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Abstract—Distributed optimization algorithms can provide
scalability and privacy advantages for coordinating controllable
resources in future smart grids. However, distributed optimal
power flow (OPF) problems may take many iterations to reach
consensus over large networks. To reduce the number of itera-
tions we propose computing a privacy-preserving warm start for
distributed OPF, which is used to solve the OPF via the alternat-
ing direction method of multipliers (ADMM) algorithm. We train
neural networks (NNs) to predict final consensus variable values,
and evaluate the neural network outputs using secure multi-
party computation (MPC) to preserve the privacy of input data.
Since MPC significantly increases the computational overhead
of evaluating the neural network, we design a specialized NN
architecture and use a recently created library to perform the
secure computations more efficiently. We further reduce the
number of iterations by combining the privacy-preserving warm
start with a bound tightening algorithm; this allows us to use a
looser convergence tolerance while ensuring feasibility. Numerical
results demonstrate that the combined warm start and bound
tightening results in very few iterations to convergence, and
reduces computation time by around an order of magnitude.

Index Terms—Distributed OPF, ADMM, secure multi-party
computation, privacy, warm start, bound tightening

I. INTRODUCTION

Power systems operations are changing due to increasing
deployments of distributed energy resources (DERs). Rather
than dispatching a small number of generators at the trans-
mission level, future operators may coordinate many control-
lable resources throughout both transmission and distribution
networks. Distributed optimization may be useful for solv-
ing large-scale optimal power flow problems to find DER
setpoints. In distributed algorithms for optimal power flow
(OPF), local controllers iteratively solve subproblems over
their respective regions of the network and exchange data
until neighboring controllers reach consensus on boundary
variables. Distributed algorithms can scale to large OPF prob-
lems since controllers solve smaller OPF subproblems over
local regions. Additionally, distributed OPF has the potential
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to preserve sensitive local data, such as power consumption,
since these data are not directly shared. However, distributed
OPF algorithms may take many iterations to reach consensus,
requiring unacceptably long computation times.

This paper focuses on rapidly and securely solving dis-
tributed AC OPF using the alternating direction method of
multipliers (ADMM) algorithm. ADMM, a popular distributed
optimization algorithm, has been applied to various power
system optimization problems [1]]. Like other first-order dis-
tributed optimization algorithms, a key challenge for ADMM
is reducing the number of iterations to convergence [2[]—[4].
While ADMM often reaches modest accuracy quickly, it may
be slow to converge to the high accuracy that is necessary to
ensure feasible OPF solutions [5], [[6]. Most of the literature
on reducing computation time for ADMM-based distributed
AC OPF focuses on parameter tuning. While [2] performed
extensive numerical simulations to find good parameters, other
papers proposed residual balancing schemes [3] or assigning
parameters based on coupling between variables [4]. Another
approach used reinforcement learning to dynamically select
penalty parameters [7]]. The work in [8] proposed a two-level
ADMM variant with convergence guarantees for AC OPF and
some analysis on worst-case iteration complexity.

We focus on a different way to reduce distributed OPF com-
putation time: improving the initialization. To solve distributed
OPF, neighboring controllers must reach consensus on voltage
phasors and power flows at the boundary between their respec-
tive regions of the network. We refer to the boundary variables
as “primal consensus variables,” and the dual variables for
the consensus constraints as “dual consensus variables.” We
propose using specially tailored machine learning to predict
the optimal primal and dual consensus variable values. Past
work on learning to predict centralized OPF solutions gen-
erally predicted optimal values for all generator setpoints
[91-[13]l, to avoid repeatedly computing solutions with opti-
mization algorithms during real-time operation. However, in
the distributed OPF setting, the full problem is decomposed
into smaller subproblems such that OPF over any region’s
subproblem is relatively fast. Given values for the primal
and dual consensus variables, which are the inputs for each
distributed OPF iteration, the optimal generator setpoints can
thus be found relatively quickly by solving the region’s OPF
subproblem. By predicting the final consensus variable values,



we aim to reduce the number of iterations to convergence.

Previous literature proposed a decentralized approach in
which controllers for each region train models to predict
consensus variable values from local power demand infor-
mation [14]. This approach is highly effective for settings in
which the loads across the system are highly correlated such
that local controllers have implicit information about loading
conditions in other regions based on the loads in their own
region. They can then make high-quality predictions based on
local power demand information alone.

