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Abstract
With increasingly frequent and severe wildfire conditions driven by
climate change, utilities must manage the risk of wildfire ignitions
from electric power lines. During “public safety power shutoff”
events, utilities de-energize power lines to reduce wildfire igni-
tion risk, which may result in load shedding. Distributed energy
resources provide flexibility that can help support the system to
reduce load shedding when lines are de-energized. Since many dis-
tributed energy resources are located in distribution systems, we in-
vestigate coordinating transmission and distribution systems when
optimizing transmission line de-energization decisions. We con-
sider a coordinated transmission-distribution optimization problem
that balances tradeoffs between wildfire risk mitigation and load
shedding. We model distribution systems that include battery en-
ergy storage systems which provide power to reduce load shedding
when transmission lines are de-energized. This multi-period inte-
grated transmission-distribution optimal switching problem jointly
optimizes line switching decisions, the generators’ setpoints, load
shedding, and the batteries’ states of charge, resulting in significant
computational challenges. To improve scalability, we decompose
the problem over both space and time and apply a distributed opti-
mization algorithm. We demonstrate this approach on a large-scale
test case geo-located in California that contains a transmission
system with actual wildfire risk data coupled with multiple realistic
distribution system models. Our results demonstrate that applying
distributed optimization enables solving large-scale multi-period
switching problems that are intractable using state-of-the-art cen-
tralized solvers.

CCS Concepts
•Hardware→Power networks; •Applied computing→Multi-
criterion optimization and decision-making.
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integrated transmission and distribution (ITD) systems, distributed
optimization, wildfire risk, multi-period switching

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’25, June 2025, Rotterdam, Netherlands
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Anonymous Author(s). 2024. Integrated Transmission-Distribution Multi-
Period Switching for Wildfire Risk Mitigation: Improving Speed and Scala-
bility with Distributed Optimization. In .ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Wildfires are expected to become more frequent and more severe
as the climate changes, and the risk of electric power line faults
igniting wildfires is a growing concern [11]. During times when
wildfire risk is high, electric power utilities may proactively de-
energize power lines to mitigate wildfire ignition risk, a practice
commonly known as "public safety power shutoffs" [8].

De-energizing lines to reduce wildfire ignition risk may cause
power outages to consumers. To mitigate wildfire risk while also
minimizing such power outages, recent research has investigated
optimal switching problems which balance the wildfire risk reduc-
tions with load shedding. One of the first of these papers formulates
a transmission operation problem which finds the optimal line de-
energization decisions for an objective which balances the wildfire
ignition risk of energized lines with the harm of load shedding [19].
The authors compare their results with heuristics which simply use
risk thresholds to de-energize power lines. A subsequent study also
considered equity, formulating the problem with a rolling horizon
to make power shut-offs more fair over time [13]. A survey paper
reviewed utility practices and research directions for de-energizing
power equipment to manage wildfire risk [11].

While the papers listed above all focused on transmission net-
work operation, we next review papers which formulated wildfire
risk mitigation problems at the distribution level. One recent paper
studied optimal distribution network reconfiguration and microgrid
formation for mitigating wildfire risk [23]. They tested their method
by solving this problem for a single time period on a reduced ver-
sion of several distribution networks from the NREL SMART-DS
[14] dataset containing 3,122 buses. Another study solved a similar
network reconfiguration problem, but incorporated equity consid-
erations when making load shedding decisions [26]. Another study
presented a stochastic model which accounts for uncertainty in
wildfire ignition risks and incorporates mobile power sources to
reduce load shedding [20].

To the best of our knowledge, this paper is the first to consider
the optimal switching problem for wildfire risk mitigation as a
transmission-distribution co-optimization. Distributed energy re-
sources (DERs) can help support the power grid during severe
wildfire conditions. To leverage the flexibility of these distributed
resources, often located in distribution systems, we must jointly
model and optimize over transmission and distribution systems. As
in previous literature [13, 19, 26], we use a linear approximation
of the power flow equations to facilitate solving a problem with
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discrete variables representing energization statuses. We also use
realistic transmission and distribution models which result in a
large-scale multi-period problem. This large mixed-integer linear
problem requires prohibitive amounts of time and memory to solve
for state-of-the-art mixed-integer solvers. To scale to large sys-
tems, we decompose the problem and use distributed optimization
techniques to reach consensus at the optimal solution.

We carry out a brief review of past work on solving coordinated
transmission-distribution dispatch problems in a distributed man-
ner. Since the past work is extensive, we focus on papers which
consider multi-period dispatch or problems with integer variables.
One study solved a multi-period economic dispatch problem by
decomposing it over both space and time and applying an algorithm
based on the alternating direction method of multipliers (ADMM)
to find the solution [25]. Considering the uncertainty in renewable
resources, another group presented a robust multiperiod economic
dispatch, which they solved in a distributed manner using an accel-
erated augmented Lagrangian method [2]. Another paper used an
enhanced ADMM algorithm to solve a coordinated transmission-
distribution reserve scheduling problem [5], where the authors
improve the convergence by adding an inner loop to the ADMM
algorithm which operates with all integer variables fixed. One of
the gaps seen in these studies is a lack of high-fidelity, realistic dis-
tribution system models. These papers used synthetic distribution
networks which are assumed to be balanced so that only one phase
is modeled, each containing less than 150 buses. The largest test
case used for numerical results contained 3892 buses in total. In
contrast, we test our methods on multi-phase distribution networks
which model both medium- and low-voltage buses so that we can
leverage distributed resources at every level. These distribution
networks each contain thousands of buses, and the full test case
contains over ten thousand buses. Therefore, our results show that
the proposed method can effectively be used to make optimal power
shut-off decisions for realistically sized systems.

We note that ADMM is not guaranteed to converge for non-
convex problems. Some papers have proposed using ADMM as a
heuristic to solve mixed-integer programming problems [1, 12, 21].
They note that although ADMM is not guaranteed to converge to
the optimal solution, instances of ADMM on mixed-integer pro-
grams may provide significant computational advantages compared
to global solution methods like branch-and-bound, which suffer
from exponential worst-case time complexity. Our results demon-
strate that using ADMM to solve the decomposed problem allows
us to solve our large multi-period problem in a reasonable amount
of time, while using a state-of-the-art centralized solver takes much
longer and can be intractable for sufficiently large problems.

Our contributions are as follows:

(1) We formulate and solve a transmission-distribution
co-optimization problem which optimizes transmission line
de-energizations to minimize both wildfire risk and load
shedding. Our paper is the first to consider coordinating
transmission and distribution networks to optimize power
shut-offs under wildfire risk.

