bus i and bus j is θij = θi−θj .
The active and reactive power flows from bus i to bus j along
line (i, j) are denoted by pij and qij , respectively. For bus
i ∈ N , its voltage phasor is vi∠θi and its shunt admittance
is gshi + jbshi . Each bus i ∈ N may also have active power
demand pdi and reactive power demand qdi . If bus i contains
a generator, its active power output is pgi , its reactive power
output is qgi , and the cost function is fi. Also, S contains
the reference bus. This formulation minimizes the generation
cost (1a) subject to power balance constraints (1c)–(1d), power
flow across lines (1e)–(1f), generator operational limits (1g),
voltage magnitude limits (1h), and line thermal limits (1i).
Note also that we set the phase angle to 0 at a selected
reference bus in (1b).

B. Distributed Formulation with ADMM

In the distributed OPF formulation, the power network
is divided into multiple regions, each operated by a local
controller. When branch terminals are in different regions, we
add fictitious buses as shown in Figure 1 and set consistency
constraints to ensure that the fictitious variables match the
original variables in the neighbor’s region.

We can solve the distributed OPF formulation using alternat-
ing distributed algorithms (ADAs). In such algorithms, local
controllers solve OPF subproblems over their region of the
network. They augment their local OPF objective with relaxed
consistency constraints using boundary variable values shared
from neighboring controllers. Controllers iteratively solve their
OPF subproblems and share boundary variable data until the
consistency constraints are satisfied. This paper focuses on
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Fig. 1: Decomposition of power network
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the ADMM algorithm, although our methods apply directly to
other ADAs such as APP and ATC.

We formulate the distributed OPF problem for ADMM as
follows. For some region m, we denote the set of buses
and lines in the region as Nm and Em, respectively. We
denote the set of boundary variables which region m shares
with its neighbors by N s

m, and gather the values of shared
variables into the vector zm. The ADMM formulation keeps
a “central” copy of shared variables, and we denote the values
of central variables associated with region m as z̄m. Note that
we compute these “central” variables in a distributed manner
without requiring a coordinator, as in [25]. The vector ym

contains the dual variables of the consistency constraints for
region m. In addition, we use the same notation for variables as
in (1) but add dots to designate controllers’ copies of variables
in their region, so that, e.g., ṗgi,m denotes region m’s copy of
the power generation at bus i.

The OPF subproblem for region m at the k-th iteration is
shown below:

min
ṗg,k,q̇g,k,ṗk,

q̇k,θ̇
k
,v̇k,zk

m

∑
i∈Nm

fi(ṗ
g,k
i,m) + (yk−1

m )Tzk
m

+
α

2
||zk

m − z̄k−1
m ||22

(2a)

s.t. θ̇i = 0 for i ∈ S, (2b)
∀i ∈ Nm,∀(i, j) ∈ Em :

ṗg,ki,m − pdi =
∑

(i,j)∈Em

ṗkij,m + gshi (v̇ki,m)2, (2c)

q̇g,ki,m − qdi =
∑

(i,j)∈Em

q̇kij,m − bshi (v̇ki,m)2, (2d)

ṗkij,m = (v̇ki,m)2Gij

− v̇ki,mvkj
[
Gij cos(θ

k
ij) +Bij sin(θ̇

k
ij,m)

]
,

(2e)

q̇kij,m = −(v̇ki,m)2(Bsh
ij +Bij)

− v̇ki,mvkj
[
Gij sin(θ̇

k
ij,m)−Bij cos(θ̇

k
ij,m)

]
,

(2f)

P g
i ≤ ṗg,ki,m ≤ P

g

i , Qg

i
≤ q̇g,ki,m ≤ Q

g

i , (2g)

V i ≤ v̇ki,m ≤ V i, (2h)

(ṗkij,m)2 + (q̇kij,m)2 ≤
(
Sij

)2
. (2i)

The penalty parameter α is selected by the user. After solving
(2), controller m shares the boundary variable values zm

with their neighbors, receives their neighbors’ copies of these
variables, and then locally updates the “central” variables z̄m:

z̄k
m,n =

1

2
(zk

m,n + zk
n,m), (3)

where zm,n denotes region m’s copies of variables shared
between regions m and n, while zn,m denotes region n’s
copies of these shared variables.

