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Abstract

Using distributed algorithms, multiple computing
agents can coordinate their operations by jointly solving
optimal power flow problems. However, cyberattacks on
the data communicated among agents may maliciously
alter the behavior of a distributed algorithm. To
improve cybersecurity, this paper proposes a machine
learning method for detecting and mitigating data
integrity attacks on distributed algorithms for solving
optimal power flow problems. In an offline stage
with trustworthy data, agents train and share machine
learning models of their local subproblems. During
online execution, each agent uses the trained models
from neighboring agents to detect cyberattacks using
a reputation system and then mitigate their impacts.
Numerical results show that this method reliably,
accurately, and quickly detects data integrity attacks
and effectively mitigates their impacts to achieve
near-feasible and near-optimal operating points.

Keywords: Cybersecurity, Distributed Optimization,
Optimal Power Flow, Data Integrity Attack

1. Introduction

Rapid deployments of distributed energy resources
(DERs) motivate the development of new algorithms
to optimize performance while respecting network
limits. Traditional optimization relying on a central
operator may not be practical for complex networks with
widespread DER integration. Distributed optimization
provides an alternative whereby multiple computing
agents iteratively solve optimization problems by
communicating the values of boundary variables. By
enabling parallel computations, these algorithms have
potential advantages in scalability [1]. However,
since these algorithms rely on repeated communications
between agents, they are vulnerable to data integrity
attacks. An adversary who takes control of an agent or
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attacks communication links could disrupt the system
or manipulate the system’s operating point to profit
financially. This paper proposes a machine learning
method for detecting and mitigating cyberattacks on
distributed optimal power flow (OPF) algorithms.

We focus on the popular alternating direction
method of multipliers (ADMM) algorithm, but our
method can also be applied to other distributed
algorithms such as auxiliary problem principle
(APP) [2] or analytical target cascading (ATC) [3]. In
these algorithms, local computing agents solve OPF
subproblems for their region of the network that are
augmented with constraints which ensure power flow
consistency with neighboring agents. These algorithms
alternate between solving augmented local subproblems
and sharing boundary variable values to update the
consistency constraints. When this shared data is
corrupted, convergence is impaired [4], [5].

Early work on distributed OPF cyberattack
vulnerability includes [6], [7], which develops an
attack strategy for distributed primal-dual gradient
descent DC OPF algorithms. This work is extended to
AC OPF problems in [8]. The adversary determines
a target solution, which is sub-optimal overall but
profitable to the attacker, and shares false data which
corresponds to that target solution. Building on this
work, our prior research in [9], [10] explores two
additional cyberattacks on DC OPF problems and
develops a machine learning detection method. The first
attack strategy uses PID feedback control principles to
gradually approach the target solution, while the second
uses bilevel optimization to maximize profit.

Some prior work aims to detect and mitigate the
impacts of these attacks. The method in [6]–[8] is
designed for a component-based distributed algorithm
in which every bus has a local controller and
agents communicate with their two-hop neighbors to
validate shared data. Another study proposes using
physical-layer (power line) communication to verify
the cyber-layer communication [11], which increases
communication time, although this could be mitigated
to some extent by infrequent verification.



Building on this prior work, we propose a
cyberattack detection and mitigation algorithm that uses
machine learning models to predict neighboring agents’
future behavior. Related prior work predicts shared
data for distributed DC OPF algorithms. In the context
of accelerating convergence, the authors of [12] used
a linear interpolation on shared data from previous
iterations to estimate values at the next iteration, while
the authors of [13] train a recurrent neural network to
make a one-time prediction of final shared data values.
There has also been recent interest in using neural
networks (NNs) to predict AC OPF solutions [14], [15].

While potentially effective in some circumstances,
prior work for AC OPF in [8] requires sharing local
demand and generation cost data with one- and two-hop
neighbors, and is slow to detect attacks which do not
occur early in the calculation. The approach in [11]
increases solution time. Our prior work on cyberattack
detection in [9], [10] requires creating data for specific
attack strategies to train the machine learning models
and does not mitigate the impacts of cyberattacks.