(2) To make the large wildfire mitigation problem scalable, we
decompose the problem over both space and time. Then

we apply an ADMM-based distributed algorithm to the de-
composed problem to find the optimal solution. After the
decomposition, individual subproblems can be solved rela-
tively quickly at each ADMM iteration. To the best of our
knowledge, this paper is the first to apply an ADMM algo-
rithm to solve optimal switching problems for wildfire risk
mitigation.

(3) We present numerical results from test cases which are sig-
nificantly larger in scale compared to previous literature.
We demonstrate that applying our proposed decomposi-
tion and distributed algorithm solves the large-scale mixed-
integer problemmuch faster than state-of-the-art centralized
solvers.

We organize the remainder of the paper as follows. In Section 2,
we formulate the mixed-integer linear optimal switching problem,
which balances wildfire risk reduction with load shedding. In Sec-
tion 3, we decompose the optimal switching problem across net-
works and time periods. We also describe how we use the ADMM
algorithm to solve the decomposed problem. In Section 4, we then
present results from a large-scale transmission-distribution test
case to illustrate the computational advantages of our decompo-
sition and distributed solution method. Finally, we conclude and
discuss future work in Section 5.

2 Problem Formulation
We present the optimal switching for wildfire risk mitigation prob-
lem in this section. The problem aims to balance wildfire risk with
load shedding by finding the optimal system operating point which
minimizes a weighted sum of transmission line wildfire ignition risk
and load shedding across all time periods. The constraints consist
of the power flow physics and engineering limits which are typical
of optimal power flow, augmented so that they can support compo-
nent shut-offs. The control variables consist of transmission line
energization statuses, transmission generator setpoints, distribution
bus load shed, and distribution storage system charge/discharge
setpoints. The most natural way to formulate this problem would
contain non-linear AC power flow equations and discrete variables
to represent transmission line statuses. However, solving mixed-
integer nonlinear optimization problems is not desirable. The lin-
earized LinDistFlow power flow approximation [7] is widely used to
model power flow in distribution systems and, while less common,
can also be used to approximate transmission system power flow
models as well. However, using linearized power flow equations
may result in a solution which is not AC feasible. In particular,
using generator setpoints from a LinDistFlow approximation may
be problematic, since LinDistFlow neglects all losses along power
lines. To make the mixed-integer problem tractable, and to produce
an AC feasible solution, we formulate the problem in two stages:

(1) Solve the multi-period optimal switching for wildfire risk
mitigation problem as amixed-integer linear program (MILP)
using the LinDistFlow approximation to model power flow.
Save the transmission line switching decisions, distribution
bus load shed, and distribution storage system setpoints from
each time period.

(2) At each time period, solve a single-period AC OPF given
the transmission line switching decisions, distribution bus
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load shed, and distribution storage system setpoints. Save
the generator setpoints selected by the AC OPF at each time
period.

For the single-period AC OPF solved in Step 2, the formulation
is standard. We note that rather than allowing the storage device
setpoints to be free variables, we fix them to the setpoints decided
by the solution of the multi-period problem in Step 1. In addition,
we use the current-voltage rectangular formulation for the power
flow equations, since this seems to provide the best convergence
performance on the distribution networks. See [17] for additional
details on the integrated transmission-distribution AC OPF solved
in Step 2.

The reminder of this section details the formulation for the
multi-period linearized optimal switching problem solved in Step 1.
Throughout this section, we denote components of the transmission
network with the superscript H and components of distribution
networks with the superscript D. The problem formulation con-
tains over multiple time periods, T = {1, 2, ...,𝑇 }. Variables are
indexed by 𝑡 to denote which time period they represent.

For the optimal switching problem, we model power flow in
the transmission system with a balanced single-phase equivalent
LinDistFlow approximation, and we model distribution system
power flow with an unbalanced three-phase LinDistFlow approxi-
mation. Following the structure in [17], we also include constraints
that balance the power flow and ensure that voltage magnitudes
are equal at the transmission-distribution boundary.

2.1 Transmission Constraints
Consider a transmission network with a set of buses NH and a
set of lines LH . The active power flow and reactive power flow
through line (𝑖, 𝑘) at time 𝑡 are 𝑝𝑖𝑘,𝑡 and 𝑞𝑖𝑘,𝑡 , respectively. The
binary variables ℓ𝑖𝑘,𝑡 represent the energization status at time 𝑡 ∈ T
of the transmission line (𝑖, 𝑘) ∈ LH connecting bus 𝑖 to bus 𝑘 .
Operational limits restrict the amount of power flow across lines.
The lower bounds on active and reactive power flows are 𝑝

𝑖𝑘
and

𝑞
𝑖𝑘
, while the upper bounds on active and reactive power flows are

𝑝𝑖𝑘 and 𝑞𝑖𝑘 , respectively. The line flow is then defined as

𝑝
𝑖𝑘
ℓ𝑖𝑘,𝑡 ≤ 𝑝𝑖𝑘,𝑡 ≤ 𝑝𝑖𝑘 ℓ𝑖𝑘,𝑡 ∀(𝑖, 𝑘) ∈ LH, ∀𝑡 ∈ T

𝑞
𝑖𝑘
ℓ𝑖𝑘,𝑡 ≤ 𝑞𝑖𝑘,𝑡 ≤ 𝑞𝑖𝑘 ℓ𝑖𝑘,𝑡 ∀(𝑖, 𝑘) ∈ LH, ∀𝑡 ∈ T

(1)

so that the active and reactive power flows 𝑝𝑖𝑘,𝑡 and 𝑞𝑖𝑘,𝑡 must be
within their operational limits if line (𝑖, 𝑘) is energized, and must
be 0 if line (𝑖, 𝑘) is de-energized.