Finally, controller m updates their dual variables as

yk
m = yk−1

m + α(zk
m − z̄k

m). (4)

The ADMM algorithm iterations repeat until convergence,
where each iteration consists of minimizing local subproblems
(2), updating central copies of shared variables (3), and
computing the new dual variables (4). Typically, the stopping

criterion is based on primal and dual residuals [24]. The vector
of primal residuals rk contains the difference between local
and central copies of all boundary variable values:

rk =
[
zT
1 − z̄T

1 zT
2 − z̄T

2 ... zT
M − z̄T

M

]T
. (5)

The dual residual is

sk = −α(z̄k − z̄k−1), (6)

where we have collected all central copies of boundary vari-
ables into one vector z̄. The algorithm terminates when the
primal and dual residual norms fall below the respective primal
and dual tolerances:

||rk|| ≤ ϵpri, ||sk|| ≤ ϵdual. (7)

The next section discusses how these tolerances are selected.

III. SELECTING CONVERGENCE TOLERANCES

We terminate the distributed OPF algorithm when the primal
and dual residuals are sufficiently small. The most widely
referenced work on ADMM, [24], suggests using the ℓ2-norm
of the primal and dual residuals as the stopping criterion. Many
papers on distributed AC OPF also use the ℓ2-norm of both
primal and dual residuals [19], [21], [24], [26], [27]. Other
papers use the ℓ∞- or ℓ2-norm of the dual residuals only [28],
[29], while yet other publications use the ℓ∞- or ℓ2-norm of
the primal residuals [11], [30], [31]. Most of the above works
select a tolerance in the range of [10−5, 10−3], although [24]
proposes a method to define tolerances based on the scale of
the variables:

ϵpri =
√
pϵabs + ϵrel max{||Axk||2, ||Bzk||2, ||c||2},

ϵdual =
√
nϵabs + ϵrel||ATyk||2,

(8)

where ϵabs, ϵrel are user-selected absolute and relative tol-
erances, respectively. The notation is for a general ADMM
formulation which minimizes a function f(x) + g(z) subject
to the coupling constraint Ax+Bz = c, with shared variables
x ∈ Rn and dual variables y ∈ Rp.

Our analysis will focus on ϵpri, and we will determine con-
vergence based on the primal residuals alone. The requirement
for small primal residuals, ||rk|| ≤ ϵpri, results in near feasi-
bility of the final solution by satisfying consistency constraints.
The requirement for small dual residuals, ||sk|| ≤ ϵdual, is
related to optimality of the final solution. This paper’s analysis
is primarily concerned with feasibility, and our methods are
designed to ensure feasible solutions for a given choice of ϵpri.
However, our numerical results demonstrate that in practice,
given appropriate choice of penalty parameter α, setting the
stopping criterion based on primal residuals results in solutions
that are both nearly optimal and nearly feasible.

We choose the ℓ∞ norm as the convergence criterion in
our analyses for two reasons. First, the ℓ∞ norm of the
shared variable mismatches is immediately interpretable as the
maximum variable mismatch and has units of p.u. for voltage
magnitudes and power flows and radians for voltage angles.
Second, it allows for simple linear constraints in the worst-case
violation optimization problem we formulate in Section IV.
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Extensions of the algorithm we will propose in this paper to
other norms are conceptually straightforward.

Changing the convergence tolerance ϵpri impacts the speed,
feasibility, and optimality of distributed optimization algo-
rithms. We provide an illustrative example using case500
from the PGLib-OPF archive [32] divided into 8 regions
for distributed optimization. We use the PowerModelsADA
library [33] to solve the distributed OPF problem using the
ADMM algorithm. We run the distributed OPF algorithm 2000
times, sweeping the convergence tolerance ϵpri from 10−6 to
10−3, and each time randomly perturbing loads by selecting
values between 70%–130% of nominal. Once the distributed
OPF algorithm terminates, we run an AC power flow on
the system using the control values from the distributed
OPF solution, which are active power injections and voltage
magitudes at PV buses. We determine if the results violate
any bounds on voltage magnitudes, reactive power generation,
or line flows. The results are shown in Figure 2, where
the shaded red bands around the median line in black show
every fifth percentile of the results. Figure 2a shows that the
number of iterations required to reach convergence decrease
significantly as ϵpri increases. Figure 2b shows the average
percent violation for the constraint violations that occur, where
we define the average percent violations as

1

Nv

∑
i∈C

max{xAC−PF
i − xmax

i , xmin
i − xAC−PF

i , 0}
xmax
i − xmin

i

,

where Nv is the number of violated constraints and C contains
indices of all variables representing voltage magnitudes, reac-
tive power injections, and line flows. We denote the value of
the i-th variable computed by the AC power flow as xAC−PF

i ,
and its minimum and maximum values as xmin

i and xmax
i . The

median number of violations per run is shown in Figure 2c.
As the maximum shared variable mismatches approach 10−4,
the power flow solution from the distributed OPF operating
point starts to have non-negligible constraint violations, which
increase with larger tolerances ϵpri. This behavior is exactly
what we would expect, since as ϵpri becomes sufficiently
large, the consistency constraints for boundary variables are
not satisfied and the distributed OPF solution may not be
feasible. Note that while the computation time decreases at
an approximately linear rate, there is a sudden steep increase
in the average percent violations at about ϵpri = 4× 10−5.