Leveraging recent developments in machine
learning, this paper addresses these gaps by proposing a
method for both identifying and mitigating cyberattacks
on distributed optimization algorithms. Specifically, we
train NN models offline to approximate local AC OPF
subproblems and use them during real-time operation
to detect corruption or manipulation of shared data. If a
cyberattack on shared data is detected, we use the NN
predictions to replace the false data. The distributed
algorithm can then achieve a near-feasible, near-optimal
solution while under a data-integrity cyberattack.

Our algorithm for attack detection and mitigation
preserves the privacy of sensitive local cost information
and extends power demand information to one-hop
neighbors only. It also detects attacks quickly, within a
few iterations. Additionally, the method proposed here
does not require the defender to train a classifier on data
from a specific attack strategy, as in [9], [10], [16], [17].
Thus, our method may better generalize across attack
strategies. Building on [14], [15], we enable accurate,
repeated predictions of the shared data by training a NN
to approximate a local AC OPF subproblem. Unlike
prior work on centralized OPF, distributed subproblems
depend on shared data from neighbors in addition to
local network state. We develop heuristics to identify
the relevant sample space during NN training.

We organize the paper as follows. Section 2
describes the distributed AC OPF formulation and
attack strategies. Section 3 presents our detection
and mitigation algorithm. Section 4 gives results
from representative test cases that show our algorithm’s
ability to reliably detect and mitigate cyberattacks.
Section 5 discusses conclusions and future work.

2. Problem Formulation

We next describe the distributed optimal power flow
algorithm and attack strategies.

2.1. Optimal Power Flow

The OPF problem optimizes performance while
meeting operational limits and obeying physical power
flow laws. We use an OPF objective that minimizes
generation cost via a quadratic function of the
generators’ real power outputs. This paper considers
an OPF formulation with an AC power flow model, but
alternatives like a DC power flow could also be applied.

Let N , L, and G denote the sets of buses, lines, and
generators, respectively. The OPF formulation is

min
pg,qg,p,
q,θ,v

∑
i∈N

fi(p
g
i ) (1a)
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[
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sh
ij +Bij)

− vivj
[
Gij sin(θij)−Bij cos(θij)

] (1h)

p2ij + q2ij ≤
(
Sij

)2
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where fi is the cost function and pgi , qgi are the real
and reactive power outputs, respectively, of generator
g ∈ G located at bus i ∈ N . We define θij = θi − θj
for (i, j) ∈ L. The admittance of line (i, j) ∈ L
is Yij = Gij + jBij , while Sij denotes the line’s
thermal limit. The shunt admittance at bus i ∈ N is
gshi + jbshi . The state of the buses is defined by the
voltage magnitude vi and voltage angle θi for bus i ∈ N .
We denote the real power demand at bus i ∈ N as pdi
and reactive power demand as qdi . The OPF problem
minimizes the generation cost in (1a) subject to the AC
power flow equations (1b)–(1c), (1g)–(1h), the voltage
limits and generators’ power output limits (1d)–(1f), and
the lines’ thermal limits (1i).



2.2. Distributed Optimal Power Flow

To decompose the OPF problem, the system is
divided into regions under the control of separate
computing agents. Consistency constraints ensure valid
power flows at the boundaries. We split the system
through the tie-lines and give the regions on each side
of a split line copies of the variables at their neighbor’s
bus. Then, we enforce consistency by ensuring that the
voltage phasor and power flow variables agree.

Agents seek to minimize generation cost in their
region while obeying OPF constraints. Let Gm, Nm, and
Lm denote the sets of generators, buses, and lines in area
m, respectively. We denote the set of shared variables
in region m with N s

m. The consistency constraints are
relaxed with the augmented Lagrangian technique.