Next, we introduce the notation 𝑤𝑖,𝑡 to represent the squared
voltage magnitude at bus 𝑖 at time 𝑡 . Also note that the line resis-
tance is 𝑟𝑖𝑘 and the line reactance is 𝑥𝑖𝑘 . The voltage drop across
line (𝑖, 𝑘) is given as

∀(𝑖, 𝑘) ∈ LH, ∀𝑡 ∈ T :
2(𝑟𝑖𝑘𝑝𝑖𝑘,𝑡 + 𝑥𝑖𝑘𝑞𝑖𝑘,𝑡 ) + (1 − ℓ𝑖𝑘,𝑡 )𝑀 ≤ 𝑤𝑖,𝑡 −𝑤𝑘,𝑡

𝑤𝑖,𝑡 −𝑤𝑘,𝑡 ≤ 2(𝑟𝑖𝑘𝑝𝑖𝑘,𝑡 + 𝑥𝑖𝑘𝑞𝑖𝑘,𝑡 ) + (1 − ℓ𝑖𝑘,𝑡 )𝑀
(2)

where𝑀 and𝑀 are big-M constants computed from voltage mag-
nitude limits. This constraint ensures that if line (𝑖, 𝑘) is energized,
the voltage magnitude difference between buses 𝑖 and 𝑘 follows the

LinDistFlow equations, but if line (𝑖, 𝑘) is de-energized, then there
is no prescribed relationship between the voltage magnitudes at
buses 𝑖 and 𝑘 . To see how to compute the big-M constants, note
that if the line is energized, i.e., ℓ𝑖𝑘,𝑡 = 1, then the terms with
big-M constants vanish from both inequalities and the voltage mag-
nitude difference follows the LinDistFlow equations. However, if
the line is de-energized and thus ℓ𝑖𝑘,𝑡 = 0, then we must allow
𝑤𝑘,𝑡 − 𝑤𝑖,𝑡 to take on any possible values. Since voltage magni-
tudes at every bus are constrained by (5), we can easily compute
𝑀 = 𝑉 2

𝑖
−𝑉

2
𝑘 and 𝑀 = 𝑉

2
𝑖 −𝑉 2

𝑘
. Note that by (1) we know that if

ℓ𝑖𝑘,𝑡 = 0 then 𝑝𝑖𝑘,𝑡 = 𝑞𝑖𝑘,𝑡 = 0, so we need not consider the term
2(𝑟𝑖𝑘𝑝𝑖𝑘,𝑡 + 𝑥𝑖𝑘𝑞𝑖𝑘,𝑡 ) when computing the big-M constants.

We apply the following power balance constraints:
∀𝑡 ∈ T :

𝑝𝑖𝑘,𝑡 = −𝑃𝑘,𝑡 +
∑︁

𝑚:𝑘→𝑚

𝑝𝑘𝑚,𝑡 ∀(𝑖, 𝑘) ∈ LH

𝑞𝑖𝑘,𝑡 = −𝑄𝑘,𝑡 +
∑︁

𝑚:𝑘→𝑚

𝑞𝑘𝑚,𝑡 ∀(𝑖, 𝑘) ∈ LH
(3)

Here, 𝑃𝑖,𝑡 and𝑄𝑖,𝑡 represent the active and reactive power injections,
respectively, at bus 𝑖 .

At each bus 𝑖 ∈ NH , the injected power is given by

𝑃𝑖,𝑡 =
∑︁

𝑚∈G𝑖

𝑃
𝑔
𝑚,𝑡 −

∑︁
𝑚∈D𝑖

𝑃𝑑𝑚,𝑡

𝑄𝑖,𝑡 =
∑︁

𝑚∈G𝑖

𝑄
𝑔
𝑚,𝑡 −

∑︁
𝑘∈D𝑖

𝑄𝑑
𝑚,𝑡

(4)

where 𝑃𝑔𝑚,𝑡 and𝑄
𝑔
𝑚,𝑡 denote the active and reactive power generated

at generator𝑚 at time 𝑡 , and 𝑃𝑑𝑚,𝑡 and 𝑄
𝑑
𝑚,𝑡 denote the active and

reactive power consumed at load𝑚 at time 𝑡 . Also, D𝑖 denotes the
set of loads at bus 𝑖 and G𝑖 denotes the set of generators at bus 𝑖 .

We also have bounds on the voltage magnitudes at all buses,
given as

𝑉 2
𝑖 ≤ 𝑤𝑖,𝑡 ≤ 𝑉

2
𝑖 ∀𝑖 ∈ NH, ∀𝑡 ∈ T (5)

We also want to ensure that the transmission network remains
connected after switching. To do so, we use a network flow for-
mulation that introduces an artificial commodity as in [16]. We
supply the reference bus withNH − 1 units of the commodity, and
set a constraint that all buses other than the reference bus must
consume one unit of the commodity. Let S denote the one-element
set containing the reference bus. We also introduce artificial flow
variables 𝑓𝑖𝑘,𝑡 for each branch (𝑖, 𝑘). The constraint for artificial
commodity flow balance at each node other than the reference bus
is ∑︁

𝑘 :𝑖→𝑘

𝑓𝑖𝑘,𝑡 −
∑︁

𝑘 :𝑘→𝑖

𝑓𝑖𝑘,𝑡 = 1 ∀𝑖 ∈ NH \ S, ∀𝑡 ∈ T (6)

In addition, we ensure that no artificial commodity can flow
across a de-energized line:

∀𝑡 ∈ T :

− (|NH | − 1)ℓ𝑖𝑘,𝑡 ≤ 𝑓𝑖𝑘,𝑡 ≤ (|NH | − 1)ℓ𝑖𝑘,𝑡 ∀(𝑖, 𝑘) ∈ LH (7)

By requiring each non-reference bus to consume one unit of
this artificial commodity, and by allowing artificial commodity to
flow across energized lines only, these constraints ensure that there
exists some path across energized lines from the reference bus to
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every other bus in the network. Therefore, the network will remain
connected after switching if these artificial flow constraints are im-
posed. Note that these artificial flows are a simple way of ensuring
connectivity, but more sophisticated methods which minimize the
number of constraints needed to maintain network connectedness
during optimal transmission switching have been explored in [10]
and could be applied in our formulation.

2.2 Distribution Constraints
To account for the unbalanced nature of distribution systems, we
use a three-phase model for power flow. We consider distribution
systems with battery storage systems, which we model for simplic-
ity as ideal batteries with perfect efficiency. We also consider load
shedding, which we model as a continuous load shed at every bus
containing loads.

Note that we use a bold notation to indicate a vector of variables
which contains values for all phases of the bus or line. For example,
for a three-phase bus,

𝒘𝑖,𝑡 =


𝑤𝑎
𝑖,𝑡

𝑤𝑏
𝑖,𝑡

𝑤𝑐
𝑖,𝑡


Using the same notation as in Section 2.1, we denote the squared

voltage magnitudes at bus 𝑖 at time 𝑡 as 𝒘𝑖,𝑡 . Also, the active and
reactive power flows across line (𝑖, 𝑘) are denoted by 𝒑𝑖𝑘,𝑡 and 𝒒𝑖𝑘,𝑡 .
The resistance is denoted as 𝒓𝑖𝑘 and the reactance is 𝒙𝑖𝑘 . While
in the transmission modeling these quantities were scalar values,
when modeling all phases in the distribution network we have that
𝒓𝑖𝑘 and 𝒙𝑖𝑘 are matrices with terms that reflect self-impedance
as well as mutual impedances between phases. The difference in
squared voltage magnitudes between two buses (𝑖, 𝑘) is