Our proposed approach generalizes to systems where the
loads are not so highly correlated. In this setting, regions
should exchange some data regarding their local power de-
mand in order to predict warm-start values that reflect condi-
tions across the connected system. However, one key advan-
tage of distributed optimization over centralized optimization
is the potential to preserve privacy of local data. To preserve
privacy, we propose using secure multi-party computation
(MPC) [[15] with central coordinators that calculate the warm-
start using privacy-preserving neural networks (PPNNs) [16].
By using PPNNs, we provide cryptographically rigorous guar-
antees that the warm-started ADMM will not reveal any more
information than the traditional ADMM algorithm.

We also propose combining the secure warm start with the
bound tightening algorithm we developed in [6]] to significantly
reduce the number of iterations, and thus total computation
time, required to converge. Reducing iteration count decreases
the amount of data exchanged between controllers, which may
also have important implications for privacy and cybersecurity.

To summarize, the contributions of the paper are as follows:

o We present a method for computing a privacy-preserving
warm start for distributed OPF. While this warm start uses
system-wide loading conditions as input, we ensure that
power demand data remains private to each local region
by evaluating the neural network (NN) output using MPC.

o We mitigate the computational burden associated with
MPC using 1) a specialized NN structure and 2) a new
library, developed with our collaborators, for secure op-
erations on floating-point numbers. We emulate realistic
communication between the secure agents and illustrate
how the warm start reduces time to convergence.

o We numerically demonstrate that combining the warm
start with bound tightening techniques from [6] reduces
the number of iterations and convergence time by ap-
proximately an order of magnitude and we discuss the
associated data security benefits.

The remainder of the paper is organized as follows. Sec-
tion [[I provides an overview of the use of ADMM to solve dis-
tributed OPF problems. Section [I1I| details the neural network
architecture, and describes how coordinating agents use MPC
techniques to jointly compute the PPNN output, without these
coordinating agents or any other agent learning the private
input data. Section proposes combining the warm start
with bound tightening to significantly reduce the number of
iterations to convergence. Section [V]presents numerical results
on OPF test cases. Section summarizes the paper.

II. BACKGROUND: DISTRIBUTED OPTIMAL POWER FLOW

This section provides background on solving OPF in a
distributed manner. We use the alternating direction method of
multipliers (ADMM) algorithm [5] to solve distributed OPF
in this paper, but our methods could also be applied to other
distributed algorithms such as auxiliary problem principle [[17]]
or alternating target cascading [18]].

A. Optimal Power Flow

We first introduce notation and the AC OPF problem, which
minimizes generation cost subject to engineering limits and
the AC power flow equations. Let the sets of buses and lines
be denoted N and &, respectively. Each bus ¢ € A has
active power demand p¢, reactive power demand ¢, active
power generation pY, reactive power generation ¢f, voltage
magnitude v;, voltage angle 6;, shunt conductance gfh, and
shunt susceptance b5". We denote the reference bus with S.
For each line (i, ) € £, we denote the series conductance as
G;;, the series susceptance as B;;, the shunt susceptance as
ijh, and the limit on apparent power flow as ?ij. The active
and reactive power flows from bus ¢ to bus j are p;; and g;;,
respectively. The angle difference between buses ¢ and j is 0;;.
The total operating cost is the sum of the cost of active power
generation at each bus ¢, denoted f;. The AC OPF problem is
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This problem minimizes generation cost (Ta) subject to power
balance and flow constraints (Ic)—(Tf) as well as limits on
generation (Ig), voltage magnitudes (Th), and line flows (Ti).

B. Solving Distributed OPF with ADMM

To decompose the OPF problem, we divide the power
network into multiple regions, each operated by a local con-
troller. Controllers solve local OPF subproblems over their
regions of the network. We must ensure that neighboring
controllers reach consensus on values of primal consensus
variables, which are the voltage phasors and power flows at
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Fig. 1: Decomposition of power network

the boundary between their respective regions. To use ADMM
to solve the distributed OPF problem over multiple regions,
we introduce central copies of all primal consensus variables,
and the consistency constraints require that each controller’s
local copy of primal consensus variables is equal to the central
copies of these variables. The consistency constraints on power
flows and voltage phasors are illustrated in Figure

Let the set of regions across the network be M. Region m
contains a set of buses V;,, and a set of lines &,,. The values of
primal consensus variables are contained in the vector z,,. The
central copies of primal consensus variables for region m are
gathered into the vector z,,. If dual variables for consistency
constraints are initialized to opposite values for each pair of
primal consensus variables shared by neighboring controllers,
then we can compute the central variable values in a distributed
manner, without a central coordinator.

