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Abstract. The economic cost of power outages has been estimated to be between $35 billion
and $50 billion annually in the United States. We analyze and advance methodologies for electrical
distribution network reconfiguration in order to quickly restore power, an important lever for improving
reliability. For short-term network disruptions, we give a novel model for reconfiguration by considering
switches that can be sequentially closed upon detection of a network anomaly upstream. The order
in which switches close has an impact on reliability metrics such as SAIDI, which are the basis for
regulator-imposed financial performance incentives. We introduce the “Minimum Reconnection Time
(MRT)" problem, which aims to find an optimal switch ordering that minimizes the cost of outages
and show that it generalizes metrics like SAIDI. We first show that MRT is a special case of the
well-known minimum linear ordering problem from submodular optimization literature and that
MRT is also NP-hard. We show how to approximate MRT using recent kernel-based randomized
rounding approaches, and in turn improve the state-of-the-art for a broad class of MLOP instances.
Finally, we note that the choice of reliability metric can result in significant differences for low and
medium voltage buses. We therefore consider optimizing multiple metrics simultaneously using local
search methods that reconfigure the system’s base tree to optimize service disruptions, reconnection
times, and energy losses. We computationally validate our reconfiguration methods on the NREL
SMART-DS Greensboro synthetic urban-suburban network and show significant improvement in
reliability metrics.

1. Introduction. Improvements in distribution network reconfiguration are mo-
tivated by the high societal cost of electricity interruptions. Despite investments
from utility companies in improving reliability, service disruptions remain challeng-
ing [10, 80, 45, 46]. Recent research in monetizing the economic costs of power outages
provides estimates between $35 billion and $50 billion annually in the United States [44].
Related research studies on the Value of Lost Load (VOLL) give estimates ranging
from several dollars per kilowatt-hour to several hundred dollars per kilowatt-hour,
depending on the underlying methodology, type of customer, and assumptions [67], and
the Midcontinent Independent System Operator (MISO), which is one of the largest
power system operators in the United States, uses a value of lost load equal to $35
per kilowatt-hour [55]. These values are orders of magnitude larger than the typical
costs for electricity (around 10.5 cents per kilowatt-hour in the United States [74]),
reflecting the importance of providing reliable supplies of electricity.

Since reliability is so valuable, electric industry groups recognize utilities based
on their performance with respect to reliability metrics such as the System Average
Interruption Duration Index (SAIDI), e.g., the ReliabilityOne Award [59] and the
American Public Power Association’s Certificate of Excellence Award [3]. Moreover,
some regulators implement explicit financial incentives or penalties for utilities to
improve upon these metrics. As one example, the California Public Utilities Com-
mission set a target SAIDI value of 60 minutes for San Diego Gas & Electric [8].
Overperforming or underperforming this target beyond ±2 minutes was rewarded or
penalized by $375,000 per minute up to a maximum of $3 million annually. Financial
incentives also vary across regions and countries, with similar incentives in Great
Britain, Italy, etc. [31, 39, 37].

Reducing outage time is an important way to improve a network’s reliability
metrics. After an isolated fault occurs in a system, causing an outage downstream
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in the network, it is crucial to quickly reconfigure the network to reroute power to
the affected areas. Reconfiguration can potentially be executed long before the fault
is manually repaired, reducing the outage duration for many customers. Much of
the existing work in the academic literature focuses on centralized approaches for
distribution network reconfiguration. In centralized approaches, information regarding
distribution system operations, such as the location of a fault that is causing a
power outage, is communicated to a central hub (e.g., substation or control center)
which computes an appropriate switching configuration that is then communicated
to each switch. In contrast, decentralized approaches have local controllers that
operate solely based on local information. Solving a reconfiguration problem centrally
with full information and control is simpler, but has speed, robustness, and security
disadvantages [78, 43]. For these reasons, protection and reconfiguration systems are
moving towards an adaptive paradigm where components of the distribution system
work together to detect and characterize failures and then restore the supply of power
as quickly as possible [57, 11, 56, 53, 75, 66, 17].

To help realize this future paradigm, in this paper we propose a decentralized
approach for automatically reconfiguring radial distribution networks to quickly restore
power after a fault and consequent power interruption. We next discuss a summary of
our contributions in (1) proposing a new model for faults and the protection system, (2)
showing the hardness of finding the best reconnection order of switches, (3) developing
new approximation guarantees for reliability metrics, (4) balancing reliability metrics
and energy losses associated with the initial radial tree using local-search for fair service
to different populations and (5) evaluating our approach on the NREL SMART-DS
Greensboro dataset.

1. Modeling faults and the protection system. In Section 3, we describe our
graph model and novel protection system. We assume a network is given as a graph
G = (V,E), with an initial radial tree T ⊆ E. We employ lines that are not in the
base radial network, S = E \ T , each with a normally open switch that can detect
an abnormal voltage difference on its endpoints signifying a downstream outage. We
say that a switch s ∈ S covers e ∈ T if T − e + s is connected. To ensure that the
reconnected network remains radial (i.e., a tree) in order to satisfy short-circuit current
requirements and facilitate coordination of the protection system [47, 79], we require
that exactly one switch closes after a fault. Since our methods are decentralized and
intended for settings that lack communication between switches, we assign an ordering
of the switches in which each waits a distinct amount of time after detecting a voltage
difference on its terminal buses before closing. Changes in voltage after one switch is
closed will be detected by other switches with longer waiting times, which will then
stay open. This reconnection order is periodically communicated to the switches in
advance of the occurrence of a fault (e.g., based on estimated probability of failure of
the radial lines), and the switches operate in a decentralized fashion thereafter. Thus,
this approach does not require low-latency communications.