𝒘𝑘,𝑡 = 𝒘𝑖,𝑡 −𝑴𝑃
𝑖𝑘,𝑡

𝒑𝑖𝑘,𝑡 −𝑴𝑄𝒒𝑖𝑘,𝑡 ∀(𝑖, 𝑘) ∈ LD , ∀𝑡 ∈ T (8)

where we have that

𝚪 =


1 𝛼2 𝛼

𝛼 1 𝛼2

𝛼2 𝛼 1


for 𝛼 = exp(− 𝑗 2𝜋3 ) and

𝑴𝑃 = 2
(
ℜ(𝚪) ⊙ 𝒓𝑖𝑘 + ℑ(𝚪) ⊙ 𝒙𝑖𝑘

)
𝑴𝑄 = 2

(
ℜ(𝚪) ⊙ 𝒙𝑖𝑘 − ℑ(𝚪) ⊙ 𝒓𝑖𝑘

)
where we denote 𝑨 ⊙ 𝑩 as the element-wise product of 𝑨 and 𝑩.
Also note that 𝑗 =

√
−1, and ℜ and ℑ are the real and imaginary

part operators, respectively.
Power balance is given by

∀𝑡 ∈ T :

𝒑𝑖𝑘,𝑡 = −𝑷𝑘,𝑡 +
∑︁

𝑚:𝑘→𝑚

𝒑𝑘𝑚,𝑡 ∀(𝑖, 𝑘) ∈ LD

𝒒𝑖𝑘,𝑡 = −𝑸𝑘,𝑡 +
∑︁

𝑚:𝑘→𝑚

𝒒𝑘𝑚,𝑡 ∀(𝑖, 𝑘) ∈ LD
(9)

where 𝑷𝑘,𝑡 and 𝑸𝑘,𝑡 represent active and reactive power injections
at bus 𝑘 .

The formulation also allows load shedding, which may be neces-
sary due to the transmission line de-energizations. Previous papers
on transmission line switching generally model a continuous load

shed at bulk transmission loads [13, 19]. We model a continuous
load shedding at individual distribution loads. In practice, load
shedding would be actuated by opening switches in the distribu-
tion networks. Our future work includes more accurately modeling
load shedding by making binary switching decisions to de-energize
blocks of loads in the distribution network. For the purposes of
this paper, we use a continuous variable 𝑠𝑖 ∈ [0, 1] to denote the
proportion of load served at bus 𝑖 . For example, if 𝑠𝑖 = 0.8, then
20% of the load at bus 𝑖 is shed. The power injections at each bus
account for storage devices and load shedding at that bus:

𝑷𝑖,𝑡 =
∑︁

𝑚∈S𝑖

𝑷𝑠𝑚,𝑡 − 𝑠𝑖

∑︁
𝑚∈D𝑖

𝑷𝑑𝑚,𝑡

𝑸𝑖,𝑡 =
∑︁

𝑚∈S𝑖

𝑸𝑠
𝑚,𝑡 − 𝑠𝑖

∑︁
𝑚∈D𝑖

𝑸𝑑
𝑚,𝑡

(10)

Here, 𝑷𝑠𝑚,𝑡 and 𝑸
𝑠
𝑚,𝑡 represent active and reactive power injections

from storage device𝑚 at time 𝑡 . Similarly, 𝑷𝑑𝑚,𝑡 and 𝑸
𝑑
𝑚,𝑡 represent

the active and reactive power demands from load𝑚 at time 𝑡 .
We also limit the voltage magnitudes at bus 𝑖 as

𝑽 2
𝑖 ≤ 𝒘𝑖 ≤ 𝑽

2
𝑖 ∀𝑖 ∈ ND , ∀𝑡 ∈ T (11)

where 𝑽 2
𝑖
, 𝑽 2

𝑖 are vectors of the lower and upper bounds, respec-
tively, on the squared voltage magnitudes of each phase at bus 𝑖 .

Each distribution network may contain battery energy storage
systems. For the purposes of this paper, we use an ideal model for
the storage system in which charging and discharging is perfectly
efficient. The variable 𝐶𝑖 is positive when the storage system is
charging and negative when it is discharging. The energy storage
system state of charge 𝐸𝑖 is bounded by its energy capacity 𝐸𝑖 .
There are also bounds on the charging/discharging power, where
𝐶𝑖 denotes the lower bound that limits discharging power and𝐶𝑖 is
the upper bound which limits charging power. We assume that the
charging/discharging power𝐶𝑖 is fixed over one time period 𝑡 ∈ T .

𝑬𝑖,𝑡 − 𝑬𝑖,𝑡−1 = 𝑪𝑖 ∀𝑖 ∈ ND , ∀𝑡 ∈ T (12)

0 ≤ 𝑬𝑖,𝑡 ≤ 𝑬𝑖 ∀𝑖 ∈ ND , ∀𝑡 ∈ T (13)

𝑪𝑖 ≤ 𝑪𝑖 ≤ 𝑪𝑖 ∀𝑖 ∈ ND , ∀𝑡 ∈ T (14)

2.3 Transmission-Distribution Boundary
We collect the buses at transmission-distribution boundaries into
a set 𝛽 containing tuples (𝑏H, 𝑏D ) ∈ 𝛽 where 𝑏H is the trans-
mission bus and 𝑏D is the distribution bus. On the transmission
side, we have modeled single-phase equivalent power flow from
each transmission boundary bus 𝑏H to the corresponding distribu-
tion boundary bus 𝑏D . On the distribution side, we have modeled
three-phase power flow from the distribution boundary bus to its
corresponding transmission bus. To ensure that these power flows
are consistent, we impose the following constraints:

∀(𝑏H, 𝑏D ) ∈ 𝛽, ∀𝑡 ∈ T :

𝑝H
𝑏H𝑏D ,𝑡

+
∑︁

𝜙∈Φ
𝑏D

𝑝
D,𝜙

𝑏D𝑏H ,𝑡
= 0

𝑞H
𝑏H𝑏D ,𝑡

+
∑︁

𝜙∈Φ
𝑏D

𝑞
D,𝜙

𝑏D𝑏H ,𝑡
= 0,

(15)
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where Φ𝑖 is the set of phases at a given bus 𝑖 . The constraints in
(15) ensure that the transmission model’s power flow across the
boundary toward the distribution side is equal and opposite to the
sum across all phases in Φ𝑖 of the distribution model’s power flow
across the boundary toward the transmission side. We also require
that voltage magnitudes on either side of the boundary bus are
equal.