To solve distributed OPF with ADMM, controllers itera-
tively solve local subproblems and share primal consensus
variable values with their neighbors. The subproblem con-
straints are simply the OPF constraints over the controller’s
region. The objective for each controller’s local subproblem is
augmented with relaxed consistency constraints. At iteration k,
controller m’s OPF subproblem is as follows:
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The ADMM penalty parameter « is user-selected. After solv-
ing local subproblems, controllers share primal consensus
variables z,, with their neighbors, and update central variables

as zy, , = %(z’fnn +2% ), where for neighboring controllers
(m,n), Zm,n are the primal consensus variable values com-
puted by controller m and z,, ., are the values computed by
controller n.
Controller m then updates the dual consensus variables y,,,:
Y =Y +alzy, — 2. (3)
Thus, each ADMM iteration consists of solving local sub-
problems (2), updating central values for primal consensus
variables, and updating dual consensus variables (3). The
algorithm converges when the controllers reach consensus
within some convergence tolerance €. Let the vector of primal
residuals r* contain the difference between local and central

copies of all boundary variable values:
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We terminate the ADMM algorithm when ||7¥||o, < e.

III. PRIVACY-PRESERVING NEURAL NETWORKS
FOR SECURE WARM START

In this section, we propose training a neural network (NN)
to predict the final values for distributed OPF primal and dual
consensus variables, which are then used to warm-start the
distributed OPF algorithm. The input data are power demands
at loads across the system. To preserve privacy, so that these
power demands are not revealed to a central coordinator, we
use secure multi-party computation (MPC) to evaluate the NN
output [15[, [[16], [19]. To emphasize that we compute the NN
output securely, we refer to the NN as a privacy-preserving
neural network (PPNN). Since the central coordinating agents
use MPC techniques to jointly compute the PPNN output, we
have cryptographic guarantees that neither of the coordinating
agents, nor any local agent, can discern the private input
data. We first present the PPNN architecture and describe
the inputs, outputs, and training process. Next, we explain
the communication setup used to compute the warm start
in real-time with MPC techniques. We discuss the impacts
of the communication speed between coordinating agents
on the PPNN evaluation time. Finally, we discuss the trust
assumptions and privacy guarantees for our method.

A. Neural Network Architecture

We now describe the PPNN architecture, inputs, and out-
puts. First, we note that the MPC techniques, which keep the
input information secure, also add computational overhead
[16], [20], [21]. Therefore, we must ensure that the time
required to securely evaluate the PPNN is sufficiently small
such that the warm-start still reduces total distributed OPF



computation time. To reduce the amount of secure computation
required, we design NNs with the following architecture.
For the first n layers, the NN is divided into m regions,
each processing inputs independently. For these n layers, the
neurons are connected only within their respective regions.
At layer m + 1, the outputs from each region’s n-th layer
are connected. For layers n + 1 through N, the NN is
fully connected and computations to evaluate the output are
performed securely. The output is denoted ¢ and contains the
predictions for consensus variable values. Each region receives
the elements of ¢ corresponding to primal boundary variables
and dual variables for coupling constraints in their region,
denoted (,,. Regions then use these values to initialize the
distributed OPF for faster convergence.

To formalize the architecture of the NN, let x,, denote
the vector of active and reactive power demands at loads
across region m, ,, = [(p%,)” (qﬁl)T}T. This vector @,
is the input to region m’s separate NN. Using the same
notation as in Section [[I-B] we denote the primal and dual
consensus variables that form the input to controller m’s local
OPF subproblem as z,, and y,,, respectively. Let ¢,, =
[(Zn)" (ym)?] " The full output vector from the fully con-

nected PPNN layers is ¢ = [(¢1)T (¢o)T (CM)T]T,
where M = | M| is the number of regions.