Any ordering of switches suffices for our system model, but the order in which
switches are programmed to automatically close, on detecting a voltage difference, can
have a significant impact on the delay that customers face. We analyze reconfiguration
methods which aim to optimize various performance metrics while avoiding the need
for centralized communications and computations. We use two metrics to characterize
the severity of service disruptions, since different metrics capture disproportionate
impacts on different parts of the network, and therefore, different demographics who
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are typically situated in clusters or strongly correlated with zipcode locations [13, 32]:
(i) Reconnection time (R-Time): expected time between an edge failure and the

reconnection of the network
(ii) SAIDI: average expected total outage duration for a customer over a given

time period.
Given an initial radial network, finding an optimal ordering of switches that

minimizes either R-Time or SAIDI can be written as an instance of a new problem
Minimum Reconnection Time or MRT: given edge weights b(e) for each e ∈ T , find
an ordering of the switches S = E \ T such that the total b-weighted coverage time of
e ∈ T is minimized:

(MRT): min
σ:S→[|S|]

∑
e∈T

b(e) min
s covers e

σ(s).

Setting b(e) = p(e) or b(e) = p(e)f(e), where p(e) is the probability an edge fails in
the network and f(e) is the demand downstream of edge e, we can write R-Time and
SAIDI as instances of MRT.

2. NP-hardness of MRT: Having formulated network reliability as MRT, we first
show in Section 4 that this minimum reconnection time problem is in fact NP-hard
using a reduction from the tree augmentation problem (TAP). In TAP, we are given a
graph G = (V,E) with spanning tree T ⊆ E, and must select a minimum-cardinality
subset F of E such that T ∪ F is 2-edge-connected [12].

Theorem 4.4. The tree augmentation problem can be reduced in polynomial time
to the Min Reconnection Time problem, and the latter problem is therefore NP-hard.

Given an instance G = (V,E) and T of the tree augmentation problem, we modify
the instance by adding edge-disjoint triangles Ti = {{v, vi,1}, {vi,1, vi,2}, {vi,2, v}} (for
i ∈ [|V | · |E|]) to G which each share one specific vertex v in T . We define the MRT
base tree to be the tree T ′ obtained by adding two edges from each newly added
triangle, i.e., T ′ = T ∪

⋃
i(Ti \ {vi,2, v}). We solve MRT on this modified instance,

giving each edge in the original tree weight b(e) = 1 and each newly-added edge weight
b(e) = 1/2. The solution σ will cover all the newly-added edges after covering all the
edges in the original tree. We show that because there are a large number of new
edges, σ will cover the original tree using as few edges as possible, and those edges
form a solution to the original TAP instance.

3. Connections to Submodular Optimization. Next, we show in Section 5 that
the MRT problem has an interesting connection to the field of submodular optimization.
A function f : 2V −→ R on the power set of a ground set V is said to be submodular if

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), ∀A,B ⊆ V.(1.1)

Submodular functions are a discrete analog of convexity, and capture the property
of diminishing returns (f(S ∪ {e}) − f(S) ≥ f(T ∪ {e}) − f(T ) for S ⊆ T, e 6∈ T ).
Their negatives are referred to as supermodular functions (with the inequality in (1.1)
reversed). In optimization and computer science, both these functions are often found
in applications related to coverage and scheduling [28, 19, 21], network topology [58],
selecting a small set of scenarios to analyze the behavior of renewable energy sources
in a stochastic model [77], selecting generators to minimize low-frequency phase
oscillations [50], and partitioning a system into isolated islands to avoid cascading
failures [49].
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We show that MRT is in fact a special case of the minimum sum set cover (MSSC)
problem, which has been studied as a linear ordering problem on supermodular
functions [18, 33]. Let H = (V,E) be a hypergraph, where each hyperedge e ∈ E is a
subset of the vertex set V . Then, MSSC seeks to find a linear ordering σ of vertices V
so that the total waiting time for each hyperedge to be covered, i.e.

∑
e minv∈e σ(v),

is minimized. It is known that MSSC is NP-hard, and there is a tight polynomial-time
4-approximation algorithm achieved by a simple greedy algorithm [18]. We note that
NP-hardness of MSSC does not imply the NP-hardness of MRT, since MRT is a special
case of MSSC (Lemma 5.1).

4. Improved guarantees for Min Sum Set Cover and MRT. Since MRT
is a special case of MSSC, a natural question is to ask if the greedy algorithm’s
approximation factor of 4 is also tight for MRT. To explore this further, in Section 5
we view MRT as an MSSC instance by considering a hypergraph over the set of
switches, so that H = (S,EH), where each hyperedge eH ∈ EH corresponds to the
set of switches that covers edge e ∈ T . Suppose the maximum coverage of any edge e
in the radial network T is c (i.e., at most c switches cover any tree edge), we give an
improved approximation factor of (2c/(c+1))2 for MRT instances. Note that this ratio
asymptotically approaches 4 as c→∞, but for simpler networks as seen in practice it
can be much closer to 2.

Theorem 5.4. Let G = (V,E) be the given network, let T ⊆ E be a spanning tree
on G with edge weights b(e) ∈ R+ for all e ∈ T . Let the set of switches be S = E \ T ,
and let c = maxe∈T |{s ∈ S : T − e + s is connected}| be the maximum coverage of
any edge in the tree. Then, if c ≥ 2, there is a polynomial-time ( 2c

c+1 )2-approximation
algorithm for the MRT problem on G.

To achieve this improvement in the approximation factor, we use fractional
kernels within a kernel-based randomized rounding approach [62, 27], which may be of
independent interest. In particular, we consider c-uniform instances of MSSC and show
the improvement in the approximation for these. A kernel-based randomized rounding
approach involves solving a linear programming relaxation to find x∗, “spreading” this
fractional solution using a kernelK, and then subsequently roundingKx∗ appropriately.
In a recent work, Bansal et al. [4] obtained a 4-approximation for MSSC using
K = 2/t · 1[t ≥ t′], and a 16/9-approximation for the minimum sum vertex cover
problem (MSVC) using K = 4 t′(t′+1)

t(t+1)(t+2) · 1[t ≥ t′]. They showed that the latter
bound is tight for the special case of solving MSSC on 2-uniform hypergraphs, that is,
each hyperedge has exactly two vertices. In contrast, to attain tight guarantees for
MSSC on c-uniform hypergraphs, we considered a new kernel of the form K(t, t′) =
2c
c+1

t′2/(c−1)∑t
i=1 i

2/(c−1) · 1[t ≥ t′], and showed the following approximation bound for its
performance. Note that this ratio is better than 4 for all instances of MSSC.