𝑤H
𝑏H ,𝑡

= 𝑤
D,𝜙

𝑏D ,𝑡
, ∀𝜙 ∈ Φ𝑏D , ∀(𝑏H, 𝑏D ) ∈ 𝛽, ∀𝑡 ∈ T (16)

This formulation results in balanced voltage magnitudes at distribu-
tion substations, an assumptionmade by the integrated transmission-
distribution optimization software we use for our experiments [17].

2.4 Objective Function
To these constraints, we add an objective function inspired by
[13, 19], which balances wildfire risk with load shedding:

𝐶 (ℓ, 𝒔) =
∑︁
𝑡 ∈T

[
𝛾

∑︁
(𝑖,𝑘 ) ∈LH

𝜌𝑖𝑘,𝑡 ℓ𝑖𝑘,𝑡

+ (1 − 𝛾)
( ∑︁
𝑖∈ND

𝑠𝑖

∑︁
𝜙∈Φ𝑖

−𝑃𝑑,𝜙
𝑖,𝑡

) ] (17)

Here, 𝜌𝑖𝑘 is the wildfire ignition risk for line (𝑖, 𝑘) at time 𝑡 , and 𝑃𝑑,𝜙
𝑖,𝑡

is the active power demand at phase 𝜙 of bus 𝑖 during time period 𝑡 .
Also, the parameter 𝛾 allows controlling the tradeoff between load
shedding and wildfire risk. The cost function depends on both ℓ ,
the vector of all transmission line energization statuses, and 𝒔, the
vector of all bus load sheds.

To summarize, the optimal switching problem for wildfire risk
mitigation is

min
ℓH ,𝒑H ,𝒒H ,𝒘H ,

𝒔D ,𝒑D ,𝒒D ,𝒘D ,𝑪D ,𝑬D

(17)

s.t. (1) − (16)
(18)

This is a mixed-integer linear program.

3 Decomposition and Distributed Optimization
To solve the large-scale optimal switching problem for wildfire
risk mitigation, we decompose the problem across both time and
space using an ADMM-based distributed optimization algorithm.
An illustration of how the problem is decomposed and where the
coupling constraints are imposed for a small example system is
shown in Figure 1. In this figure, each block represents a subproblem
solved by its own computing agent at each ADMM iteration. The
dashed lines represent power flow coupling constraints between the
central transmission network and its attached distribution networks
at each time period.

The transmission network subproblem is computationally in-
tensive due to the large number of binary transmission switching
variables. Therefore, we solve separate problems for the transmis-
sion network at each timestep. The objective and constraints for
each distribution network across all time periods also form individ-
ual subproblems. We do not decompose the distribution network
subproblems across time periods because the distribution networks
contain many small storage systems with energy state constraints
that couple time periods. Decomposing these distribution storage

𝒕 = 𝟏

𝒕 = 𝟐
𝒕 = 𝟐

𝒕 = 𝟏

Transmission bus

Distribution bus

Energy storage system

State of charge time coupling Boundary variable coupling constraints

Decompose

Contains individual subproblem

Figure 1: This figure shows the decomposition of the multi-
period problem. Dashed lines show the coupling between
energy storage systems’ states of charge across time periods.
After decomposition, each transmission network at each time
period forms a subproblem. Each distribution network across
all time periods forms a subproblem. Dotted lines show the
coupling constraints between subproblems’ copies of bound-
ary variables.

system constraints across time periods would result in thousands
of coupling constraints between subproblems which would slow
the ADMM algorithm’s convergence such that decomposing these
subproblems over time would be counterproductive.

We now specify the exact nature of the coupling constraints. We
add to the transmission subproblem a copy of each three-phase
distribution boundary bus. Each phase of the distribution boundary
bus copies contain a virtual generator which can inject or con-
sume unconstrained amounts of active and reactive power. This
generator thus accounts for power flow between the transmission
and distribution networks. For each distribution network subprob-
lem, we add a copy of the transmission boundary bus equipped
with a virtual generator to allow for power flow into or out of the
transmission network. Then, we add simple coupling constraints
between the transmission subproblem and each of the distribution
network subproblems, which ensure that the subproblems agree
on the values of the squared voltage magnitudes and active and re-
active power flows at the boundary. Figure 2 illustrates how copies
of the boundary buses are added to subproblems and shows the
coupling constraints.

Consider a transmission-distribution boundary between trans-
mission bus𝑚 and distribution bus 𝑛. The transmission subproblem
contains a virtual bus representing a copy of the distribution bus
denoted 𝑛′ and the distribution subproblem contains a virtual bus
representing a copy of the transmission bus denoted𝑚′. The cou-
pling constraints ensure that voltage magnitudes are equal at the
transmission bus𝑚 and its copy𝑚′, and that voltage magnitudes
are equal for each phase𝜙 of the distribution bus𝑛𝜙 and its copy𝑛′

𝜙
:

𝑤𝑚 = 𝑤𝑚′

𝑤𝑛𝜙 = 𝑤𝑛′
𝜙

∀𝜙 ∈ Φ𝑛
(19)

Also, the coupling constraints ensure that the power flow variables
are consistent across both subproblems. Therefore, the power flow
from the transmission bus 𝑚 to the copy of the distribution bus
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𝑛′ must be equal to the power flow from the transmission bus
copy to the distribution bus. In addition, for each phase 𝜙 on the
distribution side, the power flow from the distribution bus copy
𝑛′
𝜙
to the transmission bus𝑚𝜙 must be equal to the power flow

from the distribution bus 𝑛𝜙 to the transmission bus copy𝑚′
𝜙
. The

coupling constraints for power flows between transmission bus𝑚
and distribution bus 𝑛 are as follows:

𝑝𝑚𝑛′ = 𝑝𝑚′𝑛, 𝑞𝑚𝑛′ = 𝑞𝑚′𝑛

𝑝𝑛′
𝜙
𝑚𝜙

= 𝑝𝑛𝜙𝑚′
𝜙
, 𝑞𝑛′

𝜙
𝑚𝜙

= 𝑞𝑛𝜙𝑚′
𝜙

∀𝜙 ∈ Φ𝑛
(20)

Some readers may wonder why we include the transmission-
distribution boundary and a virtual distribution bus in the transmis-
sion subproblems, and why we include the boundary and a virtual
transmission bus in the distribution subprblems. Since the bound-
ary constraints (15), (16) are linear, we could instead impose these
boundary constraints as coupling constraints, removing the need
for virtual buses. We choose to add the virtual buses and keep the
transmission-distribution boundary constraints internal to subprob-
lems for two reasons. First, it makes our subproblems compatible
with the integrated transmission-distribution optimization frame-
work of [17]. In addition, we want to remain flexible to using new
power flow formulations with nonlinear boundary constraints in
the future. See, for example, the quadratic constraints which ensure
that voltage magnitudes are equal at the transmission-distribution
boundary for a rectangular current-voltage power flow formulation
considering a three-phase distribution model in [17]. Such nonlin-
ear boundary constraints could not be used as coupling constraints
for a distributed solution method.