Let g,,,,; denote the output of layer ¢ of region m’s network.
Then, let y contain the concatenated outputs of each region’s
network at layer n. This vector y is the input to the privacy-
preserving fully connected layers. We denote the output of
layer j of the fully connected PPNN as h;, and the final
output of the PPNN is ¢. The NN weights at layer ¢ for region
m are given as W, ;, and the PPNN weights for the fully
connected network at layer j are W ;. Similarly, the bias vector
at layer ¢ for region m is b,, ; and the bias vector for the fully
connected layer j is b;. The output vector ¢, containing the
primal and dual consensus variable predictions, is computed
from the input vectors x,,, which contain the power demands
for each region m, as follows:

Im1 =W 1Zm +bpi1), YmeM,
Gmi = Wi i1 +bmi),Vme M, Vie {2,3,...,n},

T
hn+1 = ¢(Wn+1y + bn+1)7
hj = (W h;_1 +bj),
¢=¢(Wnhn_1+bn).

The function ¢ can be any activation function. However,
some commonly used activation functions, such as the sig-
moid, are very expensive to evaluate via MPC [19]. We
therefore use the rectified linear unit (ReLU) function ¢(x) =
max (0, z), which is fast to compute via MPC. The layout of
the NN layers is shown visually in Figure [2]

To create the PPNN training dataset, we generate synthetic
data by randomly perturbing the loads across the network from
probability distributions around forecasted values. For each set
of perturbed loads, we solve the distributed OPF using ADMM
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Fig. 2: Setup for the distributed warm-start. Regions input local
demands into local NNs and pass their outputs to central co-
ordinators who compute the final output from fully connected
layers using cryptographic privacy-preserving techniques.

Privacy Preserving

as described in Section Once the distributed algorithm
converges, the final primal boundary variable values z and the
dual variables for coupling constraints y are saved. The loss
function minimized during NN training is the mean-squared-
error (MSE) between predicted and actual consensus variable
values: MSE = ".||¢; — ¢/ |3, where, for input sample 1,
¢, contains the PPNN’s predicted output and ¢ contains the
true optimal consensus variable values.

B. Communication Setup and Warm Start Process

We now discuss the communication and computing setup for
evaluating the PPNN output to obtain the warm start. Recall
that the network is decomposed into some number of regions,
each of which is operated by a local controller. In addition to
these controllers, we also designate two coordinating agents,
which we refer to as “Alice” and “Bob”E] Coordinating agents
Alice and Bob use MPC techniques to jointly compute the
warm start, while the input data remains secret such that
neither the coordinating agents nor any other agent obtain the
private input data. Again, this input data consists of active and
reactive power demands throughout the network.

The coordinating agents Alice and Bob could be any two
local controllers, or they could be separate servers located
elsewhere. In either case, the agents Alice and Bob must have
communication links to the controllers and to each other, and
must have access to the fully connected layers of the PPNN.
The process to compute the warm start securely is as follows:

1) Local controllers gather power demand data from their
region, which forms the input to their local NN layers.
2) Controllers compute the output of their local neural
network layers, referred to as the “intermediate output.”
3) Controllers send this intermediate output to the coordi-
nating agents Alice and Bob securely, without revealing
the true values to either Alice or Bob. To share data
for MPC to Alice and Bob, without revealing that
data to either agent, controllers use secret sharing [22].
The secret sharing scheme securely distributes the input
information between Alice and Bob such that Alice and

IThis is standard naming convention in the cryptography community.



Bob can jointly perform computations on the input, but
neither agent can recover the original input informationﬂ

4) Alice and Bob perform MPC, communicating with each
other to securely compute the final output (, again
without either agent learning the intermediate output
values which form the input to the PPNN fully connected
layers. The vector ¢ consists of the primal and dual
consensus variables for each region.

5) Alice and Bob send the elements of ¢ corresponding to
each region’s variables to that region’s controller, which
the controller uses to initialize their primal and dual
consensus variables. After initialization, controllers run
ADMM to find the OPF solution.

In Figure 3] we show how the controllers use secret sharing
to send intermediate outputs to coordinating agents Alice and
Bob. Then, Alice and Bob use secure two-party computation
techniques to jointly compute the PPNN output.