Theorem 5.2. Let H = (V,E) be a c-uniform hypergraph, where c ≥ 3. Then
applying α-point rounding with kernel

K(t, t′) =
2c

c+ 1

t′2/(c−1)∑t
i=1 i

2/(c−1)
· 1[t ≥ t′]

is a polynomial-time ( 2c
c+1 )2 approximation for the Min Sum Set Cover problem on H.

Our proposed kernels depend on the value of c, and like the kernels used in [4], are
based on discrete analogs of negative power functions. These kernels spread the weight

4



of relaxed LP solutions more aggressively, which is necessary to ensure that small
fractional contributions in weight (which are more frequent for small c) contribute
to a good tentative schedule, but that the kernel does not create so much more total
weight that the gap between the tentative schedule and final order becomes large. To
be able to spread the weights in the solution x∗ at the correct rates, our kernels must
include fractional powers of the times t, whereas the kernels of [4] use only integral
powers. This complicates the analysis of the kernel-based weight-spreading process.
In particular, the analysis of the gap between the LP objective and the cost of the
tentative schedule uses discrete calculus-like manipulations of the kernels, and requires
close bounds on their sums. These are significantly more intricate when dealing with
the fractional powers of t used in our kernels. We further show that the (2c/(c+ 1))2

approximation ratio is tight (Theorem 5.5) for c-uniform MSSC instances, with respect
to the natural LP relaxation.

Theorem 5.5. Let c ≥ 2. Then the integrality gap of the LP for MSSC on
c-uniform hypergraphs is at least ( 2c

c+1 )2.

To show this gap, we construct a c-uniform instance consisting of the disjoint union
of a large number of complete c-uniform hypergraphs (i.e., each subset of c vertices
comprises a hyperedge) of varying sizes. The LP relaxation can efficiently cover each
hypergraph by assigning each vertex weight 1/c, thus covering each complete c-uniform
hypergraph on n vertices in time n/c. In contrast, any integral solution must select all
but (c− 1) vertices in each of the complete hypergraphs, which takes n− c+ 1 time
steps. As the size of the instance grows, the gap between the costs of these solutions
approaches ( 2c

c+1 )2.

5. Balancing multiple netrics of reliability and energy losses. Given G =
(V,E), the choice of starting spanning tree T can have a large impact on the recon-
nection metrics. For example, Figure 1 shows two different spanning trees on the
7-vertex wheel graph. The set of switches for each spanning tree has a unique optimal
reconnection order (up to graph isomorphism) that minimizes both SAIDI and R-Time.
The optimal order of the “spoke” network on the left achieves objective value 3

2 for
both R-Time and SAIDI, while in the “wheel” network on the right, the optimal order
achieves objective value 1 for R-Time and 7

2 for SAIDI. Moreover, the choice of the
initial tree also plays a significant role towards determining the energy losses in the
network (for electricity distribution networks, these losses can be as large 10% of the
total energy loss) [42, 26]. In Figure 1, energy losses are 6 in the “spoke” (left) and 91
in the “wheel” (right), where we assume each bus has uniform demand of one power
unit all lines have uniform resistances, and losses are proportional to the square of the
power flow through each line.

To optimize the radial tree, in Section 6 we propose using local search techniques
over the set of spanning trees using a multi-criteria objective that involves all three
metrics of interest: SAIDI, R-Time, and energy losses. The local search uses a branch
exchange method, which proposes a new spanning tree at each step by replacing a
tree edge with a non-tree edge. It then evaluates the new spanning tree on the SAIDI,
R-Time, and energy loss metrics, and accepts it if it has better objective value than
the current tree. To efficiently estimate SAIDI and R-Time, we take the best of the
greedy MRT solution and approximations using the randomized rounding algorithm
c-uniform MSSC (for instance-specific c).

Obtaining good approximate solutions to SAIDI and R-Time critically relies
on the coverage information of the network, i.e., which switches cover which edges.
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Fig. 1. Two spanning trees on the same network. Solid edges are in T , dashed edges are in
E \T , the source r is the largest vertex, and all vertex weights and edge failure probabilities are equal.

However, updates to the network structure due to local search significantly slow down
the overall process. Indeed, a naive approach to update network connectivity would
take O(|V |2|E − T |) time at each step. For tractability of local search, we show
that only the coverage of certain edges needs to be updated in each step and we
give an efficient way to detect these. This reduces the update time by a factor of
Ω(min{|E − T |, |V |/d}), where d is the length of the longest cycle of G, significantly
speeding up the local search.

Lemma 6.1. Let G = (V,E) be a graph and let T ⊆ E be a spanning tree of G.
Let e ∈ T , se ∈ E − T be an edge and a switch such that T ′ = T − e+ se. Then, all
covering data for T also hold for the new spanning tree T ′, except the following pairs
(f, s):
(i) f is in the unique cycle Ce in T + se and the unique cycle Cs in T + s contains e.
(ii) f is in the unique cycle C ′e in T ′+ e and the unique cycle C ′s in T ′+ s contains se.
In other words, T − f + s is connected if and only if T ′ − f + s is connected, for all
other such pairs of edges (f, s).

To demonstrate this, we show that if we make two simultaneous branch exchange
steps, the tree remains connected as long as one of the removed edges does not intersect
with the cycle created by adding the switch in the other branch exchange. We prove
that this condition is satisfied as long as neither (i) nor (ii) holds and use it to show
that T − f + s is connected if and only if T ′ − f + s is connected.

6. Experimental validation. In Section 7, we test our methods on the NREL
SMART-DS Greensboro synthetic urban-suburban network. This network contains 18
distinct radial networks, each with its own substation, and a total of 145052 buses.
We show that by contracting some edges with low flow, we can greatly reduce the
computational complexity of the problem with minimal impact on solution quality.
The synthetic network has an insufficient number of switches to be able to achieve
good coverage in most areas, and we therefore give a modified greedy method for
determining good locations for augmenting the system with a modest number of
additional switches. This method selects switches to construct one-by-one based on the
weight b(e) = p(e)f(e) of the edges they would cover. However, instead of setting the
weight of a covered edge to zero, we halve it each time it is covered. Thus, the resulting
set of additional switches balances small cardinality with increased redundancy and
flexibility, making it suitable for local search computations.