We use the ADMM algorithm to solve the decomposed prob-
lem [4]. The ADMM algorithm solves the general problem

min
𝒙∈X,𝒛∈Z

𝑓 (𝒙) + 𝑔(𝒛)

s.t. 𝐴𝒙 + 𝐵𝒛 = 𝒄
(21)

Now, the optimal switching problem for wildfire risk mitigation
has been decomposed into subproblems. Each subproblem is in the
form of (18), but not all variables and constraints are included in
every subproblem. For transmission subproblems, the set of time
periods T contains only one element, so there are |T | transmission
subproblems. These transmission subproblems take the form

min
ℓH ,𝒑H ,𝒒H ,𝒘H

𝒑D ,𝒒D

𝛾
∑︁
𝑡 ∈T

∑︁
(𝑖,𝑘 ) ∈LH

𝜌𝑖𝑘,𝑡 ℓ𝑖𝑘,𝑡

s.t. (1) − (7)

(22)

The distribution subproblems cover all time periods in T , and
the number of distribution subproblems is equal to the number of
distinct distribution networks. These distribution subproblems take
the form

min
𝒑H ,𝒒H ,𝒔D ,

𝒑D ,𝒒D ,𝒘D ,𝑪D ,𝑬D

(1 − 𝛾)
∑︁
𝑡 ∈T

( ∑︁
𝑖∈ND

𝑠𝑖

∑︁
𝜙∈Φ𝑖

−𝑃𝑑,𝜙
𝑖,𝑡

)
s.t. (8) − (14)

(23)

To write the decomposed optimal power shut-off problem in the
form of (21), we collect the variables belonging to every subprob-
lem in a vector 𝒙 . That is, 𝒙 contains variables from transmission
subproblems representing the lines’ power flows 𝒑H, 𝒒H , the lines’

energization statuses ℓ , the buses’ voltages𝒘H , the buses’ power
injections 𝑷H,𝑸H , and artificial flows for connectivity 𝒇 . From the
distribution subproblems, 𝒙 also contains variables representing
the lines’ power flows 𝒑D , 𝒒D , the buses’ voltages𝒘D , the buses’
power injections 𝑷D ,𝑸D , the buses’ load sheds 𝒔D , the battery
energy storage systems’ states of charge 𝑬D , and the batteries’
charging/discharging power 𝑪D . Here we have indexed variables
withH and D to indicate whether they belong to the transmission
or distribution systems, respectively. We must also include in 𝒙 the
variables at virtual buses in the subproblems. Note that power flow
variables 𝒑𝐻 , 𝒒𝐻 , 𝒑D , and 𝒒D include both physical flows and
virtual flows associated with the virtual buses used to decompose
the subproblems at the transmission/distribution system bound-
ary. Similarly, the squared voltage magnitude variables 𝒘H , 𝒘D

include physical voltage magnitudes as well as voltage magnitudes
at virtual buses in the decomposed problem.

Next, we introduce a "central" copy of the variables at the virtual
buses, and gather these central variables into a vector 𝒛. When
we introduce the "central" variables, we modify the coupling con-
straints described in (19), (20) as follows to fit the ADMM structure.
Instead of constraining virtual bus variables to be directly equal to
their copies in neighboring subproblems, we set virtual bus variable
values equal to the central variable copy. We illustrate how these
coupling constraints are modified below. Let the tilde denote central
variables in the vector 𝒛, so that, for example, �̃�𝑚 is the central
copy of the squared voltage magnitude at bus𝑚. For a transmission
subproblem with boundary bus𝑚 and virtual distribution boundary
bus 𝑛′, the constraints are as follows:

𝑤𝑚 = �̃�𝑚

𝑤𝑛′
𝜙
= �̃�𝑛𝜙 ∀𝜙 ∈ Φ𝑛

𝑝𝑚𝑛′ = 𝑝𝑚𝑛, 𝑞𝑚𝑛′ = 𝑞𝑚𝑛

𝑝𝑛′
𝜙
𝑚𝜙

= 𝑝𝑛𝜙𝑚𝜙
, 𝑞𝑛′

𝜙
𝑚𝜙

= 𝑞𝑛𝜙𝑚𝜙
∀𝜙 ∈ Φ𝑛

(24)

Similarly, for a distribution subproblem with boundary bus 𝑛 and
virtual transmission boundary bus𝑚′, the constraints are as follows:

𝑤𝑚′ = �̃�𝑚

𝑤𝑛𝜙 = �̃�𝑛𝜙 ∀𝜙 ∈ Φ𝑛

𝑝𝑚′𝑛 = 𝑝𝑚𝑛, 𝑞𝑚′𝑛 = 𝑞𝑚𝑛

𝑝𝑛𝜙𝑚′
𝜙
= 𝑝𝑛𝜙𝑚𝜙

, 𝑞𝑛𝜙𝑚′
𝜙
= 𝑞𝑛𝜙𝑚𝜙

∀𝜙 ∈ Φ𝑛

(25)

This formulation allows us to use the ADMM algorithm, which is
designed to optimize over two sets of variables with simple coupling
constraints, to solve a problemwith parallel subproblems over many
regions of the power system.

The ADMM algorithm augments the Lagrangian function for
(21) with a penalty term. The augmented term typically penal-
izes the squared ℓ2-norm of the coupling constraint violations,
| |𝐴𝒙 + 𝐵𝒛 − 𝒄 | |22. However, we find that when solving MILPs over
distribution network models, using the squared ℓ2-norm may result
in numerical issues. Distribution network subproblem numerics
are much improved by penalizing the ℓ1-norm of the coupling con-
straint violations instead. This is likely because the ℓ1-norm is
formulated as a linear objective function, with additional linear
constraints. Quadratic programs may experience more numerical
problems compared to linear programs during execution of the
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Coupling Constraints:
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′ + 𝑗𝑞𝑛𝜑𝑚𝜑
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Virtual bus Virtual bus

Original, centralized problem:

Decomposed problem:

Figure 2: Coupling constraints between the transmission and distribution subproblems for a single timestep. To the transmission
subproblem, we add a copy of the three-phase distribution boundary bus equipped with virtual generators on each phase which
can inject or absorb unlimited power. Similarly, the distribution subproblem also contains a copy of the transmission boundary
bus, with only one phase modeled, with a virtual generator. The coupling constraints then ensure that the transmission and
distribution subproblems agree on the voltage magnitudes and power flows at the boundary.

simplex or interior-point algorithms implemented by Gurobi, the
solver we choose for our experiments [15]. Therefore, we run the
ADMM algorithm on the ℓ1-norm augmented Lagrangian:

𝐿𝛼 (𝒙, 𝒛,𝝀) = 𝑓 (𝒙) + 𝑔(𝒛) + 𝝀𝑇 (𝐴𝒙 + 𝐵𝒛 − 𝒄)
+ 𝛼 | |𝐴𝒙 + 𝐵𝒛 − 𝒄 | |1

(26)

Here, the vector 𝝀 contains the dual variables for each coupling
constraint in (21). The penalty parameter 𝛼 is user-selected.