As some researchers have noted, it may be possible for
eavesdroppers to infer some sensitive data, such as power
demands, from the data communicated between controllers
during ADMM iterations [23]]-[26]. While we guarantee pro-
tecting the power demand data during the process of comput-
ing the warm start with MPC, we do not address the question
of data inference during the ADMM run in this paper. Future
work will explore modifications of the ADMM algorithm
using methods such as those presented in [23]], [25] to further
guarantee privacy during the ADMM solution process.

C. Communication Time and MPC

MPC involves multiple rounds of communication between
Alice and Bob involving “oblivious transfers” of data [16],
[21]. Therefore, the computation time required to evaluate
the PPNN depends heavily on the communication speed. If
possible, the coordinators Alice and Bob should communicate
via a local area network (LAN), as long as their computations
are owned by independent organizations such that Alice and
Bob do not collude in trying to recover private data. However,
a LAN requires a nearby physical connection which could
be difficult to achieve with independent servers owned by
different organizations. Another option is communicating via
a wide area network (WAN), which avoids a nearby physical
connection but is slower than a LAN. Section [V] compares the
performance of the program for both LAN and WAN networks.

D. Trust Assumptions and Privacy Guarantees

We now add a note about our trust assumptions and privacy
guarantees, both during the offline training phase and during
real-time operation. We assume that the data used for training
is not cryptographically protected. Each region’s controller
stores and optimizes its own neural network weights, while
some coordinating agent holds the privacy-preserving neural

2It may seem that the regional NN layer already produces obfuscated output,
but we have no guarantees that the input could not be inferred from this output.
Hence, secret sharing is necessary to guarantee data privacy.
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Fig. 3: Showing how the controllers and coordinating agents
communicate to securely compute the warm start without
revealing sensitive local power demand data.

network weights during the training process. During train-
ing, controllers pass their intermediate outputs to the coor-
dinating agent for feed-forward passes through the privacy-
preserving neural network layers. Then, the coordinating agent
passes back information about the loss function sensitivities to
the controllers’ intermediate outputs during back-propagation.
Thus, the neural network model and power demand input
data are not explicitly exchanged between controllers during
training. However, the neural network model and power de-
mand data are not cryptographically protected, so it is possible
some information could be inferred during training. To ensure
that no real historical power demand data is revealed, we
generate synthetic power demand data for the training process.
Federated learning techniques could also be used to preserve
data privacy if real historical data were used for training [27]].

We also make a trust assumption about the coordinators,
Alice and Bob, who jointly compute the PPNN output. We
assume that they perform the MPC processes correctly and do
not collude with each other. This is a common assumption in
the MPC literature known as semi-honest parties [28]].

During real-time operation, the controllers do not trust either
Alice or Bob with their actual power demand data. Since all
data is passed to Alice and Bob through secret sharing and
Alice and Bob compute the PPNN output via secure two-party
computation, the input power demand data is not revealed to
either agent or to any other controller.



IV. COMBINING WARM START WITH BOUND TIGHTENING

We next propose combining the warm start described in
this paper with the bound tightening algorithm from [6]
to significantly reduce the number of iterations required to
converge. Reducing the number of iterations in which data is
communicated between regions may have important implica-
tions for privacy and cybersecurity. Distributed OPF has the
potential to keep power demand data, cost data, and other
sensitive information private, since controllers need only share
information about boundary variable values with neighboring
regions. However, several researchers have explored the pos-
sibility that an eavesdropper could infer sensitive data from
the information exchanged between controllers [23]-[26]. For
the task of inferring sensitive data, accuracy increases and
computational effort decreases as the eavesdropper observes
more iterations of the distributed algorithm [25]. In addition,
each iteration of communication between controllers provides
an opportunity for false data injection attacks [26], [29].

In 6], we investigated the impact of convergence tolerance
on distributed OPF solution quality. If the convergence toler-
ance is ¢, the distributed OPF algorithm converges when the
primal residual norm falls below this tolerance, or ||r*|| < e,
where r* denotes the vector of primal residuals at iteration k.
Recall that the primal residuals are the mismatch between
neighboring regions’ copies of primal consensus variable val-
ues. If the convergence tolerance is large enough, and there are
non-negligible mismatches between boundary variables shared
by neighboring regions, then the distributed OPF dispatch
may violate engineering limits when applied to the power
grid. Reference [|6] presented a bound tightening algorithm
which ensures, given a certain convergence tolerance, that the
network operating point corresponding to the distributed OPF
solution will not violate constraints. Increasing the conver-
gence tolerance reduces the distributed OPF solve time.