IV. ANALYSIS AND BOUND TIGHTENING ALGORITHM

As shown by the example in the prior section, sufficiently
loose convergence tolerances may lead to non-negligible con-
straint violations. This motivates the development of tech-
niques for bounding the worst-case constraint violations and
mitigating their impacts on the resulting solutions. We develop
a method to determine the worst-case constraint violations
that may occur from applying the distributed OPF solution
converged to a given tolerance ϵpri to the system. We first
formulate an optimization problem which finds the worst-case
constraint violations for a given maximum boundary variable
mismatch ϵpri. Next, we propose a bound tightening algorithm
which alternates between finding the worst-case violations
and subsequently tightening the constraints to mitigate those
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Fig. 2: Impact of convergence tolerance for case500 from
the PGLib-OPF archive. As the convergence tolerance be-
comes larger, the algorithm converges more quickly, but non-
negligible violations of engineering constraints begin to occur.
While the number of iterations to converge decreases with the
convergence tolerance, the average percent violation and the
total number of constraint violations across the system both
increase. For each plot, the black line is the average across
2000 runs with randomly varying load demands (70% to 130%
of nominal), with lighter red shading representing percentiles
of the distribution of outcomes in increments of 5%.

violations. Provided that the true worst-case violation is found
for each constraint, the distributed OPF algorithm run on the
bound-tightened case will not violate any original constraints
once applied to the system.

The worst-case violation analysis and constraint-tightening
algorithm is useful for OPF problems solved repeatedly, with
a constant network model and loads varying with each run.
The proposed algorithm requires the ability to perform offline
calculations where information regarding the entire system
is available. Offline, we formulate an optimization problem
which finds the worst-case violation, allowing the loads to
take any values within a specified range, given some ϵpri. We
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Fig. 3: Bound tightening algorithm overview

iterate between solving the worst-case violation problem for
all variable bounds and tightening the bounds according to the
worst-case violations until the algorithm converges. We show
an overview of the full bound tightening algorithm in Figure 3
and next provide the formulation and algorithm details.

A. Notation and Modeling Choices
We propose a method to determine the worst-case constraint

violations that may occur for a convergence tolerance ϵpri. We
use the same notation for system variables as in Section II-A.
Note that for the worst-case violation problem, the active and
reactive power demands pdi and qdi are variables. We allow the
power demands to vary by a factor r; for example, if r = 0.5,
then the active and reactive power demands may take any
value between 50%–150% of their nominal values, denoted
as pd,nomi and qd,nomi . We keep a constant power factor by
modeling consistent perturbations to both active and reactive
power at a given bus by the same factor r. With this approach,
we can perform offline computations for the tightened variable
bounds without needing information regarding the exact values
of loads that would only be available to local controllers in
real-time calculations, as shown in Figure 3. We denote Ng

as the set of buses with generators and S as the slack bus.
We use the same notation for variables contained in local

regions as in Section II-B. We put a dot over variables

belonging to local systems to distinguish them from the central
system variables. Again,M denotes the set of local controllers
in the distributed OPF problem and Am denotes the neighbors
of controller m. Also, the vector zm,n contains controller m’s
copies of all boundary variables shared between controllers
m and n, which includes voltage magnitudes and angles
for boundary buses and active and reactive power flows on
boundary lines. We denote the amount by which original
bounds have been tightened by λV i

, λV i
for lower and upper

bounds on the voltage at bus i, λQ
i
, λQi

for lower and upper
bounds on reactive power generation at bus i, and λSij

for
the upper bound on apparent power flow across line (i, j).
For instance, with a constraint tightening of λV i

, the upper
voltage limit (2h) in an controller’s subproblem becomes
v̇ki,m ≤ V i − λV i

. We collect the amount of bound tightening
on all variables into one vector λ.