To illustrate the proposed method, we use the
ADMM algorithm, but other distributed algorithms
could be applied instead with no conceptual changes.
In the ADMM algorithm, each agent m solves the
following subproblem at each iteration k:

min
pg,k,qg,k,pk,

qk,θk,vk,zk
m

∑
i∈Nm

fi(p
g,k
i ) + (λk−1

m )Tzk
m

+
α

2
||zk

m − z̄k−1
m ||22

(2a)

s.t. (∀i ∈ Nm,∀(i, j) ∈ Lm)
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where α is a user-defined penalty parameter. The
vector zm contains all shared variables in N s

m, and
the vector z̄m is a “central” variable which accounts
for all neighbors’ copies of the shared variables. In
traditional ADMM, this variable is computed by a

central coordinator, but for our formulation it simplifies
to the average of the two neighboring agents’ shared
variable values and is thus entirely separable. After
solving their subproblem, agents send their computed
shared variables and the corresponding dual variables to
their neighbors. Then, each agent m updates the z̄m

variables. For every neighbor n of agent m, there is a
set of variables N s

m,n shared between agents m and n.
We denote agent m’s copies of these shared variables
as the vector zm,n and agent n’s copies of these shared
variables as the vector zn,m. Agent m updates the
average of local shared variables and shared variables
received from neighbor n, z̄m,n, as

z̄k
m,n =

1

2
(zk

m,n + zk
n,m). (3)

Agent m performs this update for all areas with which it
shares variables until there is a complete update for z̄m.

Each agent m updates their Lagrange multipliers as

λk
m = λk−1

m + α(z̄k
m − zk

m). (4)

Thus, the iterative algorithm alternates between
minimizing the agents’ subproblems in (2), updating the
average copies of variables shared between agents in
(3), and updating dual variables in (4). The stopping
criterion is the mismatch between local shared variable
values zm and the average shared variable values, z̄m.
At iteration k, each agent m records the norm of the
mismatches across all its shared variables as

||z̄m − zm||2, (5)

and the algorithm terminates when the mismatches are
below some user-defined tolerance.

2.3. Cyberattack Strategies

In this section, we explore three attack strategies to
showcase our results, while emphasizing the method’s
flexibility to combat various data integrity attacks.
Unlike approaches that rely on training datasets from
specific attack strategies as in [10], our method identifies
any deviations from expected algorithm behavior.

The first two attack strategies consider financially
motivated adversaries with access to the network
topology and loads. The adversary seeks to steer
the solution to some profitable target. To illustrate
these attack strategies, we determine the attacker’s
target operating point by solving a system-wide OPF
problem with a certain generator’s active power output
constrained to the desired value. The adversary saves the
results which fall within its region as the target variable
values and uses the following strategies, first proposed
in [10], to guide the final result to the desired target.



In the “simple” attack strategy, the adversary
directly sends the desired values for shared variables
to neighboring agents. This is simple to detect. The
“PID feedback” strategy achieves a more subtle attack
by using a proportional-integral-derivative (PID) control
method. For each shared variable zk at iteration k, the
attacker computes the error ek as the difference between
the target value and the value received from neighbors:

ek = zktarget − zk.

Then, the attacker computes a correction term using
three tuned parameters: the proportional gain kp, the
derivative gain kd, and the integral gain ki. After adding
this correction term, the updated shared variable value is

zk+1 = zk + kpe
k + kd(e

k − ek−1) + ki

k∑
j=1

ej .

Figure 1 shows how the malicious adversary uses
the feedback control method to manipulate the shared
data, gradually driving the solution toward the target
corresponding to shared data ztarget.

Adversary Agent n

OPF
Feedback 
Controller-

zn

ztarget

zattack

Figure 1: PID feedback threat model

The third attack strategy disrupts the system so that
it cannot converge by sending random or infeasible
values. An adversary who sends random values requires
no knowledge of the system. The adversary may
also send infeasible values—for example, power flow
values that exceed the export capacity of their region
of the network—as proposed in [11]. The disruptive
attack strategy is straightforward to detect because
the algorithm does not converge. Our method also
mitigates this attack, replacing the random or false data
to converge to a reasonable solution.

3. Attack Detection and Mitigation

This section presents our detection and mitigation
algorithm for cyberattacks such as those described in
Section 2. The method is designed for distributed
OPF problems solved repeatedly, every few minutes.
Offline, agents train NN models of their local OPF
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Figure 2: Using NN approximations to replace data from
a malicious agent. Note that for dual variables λ shared
between neighbors m, n, we have that λk

m = λk
n.

subproblems and share the models with their neighbors.
During real-time operation, the detection and mitigation
algorithm prevents malicious actors from manipulating
the solutions. Agents detect attacks by comparing data
received from neighbors with the data predicted by the
NN and mitigate attacks by replacing corrupted data
with the NN approximations. The mitigation algorithm
is illustrated in Figure 2.