In general, the bound tightening algorithm allows for an
increase in the convergence tolerance to reduce the num-
ber of iterations required to converge, trading off potential
suboptimality of the solution for feasibility guarantees and
computational speed. In [6]], we found that the increase in
OPF cost after bound tightening was relatively small.

To combine bound tightening with warm start, we run
the bound tightening algorithm for the largest convergence
tolerance ¢ for which the bounds can be tightened feasibly.
We save the tightened bounds on voltage magnitudes, reactive
power generation, and line power flows. Next, we train a
PPNN on the test case with bounds tightened for convergence
tolerance e. This process is illustrated in Figure []

V. NUMERICAL RESULTS

This section presents numerical results demonstrating how
the secure warm start can significantly decrease computation
time. We include the time required to compute the PPNN pre-
dictions, evaluating the final layer using MPC. We provide an
overview of the test cases and implementation details, present
results that show how the warm start reduces computation
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Fig. 4: Flowchart showing steps for combining bound tighten-
ing and privacy-preserving warm start for distributed OPF.

time given two different MPC libraries, and then illustrate the
impact of combining bound tightening with the warm start.

A. Test Cases and Implementation Details

Our test cases are the casel18 and case200 synthetic trans-
mission test cases from the PGLib-OPF archive [30]], and
case69 and casel41 from MATPOWER [31]], which represent
balanced distribution networks. Note that we add controllable
distributed energy resources to case69 and casel41, which
we model as providing power at no costﬂ We divide case69
and casel18 into three regions, casel41 into four regions, and
case200 into five regions for distributed OPF.

We train the PPNNs for each test case as described in
Section [[TI-A] Let the length of the input vector for each region
consisting of active and reactive power demands across the
region, x,,, be denoted N¢. Each region’s neural network
contains seven hidden layers, each with 2N;fl neurons. Then,
the output of each region’s NN is length N2, so that the input
to the fully connected PPNN is M N,,,, where again M is the
number of regions in the network. The PPNN contains just one
layer with 2V* neurons, where /N° is the number of consensus
variables across the network.

We emulate realistic communication between controllers
and the agents which securely compute the output of the
final privacy-preserving NN layer. We present results for both
local and wide area network communication with representa-
tive latency and data throughput. We use the Linux NetEm
network emulator [32] to simulate the performance of local

3The modified MATPOWER case69 and casel4l test cases are available
online at https://github.com/rjuly7/test_case_modifications.
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TABLE I: Network Emulator Parameters

Delay Rate
Local Area Network (LAN) | 0.4 ms | 3 Gbit/s
Wide Area Network (WAN) 5 ms 1 Gbit/s

and wide area networks. The parameters we use are listed in
Table [Il Here, delay indicates a constant delay before sending
each packet, measured in milliseconds, and rafe denotes the
specified data transfer rate in Gigabits per second.

To obtain the results presented in the following sections,
we generate synthetic data by randomly perturbing power
demands at loads. For each load, we randomly generate a value
r; € [—0.5,0.5] for each load i. Then, we assign the active
and reactive power demands at load i as p¢ = (p?)"°™(1+r;)
and ¢! = (¢)"™(1 + i), where (pd)"o™, (g)"o™ are
the nominal active and reactive power demands, respectively,
at load ¢. That is, we select random perturbations from a
uniform distribution such that power demands may take on
any value between 50% and 150% of their nominal values.
We maintain a constant power factor by selecting the same
perturbation for both active and reactive power demands at
each load. In contrast to the work in [[14], which generated
synthetic data such that loads across the network were highly
correlated, we select random perturbations independently for
each load. We solve the distributed OPF problems with the
ADMM algorithm as described in Section The penalty
parameter is o = 1000, and we terminate each run when the
loo-norm of the primal residuals is below the convergence
tolerance e. We ran all experiments on a laptop with an eight-
core 2.3 GHz processor and 16.0 GB RAM.