We note that the worst-case violation on any variable bound
depends on the choice of convergence tolerance ϵpri and on the
amount of bound tightening λ. Therefore, we denote the worst-
case violations on upper and lower bounds on voltage magni-
tudes at bus i as Wvi

(ϵpri,λ) and Wvi
(ϵpri,λ), respectively;

on upper and lower bounds on reactive power generation at
bus i as Wqi(ϵ

pri,λ) and Wq
i
(ϵpri,λ), respectively; and on

upper bounds on line apparent power flows at line (i, j) as
Wsij (ϵ

pri,λ). We next describe an optimization formulation
for calculating the worst-case constraint violations for a given
convergence tolerance ϵpri and bound tightening λ.

B. Worst-Case Violation Formulation
We formulate an optimization problem that computes the

worst-case constraint violations for a given range of load vari-
ation and convergence tolerance. To formulate this problem,
we begin with constraints that belong to two categories:

1) Distributed OPF constraints which represent distributed
OPF algorithm behavior. The variables kept by local
regions (marked with a dot) must satisfy OPF constraints
within that region. In addition, consistency constraints
require that the differences between neighboring re-
gions’ copies of shared variables are no more than ϵpri.

2) System-wide AC power flow constraints which represent
the physical behavior of the system under a distributed
OPF solution dispatch. These constraints involve vari-
ables representing the physical system (which are not
marked with a dot) and are the traditional AC power flow
equations. The setpoints for PV buses in the AC power
flow come from the distributed OPF variable values.

To compute worst-case violations, we will form optimiza-
tion problems that have the following constraints:

∀m ∈M :

(2c)–(2g) (9a)

V i + λV i
≤ v̇i,m ≤ V i − λV i

, ∀i ∈ Nm, (9b)

Qg

i
+ λQ

i
≤ q̇gi,m ≤ Q

g

i − λQi
, ∀i ∈ Nm, (9c)

(ṗij,m)2 + (q̇kij,m)2 ≤
(
Sij − λSij

)2

, ∀(i, j) ∈ Em,

(9d)

||zm,n − zn,m||∞ ≤ ϵpri, ∀n ∈ Am, (9e)



6

pdi = pd,nomi + p̃i, |p̃i| ≤ r · pd,nomi , ∀i ∈ N , (9f)

qdi = qd,nomi + q̃i, |q̃i| ≤ r · qd,nomi , ∀i ∈ N , (9g)
pgi = ṗgm,i, vi = v̇m,i, ∀i ∈ Ng, (9h)

vi = v̇m,i, θi = θ̇m,i, for i ∈ S, (9i)
∀i ∈ N , ∀(i, j) ∈ E :

pgi − pdi =
∑

(i,j)∈E

pij + gshi v2i , (9j)

qgi − qdi =
∑

(i,j)∈E

qij − bshi v2i , (9k)

pij = v2iGij

− vivj
[
Gij cos(θij) +Bij sin(θij)

]
,

(9l)

qij = −v2i (Bsh
ij +Bij)

− vivj
[
Gij sin(θij)−Bij cos(θij)

]
,

(9m)

vi ≥ V . (9n)

Constraint (9a) ensures that the solution from each controller’s
region satisfies the power balance and line power flow con-
straints in that region. Constraints (9b)–(9d) are the voltage
magnitude, reactive power injection, and line apparent power
flow bounds imposed on variables in each region’s OPF
problem. Constraint (9e) ensures that the maximum boundary
variable mismatch is not greater than ϵpri to model the
controllers reaching their convergence tolerances. Constraints
(9f)–(9g) set the amount by which loads may vary as described
in Section IV-A.1 Constraint (9h) sets the control values (active
power injection and voltage magnitude variables for PV buses)
to the setpoints from the distributed OPF solution. Constraint
(9i) sets the slack bus voltage angle to 0 and the voltage
magnitude to the result from the distributed OPF solution.
Constraints (9j)–(9m) are the traditional AC power balance
and line flow constraints for the system. These represent
physical system behavior where the control values are set
to the results of the distributed OPF computation. Constraint
(9n) is designed to prevent the solver from finding a low-
voltage solution to the AC power flow equations in (9i)–(9m)
by providing a lower bound for the voltage magnitudes.2

We add an appropriate objective to (9) to find the worst-case
violations of bounds on voltage magnitudes, reactive power
injections, and line apparent power flows. For example, to
compute the worst-case violation of the upper voltage limit
at bus i for a given convergence tolerance of ϵpri and bound
tightening values λ, we first solve

v∗i = max vi subject to (9).

The worst-case violation is then

Wvi
(ϵpri,λ) = v∗i − V i.