At each iteration 𝑘 , the ADMM algorithm minimizes over the 𝒙
and 𝒛 variables separately, while holding all other variables fixed,
and then updates the dual variables. The variable updates at itera-
tion 𝑘 are as follows:

𝒙𝑘+1 = arg min
𝒙

𝐿𝛼 (𝒙, 𝒛𝑘 ,𝝀𝑘 ) (27)

𝒛𝑘+1 = arg min
𝒛

𝐿𝛼 (𝒙𝑘+1, 𝒛,𝝀𝑘 ) (28)

𝝀𝑘+1 = 𝝀𝑘 + 𝛼 (𝐴𝒙 + 𝐵𝒛 − 𝒄) (29)

The 𝒙-update step corresponds to solving all transmission and
distribution subproblems in parallel. Note that the transmission and
distribution subproblems are given in (22) and (23), respectively,
but the relaxed coupling constraints augmented with the ℓ1-norm
penalty as shown in (26) are added to the objective. The transmis-
sion subproblems are mixed-integer linear programs, while the
distribution subproblems are linear programs.

For transmission subproblems, the number of continuous vari-
ables is 3|LH | + |NH | and the number of binary variables is
|LH |. The number of inequality constraints is 8|LH | + 2|NH |
and the number of equality constraints is 2|LH | + |NH | + 5|𝛽 |.
For distribution network 𝑛, let ND,𝑛

𝜙
be the set containing each

phase of each bus, let LD,𝑛

𝜙
be the set containing each phase of

each line, let ND,𝑛 be the set containing each bus, and let SD,𝑛

be the set containing battery energy storage systems. Then the
number of continuous variables for distribution subproblems is
|T |

(
2|LD,𝑛

𝜙
| + |ND,𝑛

𝜙
| + |ND,𝑛 | + |SD,𝑛 |

)
. Also, the number of

inequality constraints is |T |
(
2|ND,𝑛

𝜙
| + 4|SD,𝑛 |

)
and the number

of equality constraints is |T |
(
3|LD,𝑛

𝜙
| + 2|ND,𝑛

𝜙
| |SD,𝑛 | + 5

)
. Note

that the term 5|𝛽 | in the transmission subproblem equality con-
straint count and the 5 in the distribution subproblem equality
constraint count come from the transmission-distribution bound-
ary constraints. To summarize, transmission subproblems cover
single time periods and scale according to the number of buses and
branches in the system. Distribution subproblems cover all time
periods and scale according to the number of buses, lines, switches,
and storage systems in the system, where separate variables and
constraints are needed for each phase of distribution system com-
ponents.

4 Case Study
We construct a test case using the CATS (California Test System)
[22] and the SMART-DS synthetic distribution networks [14]. We
select eight distribution networks from the SMART-DS San Fran-
cisco dataset, and then extract a portion of the California test system
in the San Francisco region which contains sufficient generation
capacity to supply loads in the distribution networks. We place
battery energy storage systems randomly at 20% of the low-voltage
nodes in the distribution networks, each with energy capacity ran-
domly selected between 30-50 kilowatt-hours. Next, we modify the
distribution networks by aggregating the loads at voltage levels
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below 7 kV, so that the full test case contains buses and lines at
voltage levels from 7 kV through 230 kV. When reducing the distri-
bution networks, we also aggregate the energy capacity of storage
devices at low-voltage nodes and place the aggregate energy stor-
age system at the primary side of the distribution transformer. We
show a plot of the test case in Figure 3. In Tables 1 and 2, we show
the number of components in the transmission and distribution
networks, respectively. The transmission system consists of 155
buses, 15 generators, and 171 branches. The distribution system,
across all networks, contains 15,083 buses, 15,496 lines and 1203
battery energy storage systems. Since optimizing over the unbal-
anced distribution system requires modeling each phase separately,
we also note that there are 24,823 individual phases across all buses
and 25,942 phases across all lines.

To obtain the values for the wildfire ignition risk for each trans-
mission line, we leverage the work in [18]. This study extracts the
wind-enhanced fire potential index (WFPI) as computed by the
United States Geological Survey [24] for regions across the power
network. The authors of [18] then identify which regions each
transmission line crosses and use the corresponding WFPI values
to compute the total wildfire ignition risk for the transmission line.
We selected the "high-risk cumulative metric" out of the various
metrics proposed in the paper for our wildfire ignition risk values;
interested readers can find further details in [18].

Figure 3: Synthetic test case near San Francisco, California
for integrated transmission-distribution optimization.

Table 1: Transmission network components

Buses Generators Branches
155 15 171

4.1 Experiment Setup: Multi-Period Linearized
Optimal Switching for Wildfire Risk
Mitigation

In this section, we provide results on the solution of the multi-
period linearized optimal switching problem for wildfire risk mit-
igation. We compare the performance of our distributed solution

Table 2: Distribution system components across all distribu-
tion networks

Buses Lines Storage
Devices

Indiv. Phases,
Buses

Indiv. Phases,
Lines

15083 15456 1203 24823 25942

method with the performance of a state-of-the-art solver, Gurobi.
All experiments ran on the Georgia Institute of Technology PACE
high-performance computing cluster. For each experiment, which
consisted of solving the optimal switching problem for wildfire risk
mitigation over some number of time periods T , we used one PACE
CPU compute node equipped with two 12-core 2.7 GHz processors
and 192 GB RAM. We set a time limit of 48 hours and terminate
any algorithm which has not converged at this point.

We note that our distributed solution method also uses the
Gurobi solver on individual sub-problems. The method described
in our results as "central" solves the full MILP in one shot with
Gurobi. Our method, described as "distributed," decomposes the
problem as described in Section 3 and uses the ADMM algorithm to
reach the solution, where individual subproblems are solved with
Gurobi. We terminate the "central" solution method when the MIP
gap reaches 1%. When solving the distributed algorithm, we also
solve individual subproblems to a 1% MIP gap. We terminate the
distributed algorithm when the norm of the mismatches between
subproblems’ shared variables falls below 𝜖 = 10−4.