This section describes the assumptions underlying
our method and then presents our proposed detection
and mitigation algorithm.

3.1. Assumptions for Detection and Mitigation

Our detection and mitigation algorithm relies on
several assumptions. The assumptions used solely for
detection are less strict than those for mitigation, so we
separately discuss each. We then discuss future research
directions for relaxing these assumptions.

3.1.1. Assumptions for Detection When detecting
cyberattacks on data integrity, we rely on the following
four assumptions, A1–A4.
A1, Trustworthy Training and NN Model Sharing:
Agents train NN models of their local regions offline
using accurate data and share these models over a
trustworthy communication link. Thus, agents can trust
that the models from their neighbors will not exhibit
malicious behavior.

It is nontrivial to determine what information,
if any, could be inferred from the trained NN,
but it is possible that sharing NN models with
neighboring agents could compromise the privacy of
local information. Our future work includes ensuring
that privacy is preserved, perhaps through secure
multi-party computation techniques [18].
A2, Knowledge of Neighboring Load Demands: Agents
share their load demands with their one-hop neighbors.



To meet this assumption, a trusted system operator
may send load measurements or short-term forecasts
for an agent’s region to its neighbors. Alternatively,
agents may share their load data with neighbors over
power line communication (PLC) infrastructure before
the algorithm begins, since the physical-layer PLC
communications are slower but more difficult for an
adversary to infiltrate as described in [11].

A3, At Most One Malicious Agent: There is no more
than one malicious agent. Malicious agents could work
together to avoid detection, and our future work will
address possible collusion between multiple adversaries.

A4, Communication with Two-Hop Neighbors: Agents
have communication links to their two-hop neighbors
(i.e., their neighbors’ neighbors). When we decompose
the power system into regions, we define as “neighbors”
any two regions which share a tie-line in the power
system. The NN model for agent m requires as input
the shared primal and dual variables from the previous
iteration for each neighbor n. Therefore, any neighbor
of agent m predicting agent m’s shared data with a
NN model must obtain this information from agent m’s
other neighbors.

There are multiple ways to establish two-hop
neighbor communication. One could design the
communication infrastructure so that all agents are
connected to their two-hop neighbors. If it is important
to reduce the number of communication links in the
system, another option is to send data through links
defined by physical neighbors delayed by some number
of iterations. With this approach, it would take longer to
detect and mitigate attacks.

3.1.2. Assumptions for Mitigation To mitigate
cyberattacks, we require the same assumptions as for
detection, A1–A4, as well as:

A5, Adversary Manipulates Data Transmission Only:
The adversary may manipulate data transmission from
some agent but cannot affect data reception, internal
distributed OPF computations, or the physical control
signals sent to system devices. The adversary may also
access the communication links to add noise as in the
disruptive attack. For instance, a sophisticated adversary
may steal or forge Secure Sockets Layer/Transport
Layer Security (SSL/TLS) certificates to establish
encrypted communications and manipulate data to
achieve a target solution.

3.1.3. Addressing Limitations With a single
attacker and two-hop neighbor communications,
each agent possesses complete information about
its neighbors’ subproblem inputs. As we will
show in Section 4, this enables the detection and

mitigation algorithm described in Section 3.2 to achieve
near-feasible, near-optimal solutions while under attack
by replacing false data with NN predictions.

In our future work, we aim to relax assumptions
A2 and A3 to address multiple attackers and situations
where agents lack access to neighbors’ load demands.
Under these less restrictive assumptions, it may not be
possible to replace false data from every attacker in
order to obtain near-optimal solutions. However, we
plan to enhance detection accuracy by incorporating
new inputs into the detection method derived from
convergence patterns of the distributed algorithm, which
can be computed locally by individual agents. In
addition, we plan to relax assumption A5 by finding
safe operating points when there is uncertainty about the
device setpoints that a malicious agent may select for
their region of the system. We intend that the resulting
method will retain the strengths of the algorithm in
this paper, including rapid detection and adaptability
to unforeseen attack strategies. Our goal is to further
address multiple colluding malicious agents, maintain
privacy of load information, and find safe operating
points for the system under uncertain decisions by the
malicious agents.