B. MPC Libraries and Computation Time after Warm Start

The previous state-of-the-art open-source library for secure
floating-point computation is SECFLOAT [21]. However, using
SECFLOAT to evaluate the PPNN-based warm start is too
slow to achieve significant speedups relative to a flat start. We
therefore instead use our recently developed library NUMSEC
for secure floating-point computations [33]]. In this section,
we present results for computation time, including the PPNN
evaluation time, using both the SECFLOAT library [21]] and
the new NUMSEC library [33]].

To evaluate how much the warm start reduces computation
time, we run distributed OPF with randomly perturbed loads
400 times with a flat start, 400 times with the warm start
computed under LAN emulation, and 400 times with the warm
start computed under WAN emulation. For this section, we use
convergence tolerance € = 10~%. After each run, we record
the number of iterations required to converge and the total
computation time, which includes the time required to evaluate
the PPNN securely. We present results for both the prior
state-of-the-art open-source library for secure operations on
floating-point numbers, SECFLOAT, and our newly developed
library, NUMSEC [33]].

Table @ summarizes these results, showing the mean num-
ber of iterations and the mean computation times when using
the SECFLOAT library and our new NUMSEC library with both

LAN and WAN network emulation for the warm start. Observe
that the warm start significantly reduces the number of itera-
tions, by a factor between 4.3 and 27.1. When computing the
warm start with the SECFLOAT library, although the number
of iterations is reduced, computation time may not improve.
Due to the time required to evaluate the PPNN, the total
computation time may be slower for the warm start when using
the SECFLOAT library, if coordinating agents communicate
over WAN. The table also shows the percent reduction in
computation time that results from the warm start.

When using the new NUMSEC library for secure computa-
tions, using the warm start is significantly faster than the flat
start for both LAN and WAN. To achieve the greatest reduction
in computation time, we should compute the warm start with
secure agents communicating via LAN. In practice, even if
controllers are physically scattered throughout the network and
communicate via WAN, we could choose to locate the secure
coordinating agents Alice and Bob close together so they can
communicate over LAN to enable fast evaluation of the PPNN.

C. Combining Bound Tightening and Warm Start

Next, we run the bound tightening algorithm from [6]] on
each of the three test cases. We select the largest convergence
tolerance for which the tightened bounds are feasible for OPF.
We denote this loosened convergence tolerance as el""seE]
To evaluate the performance of the combined warm start
and bound tightening, we run distributed OPF with randomly
perturbed loads again on the bound-tightened test cases, 400
times with flat start, 400 times with warm start computed
over LAN, and 400 times with warm start computed over
WAN. Each run is terminated when the /,,-norm of the shared
boundary variable mismatches falls below the convergence
tolerance €/°°%¢. We present the mean number of iterations to
convergence and the mean computation time in Table [III| for
each test case across the 400 runs. We also show the percent
reduction in computation time from using the warm start and
bound tightening, compared to the flat start without bound
tightening.

Figure [5] shows boxplots illustrating the distribution of
computation times for the casel141 and case200 test cases. We
present the distribution of computation times for distributed
OPF with vanilla ADMM, i.e., a flat start and no bound
tightening. We also show the distribution of computation times
for distributed OPF after applying bound tightening and warm
start, where the warm start is computed with either LAN or
WAN emulation. Note that for vanilla ADMM, some sets of
loading conditions take a very long time to solve (more than
twice the median solution time). However, when we initialize
with the warm start, the solve times are much more consistent
and significantly reduced compared to ADMM with flat start
and no bound tightening.

For both initializations (flat start and warm start), using a
looser convergence tolerance after bound tightening decreases

4For case69 and casel4l, gloose — }.3 x 1073. For casell8, eloose —
10~2. For case200, €/°°5¢ =1.9 x 10~3. The tolerance €'°°%€ is in per unit
for voltage magnitudes and power flows, and is in radians for voltage angles.