4.2 Comparing Central and Distributed
Computation Time

Figure 4 shows the runtime for each solution method as we increase
the number of time-steps in the multi-period problem. When the
number of time-steps is four or less, the centralized solution method
outperforms the distributed method. However, when the problem
is sufficiently large, we see that the distributed method performs
much better than the centralized method. In fact, the centralized
method fails to solve the 12-, 16-, and 24-timestep cases within 48
hours, at which point the MIP gap is 24.2% for the 12-timestep case,
27.3% for the 16-timestep case, and 30.1% for the 24-timestep case.

We also show how the individual subproblems for the distributed
method scale as the number of timesteps increases. Note that the
transmission subproblems cover one time period only, and they
consistently solve in less than one second. The distribution subprob-
lems cover one distribution network across all time periods, so the
solve time for distribution subproblems increases with the number
of timesteps. Every iteration of the distributed algorithm solves |T |
transmission subproblems, where T is the set of all time periods,
and 𝑁 distribution subproblems, where 𝑁 is equal to the number of
distribution networks across the system. Note that at each iteration
of the distributed algorithm, we solve subproblems in parallel across
six processors. These subproblems could be solved with further
parallelization across more processors if desired. Across all time-
steps, the distributed algorithm takes between 11 and 17 iterations
to converge, where all subproblems are solved at each iteration.
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Figure 4: Comparing computation time for the central so-
lution method using the Gurobi solver vs. our distributed
solution method. Note that the mark × indicates that the
solver could not reach a solution within 48 hours for that
number of time periods.

Table 3: Average subproblem solve time, where times are
given in minutes : seconds

Timesteps Transmission Distribution
4 00:01 00:07
6 00:01 00:20
8 00:01 01:14
12 00:01 03:51
16 00:01 08:58
24 00:01 20:58

4.3 Discussion on Optimality
Recall that the ADMM distributed algorithm does not provide con-
vergence guarantees for non-convex problems. Despite this, previ-
ous work on solving mixed-integer problems with ADMM suggests
that ADMM can often find very good solutions to such problems
[1, 12, 21]. For large-scale mixed-integer linear problems which
pose significant computational challenges to centralized branch-
and-bound solvers, using distributed algorithms may be an effective
alternative. In addition, the authors of [12] suggest using ADMM
as a heuristic, running the distributed algorithm several times with
different penalty parameters and initializations and selecting the
best result.

Despite the potential for suboptimality, we found that our dis-
tributed algorithm obtained the same solution as the centralized
solver for all cases where we could perform a comparison. For every
|T |-timestep case for which the centralized solution method solved
within 48 hours, we compare the central solution to the distributed
solution. Our metric is the cost percent difference between the
central objective cost 𝑓 𝑐 and the distributed objective cost 𝑓 𝑑 :

(𝑓 𝑑 − 𝑓 𝑐 )/𝑓 𝑐 .

The cost percent difference is less than 1% (the MIP gap tolerance)
for the 2-, 3-, 4-, 6-, and 8-timestep cases. For the 12- and 16-timestep
cases, the centralized solver did not converge within 48 hours, so

we could not compare to the central solution. In most cases, the
cost percent difference is less than 0.0001%, but for the 4-timestep
case the cost percent difference is negative, with the distributed
objective cost 0.1% less than the central objective cost. Within the
1% MIP gap tolerance, the distributed objective cost may be less
than the central objective cost.

4.4 Final Operating Points from Single-Period
AC OPF

The operating point produced by the mixed-integer linear optimal
switching problem may not be AC feasible. See, for example, ref-
erences [3, 6] which investigate AC infeasibility of transmission
switching decisions made using the DC power flow approximation
as well as reference [9] for a study on power flow modeling for
wildfire switching problems. To assess AC feasibility for solutions
to our formulation, we solve AC OPF problems for each time pe-
riod to find the generator setpoints in the transmission system.
We take the transmission line switching decisions, distribution bus
load sheds, and distribution storage system setpoints as fixed when
solving the AC OPF. The time to solve an instance of single-period
AC OPF on the test case is 5 minutes and 58 seconds on average.
We find that for the all time steps we considered (2, 3, 4, 6, 8, 12,
16, and 24), the switching decisions with corresponding load sheds
and storage setpoints result in AC feasible operating points. This
empirically demonstrates that our proposed mixed-integer formu-
lation of the optimal switching problem for wildfire risk mitigation
can often provide AC feasible network topologies. Our future work
aims to further explore the AC feasibility of transmission switching
decisions made using the LinDistFlow power flow approximation.

5 Conclusion
We show that decomposition and distributed optimization meth-
ods can solve large-scale coordinated transmission-distribution
problems which may be intractable for centralized solvers. Specifi-
cally, we investigate solving an integrated transmission-distribution
problem which finds optimal switching decisions to reduce wild-
fire ignition risk. The problem coordinates line switching at the
transmission level with load shedding and battery energy storage
system charging/discharging at the distribution level. We make
switching and storage setpoint decisions by solving a multi-period
mixed-integer linear optimization problem. Next, we solve AC OPF
problem over single time periods to obtain generator setpoints and
ensure that the operating point is AC feasible.

We solve this problem with realistic, large-scale distribution net-
works. We show that when enough time periods are modeled, state-
of-the-art solvers struggle to solve this mixed-integer optimization
problem. We propose a method of decomposing the problem over
both space and time and then using a distributed algorithm to find
the solution. With the same computing resources, our distributed
method significantly outperforms the centralized solver on suffi-
ciently large problems. The distributed method successfully solves
problems with up to 24 time-steps, while the centralized solver
becomes much slower and then fails to solve as the number of
time-steps increases. Although the distributed algorithm does not
provide optimality guarantees for mixed-integer linear programs,
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our experiments demonstrated that the distributed algorithm suc-
cessfully reached an optimal solution for all problems for which
the central solver’s solution was available for comparison. We also
solved AC OPF over single time periods to obtain generator set-
points and found that for all experiments, the switching topology
selected by the mixed-integer linear program was AC feasible.

This paper shows the significant computational benefit of using
distributed algorithms to solve large-scale coordinated transmission-
distribution optimization problems. For our future work, we intend
to make the load shed model more realistic by making switching
decisions at the distribution level to de-energize blocks of loads. In
addition, we plan to increase the network’s capacity to adapt and
reduce load shedding while mitigating wildfire risk by extending
the problem to include distribution system reconfiguration and
islanded microgrids. We also plan to investigate ways to acceler-
ate the distributed algorithm through improved initialization and
penalty parameter tuning.
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