Adding enough switches to protect against failures almost everywhere in the
network is very expensive, but we show that excellent coverage, prioritizing the
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heaviest-load edges, can be achieved by adding relatively few switches. Indeed, on
average over 90% of the weight b(e) = p(e)f(e) in the SAIDI metric can be covered
by adding a number of switches equal to 0.19% of the number in the spanning tree.
We demonstrate that after adding switches, the local search branch exchange method
can significantly improve outage and energy metrics, with up to an 95% reduction in
the product of R-Time, SAIDI, and energy loss and nearly a 60% improvement on
average.

2. Related work. The goal of distribution network reconfiguration is to optimize
one or more performance criteria (typically related to service reliability and network
losses) while maintaining an operable distribution network configuration. Distribution
network reconfiguration has been a widely studied problem in power systems engineering
since the 1970s [54] and remains an active research topic [56, 81, 83, 76, 82, 22, 69,
35, 16]. Many types of algorithms have been applied to this problem, including, e.g.,
traditional optimization methods such as linear programming [69] and mixed-integer
programming [7, 20], heuristic decision strategies [36, 83], machine learning methods [82,
22, 83, 35], approximation algorithms [26], and metaheuristic techniques [82, 76, 16].
See [56] for a survey of the network reconfiguration literature.

In industrial applications, optimal network reconfiguration is classified as a
Fault Location, Isolation, and Service Restoration (FLISR) application that aims
to embed “self-healing” features within advanced distribution management systems
(ADMS) [14, 73, 65]. There are a variety of self-healing approaches using decentralized
schemes where all agents are on the same level of the network. Li et al. isolate faults
onto “islands" and use alternate paths to restore service. The method proposed by
Torres et al. employs an internal timer for each switch [72]. Industrial implemen-
tations of network reconfiguration include, for instance, ADMS products provided
by Schweitzer Engineering Laboratories [68], Advanced Control Systems, Inc. [1],
General Electric [23], S&C Electric [34], etc. Case studies and discussions on a range
of practical implementation issues are provided in [14, 73, 51].

The Min Sum Set Cover problem was introduced by Feige et al. in 2002 [18]
and has seen application in such diverse fields as search procedures [30], password
security [84], and network stream query processing [71]. An α-point rounding method
was used by Bansal et al. in their approximation algorithms for MSSC and min sum
vertex cover, as well as by Happach and Schulz in algorithms for generalizations of
MSSC [4, 29]. The technique is often used in approximation algorithms to convert
a preemptive schedule into a non-preemptive one by scheduling each task for the
time at which a random α-fraction of the job has been completed. Frequently, a
preemptive schedule is generated by solving a relaxation of a linear programming or
other formulation, and α-point rounding is used to convert the preemptive schedule
into a feasible solution. It was introduced by Hall et al. and Phillips et al. [27, 63] in
1997, and has been used extensively in later scheduling work; see [70] for a survey.

3. Problem formulation and modeling. In this section, we describe our
graph-based model for distribution networks and a decentralized method for restoring
power. This method involves selecting an order of the waiting times for each switch,
and we give a problem formulation for choosing an order to minimize outage metrics
including SAIDI.

3.1. Modeling the network. We model an electric distribution network as a
graph G = (V,E), where the vertices V represent the buses and the edges E are
distribution lines connecting the buses. One vertex r ∈ V denotes the substation, and
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is the root of a spanning tree T on G representing the initial radial configuration. Let
S = E \ T denote the set of edges (switches) not in the spanning tree.

We note that this graph-based modeling approach is a simplified representation
of the distribution network compared to the model used in, for instance, power
flow studies that additionally involve information about the line reactances, reactive
demands, capacitor susceptances, etc. [40]. While precluding details such as reactive
power injections and voltages, this modeling approach enables application of the graph
theoretic concepts that are the basis for this paper’s theoretical analyses. Similar
graph-based models are used in other power system analyses, such as [2, 60, 41],
including in the context of network reconfiguration [42, 26, 48].

3.2. Modeling faults and the protection system. Each edge in E has a
switch which can be opened or closed to allow or stop current flow, and some edges
have breakers which will trip and stop flow in the event of a nearby fault. In general,
not every edge will have a breaker present. However, if necessary we can preprocess
the graph by contracting each set of connected edges in T that has only one breaker
to a single edge.1 Each substation supplies power to its connected component, which
is in turn operated radially [47, 79, 40]. At any time t, the set of edges across which
current is allowed to flow will be a forest, and the vertices receiving power are those in
the same component as the power source r. Initially, all edges are operational and so
all vertices are in the same component as r. If failures occur, the set of edges across
which current is allowed to flow could become a disconnected union of multiple trees.

When a fault occurs in edge e, to protect the system against this fault, a breaker
on edges e will trip to isolate the fault. Consequently, any vertices downstream of
the downstream breaker(s) will be without power until the fault is repaired. However,
closing a switch on an edge s not currently in use (i.e., in S) could allow current to
flow through that edge to one of the disconnected vertices from another vertex that is
still energized. This is feasible if and only if e is in the unique cycle in T + e; in other
words, T − e+ s is a tree. In this case, we say that s covers e.

To maximize service availability, we would like to close such a switch to temporarily
restore power to as many vertices as possible as quickly as possible. However, we must
ensure that no current will flow to the component of T − e containing the faulted edge,
thus continuing to isolate the fault.

r v1

v2 v3 v4

v5

v6

v7

e

s1

s2

s3

Fig. 2. An example of a network comprising a spanning tree (solid edges) and switches (dashed
edges.)

1The fault probability of this edge is the sum of the fault probabilities of the contracted edges.
The metrics depend on the weight of each individual vertex, but this can be approximated by the
total weight on the contracted vertex.
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For instance, consider the network in Figure 2. Vertex r is the source. Edges in
T are solid and edges in S are dashed. Suppose a fault occurs on edge e. Breakers
will trip, isolating the fault, and vertices v2, v3, v4, and v5 will be without power since
they are no longer in the same component as the source vertex. If the switch on s1 or
the switch on s2 is closed, then power would be restored. Closing the switch on s3
would not restore power, since vertex v1 is upstream of the fault. Closing switches on
both s1 and s2 would create a fault.