TABLE II: Comparison of Iterations and Computation Times for Flat Start vs. Warm Start

Number of Computation Time (s)
Network Iterations Warm Start, LAN Warm Start, WAN
Flat Start (% Reduction) (% Reduction)
Flat Start | Warm Start SECFLOAT NUMSEC SECFLOAT NUMSEC

case69 300.3 7.0 30.7 4.3 1.7 (94.5%) 16.9 4.3 (86.0%)
casel18 88.2 15.5 15.4 9.5 4.4 (71.4%) 26.2 7.4 (51.9%)
casel4l 103.4 32 13.0 3.6 1.1 (91.4%) 16.7 3.8 (70.8%)
case200 591.7 16.7 91.8 42.3 13.4 (85.4%) 97.4 21.1 (77.0%)

TABLE III: Iterations and Computation Time After Bound Tightening, with NUMSEC Library for Warm Start

Network I}I;T;;:Zn(;f Computation Time (s)
Flat Start [ Warm Start [[ Flat Start | Warm Start, LAN (% Reduction) | Warm Start, WAN (% Reduction)
case69 101.3 1.0 10.10 0.86 (97.1%) 3.43 (88.8%)
casel18 24.4 1.36 4.03 1.87 (87.9%) 4.85 (68.5%)
casel41 552 1.0 631 0.77 (94.1%) 3.45 (73.5%)
case200 244.0 1.37 36.56 10.95 (88.1%) 18.61 (79.7%)

the total number of iterations and computation time. For
case69 and casel41, the PPNN warm start predictions are
accurate enough that the distributed OPF converges after
only one iteration of local subproblem solves. Note that no
communication between controllers is necessary during this
iteration; each controller simply solves its local subproblem,
using the initial consensus variable values from the warm start.
For casel18, 64.6% of the distributed OPF runs converge after
one iteration, with 35.4% of the distributed OPF runs requiring
two iterations (i.e., one round of ADMM communications).
For case200, 67.0% of the distributed OPF runs converge
after one iteration, with 31.3% of the distributed OPF runs
requiring two iterations (i.e., one round of ADMM commu-
nications), and 1.6% of the distributed OPF runs requiring
three iterations (i.e., two rounds of ADMM communications).
When the distributed OPF converges after one iteration of local
subproblem solves, no data needs to be communicated between
neighboring regions. As discussed in Section [[V] reducing the
amount of data communicated between controllers improves
privacy and cybersecurity. With less communicated data to
observe, an eavesdropper’s ability to infer sensitive data from
the consensus variable data shared after each iteration is
limited [23[]-[26]. In addition, malicious attackers have less
opportunity to interfere with or manipulate communication.

We note that bound tightening and training neural networks
for warm start requires offline computation time. We chose to
solve OPF centrally to create the training data, since solving
distributed OPF with ADMM before applying any warm start
would take longer. For each test case, bound tightening took
less than one hour, generating training data took less than
one hour, and training the neural networks took between four
and twelve hours. Since we account for a range of loading
conditions when performing bound tightening and learning the
warm start, the offline computation need only be performed
once, after which these methods can be used to accelerate
distributed OPF many times during daily operation.

VI. CONCLUSION

This paper has explored a secure warm start for distributed
OPF solved with ADMM applicable to settings where loads
across the network are not necessarily correlated. We use MPC
to evaluate the output of privacy-preserving neural networks
(PPNNs), which are trained to predict final primal and dual
consensus variable values. Since evaluating PPNNs requires
additional computational overhead to keep their operations
secure, slowing computation times, we develop a scheme in
which local regions pass input data to independent NNs, which
are evaluated locally. The regions then pass their NN outputs
to two coordinating agents, which use a single-layer PPNN to
compute the final warm-start values without either agent learn-
ing the input data. We also use a recently developed library to
perform the secure multi-party computations efficiently. The
warm start can significantly reduce computation time without
revealing the local demand data to the coordinating agents.

Next, we propose combining the warm start with a bound
tightening technique that enables using a looser convergence
tolerance. When the consensus variables are initialized with
PPNN warm start predictions and we use a larger convergence
tolerance for a bound-tightened test case, the number of
iterations to convergence is reduced by an order of magnitude.
In many cases, the distributed OPF converges in only one
iteration, so that controllers need not share any consensus
variable data with their neighbors. Eliminating the repeated
communication between controllers, which is typically needed
to solve distributed OPF, reduces the attack surface for false
data injection attacks and prevents eavesdroppers from infer-
ring sensitive local data.
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