1Note that (9a)–(9e) enforce additional implicit constraints on the loads
since some loading conditions within the variability allowed by r may not
be feasible given each region’s OPF constraints and the requirement that
neighboring regions’ shared variables agree to within a tolerance of ϵpri.
If a loading condition is not feasible for (9), then it is not feasible for the
original OPF problem (1), so it is acceptable for (9) to exclude these infeasible
loading points.

2The value of V is chosen to be much lower than the lowest anticipated
voltage (e.g., 0.7 per unit) so that the only effect of (9n) is avoiding a low-
voltage power flow solution for (9j)–(9m).

Similarly, for the lower bound on voltage magnitude at bus i,
we first solve

v∗i = min vi subject to (9).

The worst-case violation of the lower voltage bound is then

Wvi
(ϵpri,λ) = V i − v∗i .

Note that if we find Wvi
(ϵpri,λ),Wvi

(ϵpri,λ) ≤ 0, then even
in the worst case there is no violation of the bound constraint.

Similarly, we maximize and minimize the variable qgi at
bus i to compute worst-case violations of reactive power
generation limits. For worst-case violations of apparent power
flow limits on line (i, j), we maximize p2ij + q2ij and then

compute Wsij (ϵ
pri,λ) =

√
(p∗ij)

2 + (q∗ij)
2 − Sij .

C. Discussion

The non-convex nature of the worst-case violation con-
straints means that a solver may find a local, rather than
global, solution and thus not identify the actual largest possible
violation. Alternatively, one could form a variant of (9) with
relaxed AC power flow constraints [34]. The violation obtained
by optimizing over a convex relaxation of the AC power flow
equations will be equal to or greater than the actual largest
possible violation. We chose to use the nonlinear AC power
flow equations despite the possibility of local optima because
problems constrained by convex relaxations may be slower
to solve and may require careful implementation to ensure the
relaxation is tight enough to avoid overly conservative bounds.
We demonstrate via our results in Section V that although a
nonlinear programming solver may occasionally return a local
solution, we observe no violations in practice when running
distributed OPF on test cases with bounds tightened using the
formulation with AC power flow equations. This suggests that
local solvers perform well for our purposes.

We also assume that there is at most one relevant solution to
the AC power flow equations (9j)–(9m) for all power injections
within the specified range. Although there may be many “low-
voltage” solutions, typically there is only one “high-voltage”
solution with near-nominal voltage magnitudes, and this high-
voltage solution is the one we desire to find. We add constraint
(9n) to screen out low-voltage power flow solutions. We note
that the modeling challenges associated with nonconvexities
and low-voltage power flow solutions are similar to those
faced in stochastic and robust optimization problems; see [35,
Section XI] for further discussion.

D. Bound Tightening

As demonstrated for a representative test case in Figure 2a,
choosing a larger convergence tolerance ϵpri can dramati-
cally decrease the number of iterations for the distributed
optimization algorithm. However, larger tolerances may also
result in constraint violations due to the inconsistency between
neighboring regions’ copies of boundary variables. We propose
a method to tighten constraints such that the dispatch from the
distributed OPF algorithm when converged to a given ϵpri is
guaranteed not to violate the original constraints. Although the
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Initialize: k = 0 and bound tightenings λ0 = 0.

Compute worst-case violations for all bounds:
Wvi

(ϵpri,λk), Wvi
(ϵpri,λk) for all i ∈ N ,

Wqi(ϵ
pri,λk), Wq

i
(ϵpri,λk) for all i ∈ Ng ,

Wsij (ϵ
pri,λk) for all (i, j) ∈ E .

Compute constraint tightenings λk+1

according to Algorithm 1.

Solve AC OPF with nominal loads.
Is there a feasible solution?

Check convergence:
Is ||λk+1 − λk||2 ≤ Γ ?

Save final tightenings.
Bound tightening completed for ϵpri.Bound tightening failed for ϵpri.

k ← k + 1

Yes

Yes

No

No

Fig. 4: Alternating algorithm for robust AC OPF problems

setting and application is different, our alternating algorithm
is conceptually similar to those proposed in [36], [37], which
use constraint tightening to make AC OPF problems robust to
uncertainty in power demand or generation.