In our model, choosing which edge(s) to close switches on is not a difficult task if
we have perfect information of the status of the network (such as which breakers have
tripped) and can open and close switches centrally. To do so, we choose any single
edge in S that connects a vertex with power to a vertex that is without power and not
in the component of the fault and close the switch on that edge.

However, performing this operation centrally can be challenging and slow. Instead,
we consider a process that can run locally in a decentralized manner. That is, every
switch has a relay which reads the voltages of its incident vertices. Based on that
information, the relay can open or close the switch automatically, possibly with a
timed delay. Once the breakers trip, every vertex receiving power will have positive
voltage, and the others will have zero voltage. We assume that each switch can detect
whether each of its terminal vertices have positive voltage. The switch also has a map
of G, but does not know the current status of the network.

Suppose that a single edge fails, every edge has a breaker, and we are guaranteed
that the breakers closest to the fault do trip (operate as intended). Then all vertices
upstream of the fault have power, and the fault is isolated from all vertices downstream
of the fault. Therefore, we may safely restore power anywhere. Include in the network
a priority time t(e) for each edge e.

Consider the following algorithm. When a switch s ∈ S detects that one of its
terminals has positive voltage and the other does not, it waits for a preassigned length of
time t(s). If after that time the voltages of its terminals are unchanged, the relay closes
the switch on that edge. Hence power will be restored to the component containing
the zero voltage vertex and will not attempt to energize the faulted component.

If the priority times are sufficiently separated, then for any edges e1, e2 with
t(e1) < t(e2), any changes in the network (faults, breakers tripping, switches being
opened and closed, detecting the voltage of a vertex) that occur before time t(e1) will
be completed before time t(e2). This ensures that multiple switches cannot close in
such quick succession that a cycle forms.

For simplicity, we let ε > 0 be a network-dependent constant such that if |t(s1)−
t(s2)| ≥ ε for all s1 6= s2 ∈ S, the above condition will be satisfied; then set all times
t(s) to be distinct integer multiples of ε. Then it suffices to choose a permutation
σ : S → |S| and set t(s) = σ(s)ε.

Any valid function ordering σ will yield an assignment of values for t(s) and
eventually safely restore power to the maximum possible number of vertices, but we
would like to do so as quickly as possible. There are several different metrics for
measuring the effectiveness of a reconnection method, which we discuss next.

3.3. Definition of metrics. We consider three metrics on networks and recon-
nection methods, which depend on data about the network. Each vertex v ∈ V has
a power demand w(v) and each edge e ∈ E has an electrical resistance r(e), which
depends on the physical properties of the corresponding distribution line. For all
e ∈ E, let p(e) be the expected number of times that edge e ∈ T will fail in a fixed
time period (interchangeably, we think of p(e) as the probability of failure). Let D(e)
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be the set of vertices downstream of e, i.e., those vertices v such that the unique path
in T between s and v includes e, and let f(e) be the total weight of the vertices in
D(e). Let t(e) = mins∈S:s covers e t(s) be the time needed to restore power when e fails.
Note that p, d, and w are functions of the network configuration, while t also depends
on the methods used to restore power in the network.

The System Average Interruption Duration Index (SAIDI) is a standard metric
that measures average outage time, weighted by the demand of each vertex w(v)
(vertex weights) affected by each outage:

SAIDI =

∑
v∈V w(v)

∑
e:v∈D(e) p(e)t(e)∑

v∈V w(v)
=

∑
e∈T f(e)p(e)t(e)∑

v∈V w(v)
.

We next consider the reconnection time R-Time metric, which measures the
expected length of time of an outage and the reconnection of the network, without
considering the demand at each bus:

R-Time =

∑
e∈T p(e)t(e)∑
e∈T p(e)

.

Finally, we consider the energy loss in the network due to the line resistances,
which can be a substantial operational cost. If we assume that power consumption
is proportional to vertex weight, by Ohm’s law the energy loss in any edge e ∈ T is
r(e)f(e)2. (We do not consider the additional non-linear complications of AC power
flow.) Then the total energy loss in the network is the quantity

Energy =
∑
e∈T

r(e)f(e)2.

SAIDI and R-Time can be viewed as special instances of a new problem: Min
Reconnection Time (MRT), which aims to find an ordering of switches that
minimizes a weighted total waiting time for the edges of T to be reconnected. That
is, given a distribution network G = (V,E), a spanning tree T over V and a set of
switches S = E \ T , edge weights on the tree edges T → R+, the MRT problem is to
find an ordering σ of switches that minimizes the weighted reconnection time:

(MRT): min
σ:S→[|S|]

∑
e∈T

b(e) min
s covers e

σ(s).(3.1)

The tree edge weights b(e) are chosen to reflect our choice of instance and metric.
If we set b(e) = p(e), the resulting objective is the expected amount of time to power
restoral after an outage (R-Time), while if we set b(e) = p(e)f(e), we obtain the
expected duration of time that an average customer is without power, i.e., SAIDI (up
to the constant factor of the denominator of those objectives.) Therefore, when we
discuss methods or results for MRT, these methods apply to the specific problems of
finding a reconnection order to minimize either of these metrics.

4. Connections to the Minimum Linear Ordering Problem. In this sec-
tion, we show that MRT is a special case of the Min Sum Set Cover Problem, which
in turn is a special case of the Minimum Linear Ordering Problem on supermodular
functions. We also show that MRT is NP-hard using a reduction from the Tree
Augmentation Problem.
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4.1. Notation and Preliminaries. We start with some preliminaries needed
to review this section. A set function f : 2V −→ R on a ground set V is supermodular
if for all A,B ⊆ V , f(A ∪B) + f(A ∩B) ≥ f(A) + f(B). For example, the function
f(A) = |A|2 is supermodular. A hypergraph H = (V,E) is a pair of a vertex set V
and a set of hyperedges E, where each hyperedge e ∈ E is a nonempty subset (of any
size) of the vertex set V . This generalizes the notation of graphs G = (V,E) where
each edge e ∈ E is a subset of V containing exactly two vertices, i.e., e = (u, v) for
u, v ∈ V . A hypergraph is said to be c-uniform if each hyperedge contains exactly c
vertices. Further, we denote orderings of any finite set V by σ : V → V , where σ(i)
gives the position of element i ∈ V .