3.2. Detection and Mitigation Algorithm

We show an overview of our detection and mitigation
algorithm in Figure 3. During an offline stage where
the agents have access to trustworthy data as discussed
above in A1, each agent m trains a neural network
(NN) which maps the input of its subproblem at
iteration k to the output. The input to agent m’s
subproblem includes the vector of active and reactive
power demands at buses in Nm, which we denote as
pd
m, qd

m. The input also includes λk−1
m (the consistency

constraint dual variables) and z̄k−1
m (the average of

agent m’s copies of shared variables with its neighbors’
copies). Thus, the complete input to the NN is xm =[
(pd

m)T (qd
m)T (λk−1

m )T (z̄k−1
m )T

]T
, with length

2|Nm|+ 2|N s
m|. The outputs of the NN are predictions

of the values for shared primal variables computed at

iteration k, yk
m =

[
ẑk
m

]T
. The length of yk

m is |N s
m|.

A major challenge in NN training is identifying the
relevant input space. In a centralized setting, the inputs
are the network’s loads, which are straightforward to
bound. However, the distributed OPF subproblem also
depends on shared variable values which vary across
algorithm iterations and network states. We estimate
bounds on the shared primal and dual variable values
by running the distributed OPF algorithm with varying
load profiles and recording the shared variable values at
each iteration. We record the minimum and maximum



values for each variable across all iterations of every
run. With these bounds in place, we generate training
data. We sample random values for each shared
primal and dual variable from a uniform distribution
within the variable’s bounds. We also generate power
demand values by randomly sampling over a uniform
distribution from 50% to 150% of the nominal load
value. With power demand and shared primal and
dual variables as input, we record the resulting output,
i.e., the agent’s shared primal variables for the next
iteration. This process is repeated as desired to generate
training samples. The loss function minimized during
NN training is the mean-squared-error (MSE) between
predicted and actual primal variable output values:
MSE =

∑
i ||zm,i−ẑm,i||22, where, for input sample i,

zm,i is the true output of agent m’s OPF subproblem and
ẑm,i is the NN’s predicted output.

After training, agents share copies of their NN
models with their neighbors. During real-time
operation, as the distributed algorithm is executing,
agents track their neighbors’ behavior using a reputation
index. They compare received data to NN predictions
and increment a neighbor’s reputation index if they
receive anomalous data from that neighbor. When
the reputation index for a particular neighbor, say
agent m, reaches a predetermined reputation threshold,
agents raise a local attack flag for neighbor m and
communicate this flag to agent m’s other neighbors. If
all neighbors concur that agent m is sending anomalous
data, they officially detect an attack by agent m. They
subsequently replace all data received from agent m
with NN predictions. Once an attack is detected,
neighbors continue monitoring agent m and decrement
the reputation index if they detect valid data. If
all neighbors conclude that agent m is no longer
transmitting false data, they stop replacing agent m’s
data with NN predictions.

We now formalize the detection and mitigation
algorithm. To perform attack detection, we follow the
steps in Algorithm 1. Note that S(n) is a function
returning all one-hop neighbors of agent n. Before the
calculation begins, we set a detection threshold ϵ; if the
L1-norm of the difference between shared and predicted
data is above ϵ, that data is marked anomalous. We also
set a reputation threshold ζ; when an agent’s reputation
index for some neighbor reaches ζ, it locally flags that
neighbor as malicious. At each distributed OPF iteration
k, agent n compares the shared data zk

m received from

each neighbor m with the data ẑk
m predicted by the NN’s

model of agent m. We measure the difference ρkn,m seen
by agent n between received and predicted shared data
from agent m as the L1-norm of the difference:

ρkn,m = ||zk
m − ẑk

m||1. (6)
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Figure 3: Flowchart showing steps for offline training
and online detection and mitigation

Each agent tracks the reputation of their one-hop
neighbors. At every iteration k, each agent n computes
ρkn,m for each one-hop neighbor m. Agents update
the reputation index Gn,m for each neighbor according
to Algorithm 1, where Gn,m represents the reputation
of agent m as seen by agent n. Agent n increments
Gn,m if it has not yet reached the reputation threshold
ζ and ρkn,m is above the detection threshold ϵ. Agents