We now present the bound tightening algorithm. We show
the steps of the algorithm in Figure 4. First, we initialize
the tightening for each constraint to 0 by setting λ0 = 0.
Second, we compute worst-case violations of all bounds.
Third, we compute updated tightening values λk based on
these violations as shown in Algorithm 1. Note that we use s
as a generic variable index and observe that the update of λs

follows the same logic for tightening of upper bounds λV i
,

λQi
, λSij

and tightening of lower bounds λV i
, λQ

i
. For a

positive worst-case violation Wr, we increase the amount of
tightening by Wr. We also check for unnecessary tightening: if
the worst-case violation Wr is negative (that is, the variable is
within its bound) and there has already been some tightening
so that λr > 0, we reduce the amount of tightening by Wr

or until λr = 0. Fourth, we solve an AC OPF problem on
the system with nominal loads and bounds tightened by λk+1

to make sure that the updated tightenings do not make the
problem infeasible. Last, we evaluate the change in λ since
the last iteration and return to Step 2 if this change is above
a specified threshold Γ. Otherwise, the algorithm ends.

E. Budget Uncertainty Set

In the formulation (9), every shared variable may reach
the maximum possible mismatch ϵpri. However, in practice,
controllers reach consensus on some boundary variables more

Algorithm 1 Updating constraint tightenings λk
s

if Ws(ϵ
pri,λk−1) > 0 then

λk
s = λk−1

s +Ws(ϵ
pri,λk−1)

else if λk−1
s > 0 then

λk
s = λk−1

s −min{−Ws(ϵ
pri,λk−1), λk−1

s }
end if

Fig. 5: Distribution of mismatches for case500 divided into
eight regions, with distributed OPF converged to ϵpri = 10−4

quickly than others. When the algorithm converges with maxi-
mum mismatch below ϵpri, most mismatches are much smaller
than ϵpri. We show a representative case in Figure 5 and
observe that most of the mismatches are much smaller than
the convergence tolerance of ϵpri = 10−4.

This motivates introducing the concept of budget uncer-
tainty, which allows us to bound the total mismatch across
the system and thus make less conservative predictions of
the worst-case constraint violations. The budget uncertainty
concept we use is similar to that used in [38], although our
“uncertainty” regards the mismatch in shared variable values
in a mathematical distributed optimization problem, rather
than coming from renewable power fluctuations. To add the
uncertainty budget to our problem, we choose the budget size
β and augment (9) with the following constraint:

∑
(m,n)∈P

∑
i∈Im,n

|zim,n − zin,m| ≤ βNbϵ
pri (10)

where P is the set of all neighboring controller pairs (m,n),
and the set Im,n contains indices for the specific variables
shared between controllers m and n. Here, zim,n is controller
m’s copy of the i-th boundary variable shared between con-
trollers m and n. The total number of boundary variables in
the system is Nb =

∑
(m,n)∈P |Im,n|.

Without adding (10), the constraints (9) allow for the total
mismatch in the system, i.e., the sum of all boundary variable
mismatches, to reach Nbϵ

pri, because every boundary variable
can reach a mismatch of ϵpri. We add the bounds on the
total mismatch in (10) so that the sum of absolute mismatches
across the system is no more than a fraction β of Nbϵ

pri. Note
that it is straightforward to reformulate (10) as a set of linear
inequalities, which is how we implemented this constraint.

The choice of parameter β allows us to control the conserva-
tiveness of the constraint tightenings λ. With β < 1, we cannot
guarantee finding the true worst-case violations and thus the
tightenings are not robust to all possible mismatches for
which the distributed optimization algorithm could terminate.
Hence, the distributed OPF solution could violate constraints
even after applying the bound tightening algorithm. However,
choosing β < 1 allows the tightened bounds to be less
conservative. This may lead to more optimal distributed OPF
solutions. In addition, when the fully robust (β = 1) bound
tightening algorithm leads to infeasibility of the resulting AC
OPF problem, an appropriately selected uncertainty budget
allows for less conservative bound tightening and may result in
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feasible AC OPF problems. Our empirical results in the follow-
ing section indicate that β can be made fairly small in practice
without introducing significant constraint violations. Thus, we
can use larger convergence tolerances to substantially reduce
the number of distributed OPF iterations, while achieving
negligible constraint violations and only minor suboptimality
compared to the OPF problem without tightened bounds.

V. NUMERICAL RESULTS

We use Julia with the optimization modeling package
JuMP [39] to formulate the worst-case violation optimization
problems. We run distributed OPF to evaluate violations on the
bound-tightened test cases using PowerModelsADA [33], and
we run centralized OPF problems using PowerModels [40].
Our test cases are the case14, case118, and case500 test
systems from the PGLib-OPF archive [32], and the IEEE 69-
bus and 141-bus systems which represent balanced distribution
networks. Note that we add controllable distributed energy
resources to the IEEE 69-bus and 141-bus test cases, which
we model as providing power at no cost.3 We divide case14,
case69, and case118 into 3 regions, case141 into 4 regions,
and case500 into 8 regions for distributed optimization.