In this section, we show that MRT is an instance of the Minimum Linear
Ordering Problem (MLOP) on supermodular functions, and in particular the Min
Sum Set Cover (MSSC) problem introduced in [18]. We first define the general form
of MLOP with respect to any set function f :

Definition 4.1. Given a ground set S and a function f : 2S −→ R+, the MLOP
is to find a linear ordering σ of S that minimizes

∑|S|
i=1 f({s ∈ S : σ(s) ≤ i}).

To see how MRT can be viewed as a special case of MLOP, consider a given
spanning tree T of the underlying network G = (V,E). The goal is to find an ordering
of the ground set of switches S = E \ T which minimizes the time for edges in T to be
covered. For each switch s, define Us to be the set of tree edges covered by s. Given a
set of switches W ⊆ S then f(W ) is defined to be the cardinality of the set of tree
edges not covered by W , i.e., f(W ) = |T \ ∪s∈WUs|. This function can be shown to
be supermodular. At each time period t = i, any edge which is not covered by the
first i− 1 switches adds 1 unit to the objective function. As it is in MRT, the value of
the set function f can be weighted by b(e), thus recovering R-Time or SAIDI as the
objective as desired. Any ordering that minimizes the above mentioned instance of
MLOP also minimizes MRT.2

Another instance of MLOP is the Min Sum Set Cover (MSSC) problem, which
given a set of subsets S1, . . . , Sk ⊆ S, seeks to find an ordering of the Si such that the
total waiting time for each element of the ground set S to be covered is minimized. As
an instance of MLOP, this problem uses the function f(U) = |S \ ∪i∈USi| for U ⊆ V ,
which again can be shown to be supermodular. We may view this instance using the
hyperedges of a hypergraph H = (V,E), where each hyperedge e ∈ E is a nonempty
subset (of any size) of the vertex set V . Taking the ground set to be the edge set E,
the MSSC problem can then be formally stated as:

Definition 4.2. The MSSC problem, given a hypergraph H = (V,E), is to find
a linear ordering σ of the vertices V so that the total waiting time for each edge to be
covered is minimized, i.e.,

∑
e minv∈e σ(v) is minimized.

Again, note that one can write an instance of MRT as an instance of MSSC by
taking H to be the hypergraph with a vertex for each switch s ∈ S = E \ T and a
hyperedge {s ∈ S : T − e+ f is connected} for each tree edge e ∈ T . However, MRT
instances form a strict subset of MSSC instances, as we show in the lemma below:

Lemma 4.3. There exist instances of MSSC which are not instances of MRT, so
MRT is in fact a special case of MSSC.

For instance, let H = ({1, 2, 3, 4}, {{1, 2, 3}, {1, 4}, {2, 4}, {3, 4}}). Then in any

2There is an additive factor of |S| in the objective that is not accounted for in the mentioned
MLOP reduction. However, this does not change the optimal solution.
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corresponding instance of MRT, for a set of switches S corresponding to the hyperedges
of H to exist, tree edges e1, e2, e3 must lie on a path, with a fourth tree edge e4 incident
to each of them. However, this is impossible. Since MRT is a strict subset of MSSC,
showing the NP-hardness of MRT requires additional argument. It also may not hold
in special instances of MRT, for instance if G is planar.3

4.2. NP-hardness of Minimum Reconnection Time. To show the NP-
hardness of the minimum reconnection time problem (MRT), we show a reduction
from another NP-hard problem called the Tree Augmentation problem (TAP) [12].
Given G = (V,E) and a spanning tree T ⊆ E on V , the objective of TAP is to find a
minimum-cardinality set of edges F ⊆ E such that T ∪F is 2-edge-connected. Compare
this to MRT, in which an ordering σ (a solution to MRT) is guaranteed to restore
power by time k if the subgraph of G containing the edges of T ∪ {s ∈ S : σ(s) ≤ k}
is a 2-edge-connected graph. Thus MRT can be viewed as a timed version of TAP,
much as MSSC is the timed version of ordinary Set Cover: the latter seeks to find
the minimum number of subsets to cover a given set of elements [38].

Theorem 4.4. The tree augmentation problem can be reduced in polynomial time
to the Min Reconnection Time problem, and the latter problem is therefore NP-hard.

Proof. Let G = (V,E) with spanning tree T be an instance of TAP, and let
n = |V |,m = |E|.

We modify the instance to create a new graph G′ = (V ′, E′) with a new span-
ning tree T ′. Add the 2mn vertices vi,j , where i ∈ [mn], j ∈ [2], setting V ′ =
V ∪ {v1,1, v1,2, . . . , vmn,1, vmn,2}. Select an arbitrary vertex v ∈ V , and let PT =
{{v, v1,1}, {v1,1, v1,2}, . . . , {v, vmn,1}, {vmn,1, vmn,2}} be a set of edges which consti-
tute mn disjoint 2-paths. Let PS = {{v, v1,2}, . . . , {v, vmn,2}} be a set of mn edges,
and note that for 1 ≤ i ≤ mn, {v, vi,2} covers the edges {v, v1,1}, {v1,1, v1,2}. Finally,
let E′ = E ∪ PT ∪ PS , let T ′ = T ∪ PT , and give all edges e ∈ T weight b(e) = 1 and
all edges e ∈ PT weight b(e) = 1/2.