Algorithm 1 Detection step for robust distributed OPF

for n = 1,2,. . . ,N do
for m ∈ S(n) do

ρkn,m = ||zk
m − ẑk

m||1
if ρkn,m > ϵ and Gn,m < ζ then

Gn,m = Gn,m + 1
end if
if ρkn,m ≤ ϵ and Gn,m > 0 then

Gn,m = Gn,m − 1
end if
if Gn,m ≥ ζ then

An,m = true
else if Gn,m is 0 then

An,m = false
end if

end for
end for

decrement Gn,m if it is above 0 and ρkn,m is below ϵ.
We also introduce a flag An,m which indicates whether
or not agent n considers agent m to be malicious. We
initialize An,m to false. If the reputation index reaches
its threshold, Gn,m ≥ ζ, then An,m = true. If Gn,m =
0, then An,m = is set to false. Agents communicate
their flags to two-hop neighbors at every iteration. If all
an agent’s neighbors agree it is under attack, the agent
is officially flagged as malicious and its neighbors will
rely on NN predictions for its shared data.

4. Experiments and Results

We test the effectiveness of our detection and
mitigation algorithm on test cases selected from the
PGLib-OPF archive [19]: the IEEE 14-, 30-, 118-,
and 300-bus test cases. We first describe details on
implementation and then provide results for detection
accuracy and the cost and constraint violations from
solutions computed using the mitigation algorithm.

4.1. Implementation Details

We use the PowerModelsADA library [20] to
decompose the power networks and run distributed OPF
algorithms. We divide the 14-, 30-, and 118-bus cases
into three areas and the 300-bus case into 8 areas. We
set the penalty parameter α = 1000 for the 14-, 30-,
and 118-bus cases and α = 2000 for the 300-bus case.
We run the distributed algorithm until the L2-norm of
mismatches between shared variables is below 10−4 or
until we complete 2000 iterations. We randomly select
an agent to be the adversary. Under the simple and
PID feedback attack strategies, the adversary attempts to
increase power production from generators in its region

to their maximum possible value. For the PID feedback
attack, we set parameters kp = 0.1, kd = 0.1, and
ki = 0.01 for the proportional, derivative, and integral
gain respectively. For the disruptive attack strategy, the
adversary sends values randomly selected from [0,1] to
cause the algorithm to diverge.

To train the neural network (NN) models for each
test case, we first generate shared variable bounds for
the samples as described in Section 3. We run the
algorithm 50 times, each time perturbing the loads by
randomly selecting values from a uniform distribution
from 50% to 150% of the nominal loads for the 14-, 30-,
and 118-bus cases and from 50% to 105% of the nominal
loads for the 300-bus case. We record the maximum and
minimum values during these algorithm runs for each
shared variable and then compute the final bounds by
increasing the maximum and decreasing the minimum
values by 10% of the difference between maximum and
minimum, to account for any input space not covered
during the 50 runs. We generate a total of 800,000
samples, using 90% for training and 10% for validation.
For each sample, we randomly sample load values from
a uniform distribution from 50% to 150% of the nominal
load values for the 14-, 30-, and 118-bus cases and
from 50% to 105% of the nominal load values for the
300-bus case. We randomly sample shared variable
values from a uniform distribution over the bounds. The
NNs consist of 16 hidden layers, each with rectified
linear unit (ReLU) activation, and a linear output layer.
After training the NNs, we record NN errors on the
validation datasets as the difference between real and
predicted values and compute the mean and standard
deviation of the errors.

We set detection tolerances ϵ based on the
accuracy of the trained NN models. Shared data is
considered anomalous if the average difference from NN
predictions is more than 1.5 standard deviations from the
NN error on the validation dataset, i.e., ϵ = 1.5 · σ ·N ,
where N is the number of shared variables and σ is the
standard deviation of the NN prediction errors. The NN
error distribution is a bell curve concentrated closer to
the mean than a normal distribution of identical mean
and standard deviation. After testing several values
for ϵ = c · σ · N with c varying in increments of
0.1 from 1.3 to 2.2, we found that ϵ = 1.5 · σ · N
was the best detection threshold. Recall that before
an agent is flagged as malicious, all its neighboring
agents must see differences between shared data and
NN predictions above ϵ for ζ iterations. This approach
prevents occasional high NN errors from causing a false
positive detection.