We first examine the relationship between convergence
tolerance ϵpri and optimality of the bound-tightened cases.
We compute the cost of the OPF solution for case14, case141,
and case500 with nominal loads after bound tightening across
a range of convergence tolerances ϵpri. Figure 6 shows the
cost percent difference for bound-tightened cases compared to
original cases across multiple budgets β. We compute the cost
percent difference as (f̃ − f∗)/f∗, where f̃ is the AC OPF
objective value for the bound-tightened case and f∗ is the
objective value for the original case. When ϵpri is sufficiently
large, the bounds are tightened until the resulting test case is
not feasible. We mark tolerances that result in infeasible test
cases with ×.

As expected, for every test case, the amount of bound
tightening increases with ϵpri, worsening solution subopti-
mality. However, the bound-tightened cases’ costs are no
more than 0.7% above optimal for all ϵpri at which the
bounds can be tightened without causing AC OPF infeasibility.
Decreasing the budget parameter allows for less conservative
bound tightening, which may improve optimality slightly.
More significantly, using a smaller budget may result in
feasible tightened cases for values of ϵpri at which tightening
with a larger budget or no budget causes infeasibility; see, e.g.,
convergence tolerance values greater than 10−2 for the case14
in Figure 6a.

There is some unexpected behavior in these results: for
case500 at ϵpri = 1.4 × 10−5, the cost is higher than at
ϵpri = 1.9 × 10−5. That is, the bounds are tightened less
for a looser tolerance, due to an instance in which the solver
found a local solution, rather than the true global optimum,
to one of the optimization problems used to compute the
bound tightenings. As discussed in Section IV-C, since we use
the non-convex AC power flow equations in our optimization

3The modified IEEE 69-bus and 141-bus test cases are available online at
https://github.com/rjuly7/test case modifications.

(a) case14

(b) case141

(c) case500

Fig. 6: Cost vs. convergence tolerance ϵpri. The × mark
indicates a tolerance and budget for which OPF on the test
case after bound tightening was infeasible.

formulation, we cannot guarantee that the solver will find the
global solution to these worst-case violation problems.

In addition to evaluating the optimality of bound-tightened
cases, we also assess whether the bound tightening algorithm
prevents constraint violations once the distributed OPF solu-
tion is applied to the system. We expect distributed OPF on
cases tightened without any mismatch budget (β = 1) to have
no constraint violations. Although we use local solutions to the
non-convex worst-case violation problems, the results indicate
that the bound tightening algorithm with the AC power flow
formulation does not result in constraint violations once the
distributed OPF solution is applied to the system. We do expect
that when the mismatch budget becomes small enough, the
constraints will not be tightened sufficiently. Thus, we may see
that distributed OPF on test cases tightened with very small
mismatch budgets result in constraint violations on the system.

To assess this, we run distributed OPF computations on
cases tightened across a range of values for ϵpri and across
a range of budgets. Each time we run distributed OPF, we
vary the loads by up to 50% from nominal for case14,
case69, case118, and case141 and by up to 30% from nominal
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TABLE I: Violations vs. budget

Test Case
(Tolerance)

Budget
β

Maximum Percent
Violation

Mean Percent
Violation

case14
(2.6× 10−2)

0.01 17.40 2.91
0.03 8.71 0.43
0.10 0 0

case69
(1.3× 10−3)

0.01 18.41 2.34
0.03 15.80 1.36
0.10 0 0

case118
(10−2)

0.01 4.91 0.459
0.03 2.53 0.051
0.10 0 0

case141
(1.3× 10−3)

0.01 26.17 16.00
0.03 15.54 6.36
0.10 0 0

case500
(10−4)

0.01 4.12 1.04
0.03 0.04 0.0009
0.10 0.005 0

for case500. The perturbation for each load is randomly
selected from a uniform distribution across this range. Once
the distributed OPF converges to a tolerance of ϵpri, we solve
an AC power flow using control values from the distributed
OPF solution. We record the average percent violation of
any constraints violated and the total number of violations
as described in Section III. The results are shown in Table III.
For every test case, bound tightening with very small budgets
(β < 0.05) may result in violations, but tightening with a
budget of at least β = 0.10 achieves negligible constraint
violations.