Let σ be an optimum solution to MRT on G′ = (V ′, E′) with tree T ′. Note that
the newly added switches {v, v1,2}, . . . , {v, vmn,2} are the only switches that cover
edges in PT . Furthermore, these switches each cover tree edges of total weight 1,
and since all edges in T have weight 1, without loss of generality we may assume
that the switches in PS are the last mn switches in σ that contribute a positive
quantity to the objective OBJ(σ) of σ as a solution to MRT. Let the switches chosen
before those mn switches be s1, . . . , sk = σ−1(1), . . . , σ−1(k), and for 1 ≤ i ≤ k, let
Si = {e ∈ T : si covers e}. Then the objective value of σ is

OBJ(σ) =

k∑
i=1

i

∣∣∣∣∣∣Si \
i−1⋃
j=1

Sj

∣∣∣∣∣∣+

k+mn∑
`=k+1

1

=

k∑
i=1

i

∣∣∣∣∣∣Si \
i−1⋃
j=1

Sj

∣∣∣∣∣∣+mn · k +
mn(mn+ 1)

2
.

Suppose there is a solution F = {f1, . . . , fk∗} ⊆ S to Tree Augmentation on the
original instance G, T such that k∗ < k. We construct another solution σ∗ to MRT
on G′ and T ′ as follows.

3For example, even though finding the maximum weighted cut in a graph is NP-hard [25], it is
solvable in polynomial time when restricted to planar instances [15].
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For 1 ≤ i ≤ k∗, let Fi = {e ∈ T : fi covers e}. Without loss of generality, assume
that

∣∣∣Fi \⋃i−1j=1 Fj

∣∣∣ ≥ ∣∣∣Fi+1 \
⋃i
j=1 Fj

∣∣∣ for all i ∈ [k∗ − 1] (if not, we can permute the
indices of the fi to make this so). Let σ∗ be a permutation of E′ \ T ′ such that

σ∗−1(i) =

{
fi, if i ≤ k∗

{v, vi−k∗,2}, if k∗ + 1 ≤ i ≤ k∗ +mn.

Then since
∑k∗

i=1

∣∣∣Fi \⋃i−1j=1 Fj

∣∣∣ =
∣∣∣⋃k∗i=1 Fj

∣∣∣ = |T | = n− 1, we have that

k∗∑
i=1

i

∣∣∣∣∣∣Fi \
i−1⋃
j=1

Fj

∣∣∣∣∣∣ ≤
k∗∑
i=1

i
n− 1

k∗
=
k∗(k∗ + 1)

2

n− 1

k∗
=

(k∗ + 1)(n− 1)

2
≤ mn.

Therefore,

OBJ(σ∗) =

k∗∑
i=1

i

∣∣∣∣∣∣Fi \
i−1⋃
j=1

Fj

∣∣∣∣∣∣+

k∗+mn∑
`=k∗+1

1 ≤ mn+mn · k∗ +
mn(mn+ 1)

2

≤ mn · k +
mn(mn+ 1)

2
< OBJ(σ),

which would contradict the optimality of σ. Therefore, there is no such solution
{f1, . . . , fk∗} to Tree Augmentation on G and T using k∗ < k edges, and so
{s1, . . . , sk} is an optimum solution to the original Tree Augmentation instance.
SinceG′ and T ′ have size polynomial in the size ofG and T , this gives a polynomial-time
reduction of Tree Augmentation to MRT, and thus MRT is also NP-hard.

5. Approximation algorithms for MRT. We next discuss methods for solving
MSSC and MRT with provable approximation guarantees. First, we discuss the
greedy algorithm for general MSSC and show that it does not always give an optimal
solution to MRT. Second, we give new kernels and new analysis for the alpha-point
rounding method for MSSC introduced by Bansal et al. [4]. We show a (2c/(c+ 1))2

approximation ratio for MSSC on c-uniform graphs for c ≥ 2 (corresponding to
MRT instances where at most c switches cover each edge) and demonstrate that this
guarantee is tight with respect to the natural LP relaxation.

5.1. The greedy algorithm. Since an instance of MRT is an instance of MSSC,
one may apply the greedy algorithm for MSSC [18]. For each i from 1 to |S|, the
greedy algorithm chooses

σi = argmax
s∈S

∑
e∈T

s covers e
σj does not cover e,∀j<i

b(e),

that is, σi is the edge in S which covers the uncovered tree edges with greatest total
weight. Pseudocode appears in Algorithm 5.1. In [18], Feige et al. showed that the
greedy algorithm is a 4-approximation for general MSSC, and that this bound is tight.

However, for MRT we construct instances with a provable gap of 4/3. We suspect
that the greedy algorithm achieves a strictly less than 4 approximation ratio on MRT
instances.

Lemma 5.1. There exist instances of MRT where the greedy algorithm does not
find an optimal solution.
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Algorithm 5.1 (Greedy) Greedy algorithm for MRT [18]
1: Input: Network G = (V,E); spanning tree T over V ; probabilities of failure p(e) for each edge
e ∈ T .

2: Output: An ordering σ1, . . . , σm of S = E \ T .
3: Initialize: Set of uncovered edges U = E.
4: for i from 1 to |S| do
5: Set σi = argmaxs∈S\{σ1,...,σi−1}

∑
e∈U :s covers e b(e).

6: Set U = U \ {e ∈ U : σi covers e}
7: return σ1, . . . , σm

s

v1

v2

v3

v4

s2 s3

s1

Fig. 3. Two networks where the greedy algorithm for MRT does not achieve the optimum value.

Example 1: Consider the leftmost network in Figure 3. Edges in T are shown solid,
while edges in S are dashed. Let ε = 1 and let p(e) = 1 for all e ∈ T . Then an optimal
solution to MRT on this is to take the edges of S in order σ = (s2, s3, s1), yielding
objective value 3/2. However, the greedy algorithm, breaking ties lexicographically,
will take σ = (s1, s2, s3), yielding objective value 7/4, a multiplicative gap of 7/6.

Example 2: Another instance where the greedy algorithm is not optimal for MRT is
shown on the right in Figure 3. Again, let ε = 1 and let p(e) = 1 for all e ∈ T . Then
an optimal solution to MRT is to take σ = (s4, s5, s2, s6, s7, s1, s3), yielding objective
value 27/12. However, the greedy algorithm, breaking ties lexicographically, will take
σ = (s1, s2, s3, s4, s5, s6, s7), yielding an objective value of 36/12, a 4/3 multiplicative
gap to the optimum. Note that in this network, the edge e between v3 and v4 is
covered only by edge s7, so any optimal ordering on S can take s7 as the last edge σi
that covers an edge not covered by σ1, . . . , σi−1. In this sense, the existence of e does
not make solving the MRT problem any more difficult. However, if e is removed from
G, the multiplicative gap actually shrinks, to 29/22.