We evaluate two criteria for detection results:
accuracy and detection delay. To compute the
accuracy, we run the algorithm repeatedly with loads



Table 1: Detection Results

Test case Detection accuracy Mean detection delay
14 99.9% 4.06 iterations
30 98.6% 4.97 iterations
118 100% 4.12 iterations
300 99.4% 4.03 iterations

randomly selected from the same distributions used
during training, under each of the attack strategies and
under no attack. We randomly select attack start times
from iterations 1 through 30. Detection is marked
correct for an algorithm run if the attack is flagged
after it begins and no attack is flagged before. We
define detection accuracy as the proportion of runs with
correct flags to total runs. We are also interested in
the detection delay, which we define as the number
of iterations after the attack begins until it is detected.
Note that the minimum value for the detection delay is
ζ + 1, where ζ is the reputation threshold described in
Section 3, or the number of iterations with abnormal
shared data required before local agents flag malicious
behavior. After waiting ζ iterations for local flags, it
takes one additional iteration for agents to communicate
these flags to their two-hop neighbors and officially
confirm the attack.

We also evaluate two criteria for mitigation results:
feasibility and cost. We run the algorithm repeatedly
under each of the attack strategies, performing
mitigation by replacing false data with NN predictions
once an attack is detected, and save the final solution.
Again, with each algorithm run, we perturb the loads
by sampling from the distributions used during NN
training. Next, we run an AC power flow on the
test case with generator dispatch from the distributed
OPF solution to find the operating point of the system
after applying the solution. We record any constraint
violations that occur in system operating point computed
from the AC power flow. To evaluate cost, we compute
the percent difference between the true optimal cost and
the cost of the solution for the attacked algorithm using
our mitigation algorithm.

4.2. Results

We run the distributed OPF algorithm 1600 times
(400 runs under simple attack, 400 runs under PID
attack, 400 runs under disruptive attack, and 400 runs
under no attack) for each test case and record the
accuracy as the proportion of the 1600 runs for which the
attack status was correctly classified. We also record the
average detection delay for the algorithms under attack.

Table 1 summarizes the results of this experiment.
With detection accuracy above 98.6% for all test cases,
the algorithm reliably identified malicious agents. The

average detection delay is quite close to the ideal,
ζ + 1 = 4. Note that it takes small cases such
as the 14- and 30-bus systems anywhere from 60 to
500 iterations to converge, while larger cases like the
300-bus system may require more than 1500 iterations.
With a four-iteration delay, agents detect an attack soon
after it begins and can then start replacing false data with
NN predictions for mitigation.

For mitigation results, on every test case we run
the algorithm 600 times with randomly varying loads,
200 times under each of the attack models, and record
the constraint violations as described in Section 4.1.
Algorithms running with an agent’s shared data replaced
by NN predictions do not converge to our typical
tolerance of 10−4 for the L2-norm of the shared variable
mismatches. The final mismatch norms are in the
range [0.005, 0.01], where mismatches are in per unit for
power flows and voltage magnitudes and in radians for
voltage angles. This mismatch allows for some small
constraint violations in the final operating point. For
the 14-, 30-, and 118-bus cases, the only violations that
occur are on reactive power limits. For any mitigated
solution, no more than 2% of generators have reactive
power limit violations. We display in Table 2 the
maximum and mean of any constraint violations that
occur for the 600 algorithm runs with mitigated attacks.
The 300-bus case mitigated solutions also result in some
voltage violations, with maximum value 0.0013 p.u.
and mean value 2 × 10−4 p.u. Part of our ongoing
work involves analyzing the impact of shared variable
mismatches on the solution feasibility, developing
bound tightening algorithms to ensure feasibility for a
given mismatch tolerance, and refining the NN training
process for more accurate predictions.