One motivation for bound tightening is to reduce the number
of iterations to convergence. Bound tightening allows us to
increase ϵpri without risking constraint violations once the
distributed OPF solution is applied to the grid. We showed
an example of the impacts of increasing ϵpri in Section III
for case500. Here, we show in Table II the median percent
reduction in iterations to convergence when we increase ϵpri to
the maximum value at which we can feasibly tighten bounds.
Just as in Section III, we run distributed OPF repeatedly,
perturbing the loads each time by up to 50% for case14 and
case118 and by up to 30% for case500. For each case, we find
ϵpriorig, the greatest value of ϵpri which results in no violations
under distributed OPF for the original test case, which is
5 × 10−4 for case14 and case118, 1 × 10−5 for case69 and
case141, and 5× 10−6 for case500. Then, we find ϵpritight, the
greatest value of ϵpri for which we can feasibly run a bound
tightening algorithm with a budget of 10% (β = 0.10) or
higher, which is 2.6×10−2 for case14, 1×10−2 for case118,
1.3×10−3 for case69 and case141, and 1×10−4 for case500.
We measure the percent reduction as (νϵpriorig

− νϵpritight
)/νϵpriorig

,
where νϵpri is the median number of iterations required to
converge to a tolerance of ϵpri in our experiments. That is,
the percent reduction in iterations in Table II indicates the
amount by which bound tightening allows us to decrease the
number of iterations (by increasing ϵpri) without resulting in
constraint violations. For these representative test cases, bound
tightening can reduce the number of iterations by over 35%
without increasing the cost by more than 0.7%.

We also provide a brief discussion on computation time.

TABLE II: Reduction in Iterations

Test case case14 case69 case118 case141 case500
Iterations
Decrease 53.9% 55.3% 85.2% 46.6% 36.9%

While collecting these results, we ran the bound tightening
algorithm on the test cases for many different values of ϵpri

and for several different budgets. We record in Table III the
minimum, median and maximum times required to run the
bound tightening algorithm on each test case. We ran the
experiments on Georgia Tech’s PACE cluster, where each node
had a 16-core 2.7 GHz processor and 64 GB RAM. Recall that
all bound tightening occurs offline. To speed up offline bound
tightening, we parallelize the computation of worst-case bound
violations and adaptively determine which bounds are at risk
for violations to reduce the number of problems to be solved.

During real-time operation, when running distributed OPF
on a bound-tightened test case, the computation time for
solving ADMM subproblems at each iteration is no different
from the computation time for subproblems on the original test
case. However, a bound-tightened test case allows for selecting
a larger convergence tolerance, resulting in fewer iterations
required to converge, without risking constraint violations.

TABLE III: Bound Tightening Time in Minutes

Test case Minimum Median Maximum
case14 0.17 0.18 0.20
case69 0.15 0.18 1.44

case118 1.75 2.25 2.49
case141 0.52 0.62 2.84
case500 66.2 120.8 229.7

VI. CONCLUSION

Distributed optimization algorithms provide several advan-
tages, including scalability, flexibility, and privacy, for op-
erating power systems with widespread distributed energy
resources. Such algorithms require separate computing con-
trollers to reach consensus, up to some convergence tol-
erance, on the values of shared boundary variable values.
Increasing the convergence tolerance generally reduces the
number of iterations to convergence, which is a key challenge
for distributed algorithms, but may also lead to constraint
violations with respect to the original problem. In this paper,
we first formulate an optimization problem which finds the
worst-case constraint violations that result from applying a
distributed OPF solution converged to a given tolerance to the
power system. Next, we propose a bound tightening algorithm
which, provided that global solutions are found for worst-
case violation problems, guarantees that the distributed OPF
solution will not cause constraint violations on the real power
system. We also introduce a ”budget uncertainty” method to
bound cumulative boundary variable mismatches in the worst-
case violation problem, allowing for less conservative bound
tightening. Our numerical results demonstrate that the bound
tightening algorithm increases suboptimality only slightly,
while allowing for a significant reduction in distributed OPF
iterations without causing constraint violations.



10

For sufficiently large convergence tolerances, the algorithm
tightens bounds to the point that OPF is no longer feasible.
Our future work is to increase the range of convergence
tolerances for which the bound tightening algorithm maintains
OPF feasibility. To do so, we plan to analyze distributions
of boundary variable mismatches, explore chance-constrained
variants of the worst-case violation problems, and leverage the
optimality of solutions to regions’ OPF subproblems, which
may yield less conservative worst-case violations.
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