Table 2: Reactive Power Limit Violations

Test case Maximum violation Mean violation
14 0.57 MVAr 0.15 MVAr
30 0.18 MVAr 0.11 MVAr
118 1.12 MVAr 0.15 MVAr
300 3.22 MVAr 0.42 MVAr

We also evaluate whether mitigation produces
solutions that are close to optimal. We run the same
test cases for the distributed OPF algorithm under attack
with and without mitigation. We compute the percent
difference between the true optimal solution and the cost
of the distributed OPF solution as

100 · (ẑ∗ − z∗)/z∗,

where z∗ is the true optimal objective value and ẑ∗

is the distributed OPF objective value. The goal for
financially motivated adversaries with the simple or PID
attack strategies is to profit by increasing production



from some generator, leading to a sub-optimal solution.
Our mitigation algorithm prevents the solution from
converging to the adversary’s malicious target and
instead results in an operating point close to the
optimum. On average, the percent difference from
optimal for distributed OPF under attack with mitigation
is about 0.2%, while adversarial target operating points
have percent differences from 5% to 20%. Figure 4
illustrates the results for a representative run using the
simple attack strategy on the 118-bus test case, where
the operating cost of the current solution is computed at
every iteration for unmitigated attack, mitigated attack,
and no attack. The mitigation strategy results in a final
percent difference from optimal cost of 0.02%, while
without mitigation the attacked algorithm converges
with a percent difference of 12.7%.

Figure 4: Cost percent difference from optimal as
the algorithm evolves for unmitigated attack, mitigated
attack, and no attack

The disruptive attack strategy does not seek a
specific solution target but rather causes the algorithm
to diverge. Table 3 shows the maximum and mean cost
percent differences from the optimum across the 600
runs for all three attack strategies with mitigation.

Table 3: Cost Percent Differences

Test case Maximum difference Mean difference
14 5.6% 0.24%
30 2.16% 0.31%
118 0.05% 0.02%
300 0.07% 0.06%

We conclude our results with a note about
computation time for the detection and mitigation
algorithm. In the original distributed OPF algorithm,
agents solve local OPF subproblems and share data with
their neighbors during every iteration. Our detection
and mitigation algorithm additionally requires agents to
make one feedforward pass through a NN model for

each of their neighbors and check whether the L1-norm
of the difference between predicted and received
variables is above some threshold. Benchmarking
using a computer with a quad-core 2.3 GHz processor
and 16 GB of RAM, we find that the detection and
mitigation steps only take 0.4% to 0.8% of the total
time per iteration. In other words, our method imposes
negligible computing overhead relative to solving the
OPF subproblems.

5. Conclusion and Future Work

Distributed algorithms for operating the emerging
smart grid must be made resilient to cyberattacks.
Building on previous literature which developed
cyberattack threat models for distributed OPF problems,
this paper proposed a detection and mitigation algorithm
for these attacks. By training NN models of agents’
local OPF subproblems, we can detect false shared data
by comparing it to the NN predictions and replace false
data with the NN approximations once an attack has
been detected. This detection method does not require
the defender to train a classifier on data from specific
threat models, making our method potentially more
flexible to detect many different attack strategies. We
use attack strategies proposed in two previous papers
to demonstrate the effectiveness of our detection and
mitigation algorithm. We achieve very high detection
accuracy and show how replacing the false data with NN
approximations produces near-feasible, near-optimal
solutions to mitigate attacks which would otherwise
drive the solution to a sub-optimal target or disrupt
convergence.

Our future work includes the following tasks:

1) We plan to extend the detection and mitigation results
to larger systems with more agents.

2) We are studying ways to relax the assumptions
listed in Section 3.1.1. In particular, we aim to
detect and mitigate attacks while keeping load demand
information completely private, address attacks where
multiple adversaries collude, and reduce communication
requirements. We also intend to address the assumption
for mitigation in Section 3.1.2 by finding safe operating
points for the system in the event that an adversary gains
complete control of a computing agent.

3) We will further investigate constraint violations that
may occur from a solution computed while mitigating
an attack, in which small shared variable mismatches
remain. We are developing constraint tightening
algorithms to ensure feasible solutions given some
bound on the mismatches.

4) We are assessing threat models which might be
explicitly designed to bypass our NN detection method,



perhaps by embedding our NN detection model into
their attack calculation step.
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