5.2. Kernel-based rounding for c-uniform MRT instances. We next show
how to improve the approximation ratio for Min Sum Set Cover (including the
minimum reconnection time problem) for a broad range of instances by extending a
recent technique called kernel-based alpha-point rounding [4]. The idea is to consider
a solution to an LP relaxation to minimum sum set cover (MSSC) and transform it
to an fractional order by applying a specially chosen kernel. Randomized rounding
of the kernelized point then produces an approximation. Though the technique is
quite general, the choice of kernel and analysis to bound the approximation factor can
vary significantly from instance to instance. The kernels used in Bansal et al.’s work
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provide a 4-approximation for the general MSSC and a 16/9-approximation for the
Minimum Sum Vertex Cover problem, in which each edge has two vertices. In the
parlance of MRT, this is equivalent to each tree edge being covered by at most two
switches. These kernels, however, can only guarantee a 4-approximation for general
MRT instances.

In this work, we introduce novel kernel functions and new analysis that helps
improve the best-known approximation guarantees for general MSSC instances. Given
an MRT instance with every switch covering at most c edges of the underlying
operational radial network, we first convert such an instance to a minimum sum
set cover (MSSC) instance on a c-regular hypergraph. For these instances, our new
kernels interpolate the above mentioned approximation factors from 16/9 ≈ 1.778 to 4
dependent on c. Therefore, these kernels strictly improve the state-of-the-art factors
for MSSC instances.

By analogy to the zones of protection used in typical protection system designs
where three-zone impedance relays are often used [5, 24], we expect that tree edges
are usually covered by a small number of switches. Our approximation algorithm can
always be used in general, for any instance of MRT. To reflect the more general setting,
for the remainder of this section we use the hypergraph formulation of MSSC, defined
above.

The kernel-based α-point rounding method begins by solving an LP relaxation of
an integer program formulation of MSSC. The formulation we give differs from that
of [4], since we found this to be computationally more efficient, but otherwise the
formulation does not affect the algorithm4.

minimize
∑
t,e

t · b(e) · ue,t

subject to
∑
v∈e

xv,t − ue,t ≥ 0 ∀t time periods, e edges,∑
t

ue,t = 1 ∀e edges,∑
v

xv,t = 1 ∀t time periods,

all ue,t, xv,t ≥ 0 for vertices v, time t and edges e.

If the variables are binaries, then indices t ∈ [|V |] denote the index in the selection
order σ, so that σi = v if and only if xv,t = 1. Variables ue,t denote the time t at which
edge e is covered. Each edge e must be covered at some time t, and at each time t, at
most one vertex can be chosen.

Having solved the LP relaxation, which can be done in polynomial time, we apply
a kernel K(t, t′) to the solution x to obtain new weights z. Applying an α-point
randomized rounding, we obtain a provisional schedule of selection times τ for all
vertices v, then convert this list to our desired ordering σ by taking the vertices in
the order in which they appear in τ , breaking ties at random. Pseudocode for this
algorithm appears in Algorithm 5.2.

In the 2-uniform hypergraph case (Min Sum Vertex Cover), Bansal et al. showed

4Our LP is polynomial size and uses the same variables xv,t to denote whether vertex v is chosen
at time step t, as in Bansal et al. [4].
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Algorithm 5.2 Kernel α-point Rounding for MSSC [4]
1: Input: Hypergraph H = (V,E); kernel K(t, t′).
2: Output: An ordering σ1, . . . , σ|V | of V .
3: x← Optimal fractional solution for MRT.
4: zs,t ←

∑
t′ K(t, t′)xv,t′ ∀v ∈ V, 1 ≤ t ≤ |V |

5: for v ∈ V do
6: Sample αv ∼ [0, 1].
7: τv ← the earliest time t for which

∑
t′≤t zv,t′ ≥ αv

8: return an ordering σ of V , scheduling vertices according to τ and breaking ties at random.

that α-point rounding is a 16/9-approximation by using the kernel

4
t′(t′ + 1)

t(t+ 1)(t+ 2)
· 1[t ≥ t′].

Moreover, they show that the kernel 2/t · 1[t ≥ t′] gives a 4-approximation for general
MSSC, which is the best possible. We show that one can interpolate between these
two cases using a different family of kernels. For c ≥ 3, we show that α-point rounding
with the kernel

K(t, t′) =
2c

c+ 1

t′2/(c−1)∑t
i=1 i

2/(c−1)
· 1[t ≥ t′]

is a ( 2c
c+1 )2 approximation for Min Sum Set Cover on c-uniform hypergraphs. Note

that as c→∞, K(t, t′) converges to 2/t · 1[t ≥ t′], the kernel used by Bansal et al. for
the general case of MSSC. At c = 2, the kernels are similar, with the same constant
factor and a quadratic in t′ divided by a cubic in t, but the two polynomials use slightly
different discretizations of t′2 and t3. In addition, the second part of our analysis
requires that c− 1 ≥ 2.

The overall structure of the analysis is borrowed from Bansal et al.’s proof that
yields a 16/9 approximation for Min Sum Vertex Cover. However, there are additional
challenges due to the new kernel, particularly in the analysis of the gap in expected
cover time between the LP objective and the scheduled time τ . In this part, we
show that this gap is upper-bounded by the solution to a optimization problem which
achieves its maximum at the vertex of a simplex and thus can be written explicitly. In
particular, our proof of lower bounds on the total cumulative weight assigned to the
vertices of an edge e requires additional convex analysis, including two more general
inequalities (lemmas 5.3 and A.1).

Theorem 5.2. Let H = (V,E) be a c-uniform hypergraph, where c ≥ 3. Then
applying α-point rounding with kernel

K(t, t′) =
2c

c+ 1

t′2/(c−1)∑t
i=1 i

2/(c−1)
· 1[t ≥ t′]

is a polynomial-time ( 2c
c+1 )2 approximation for the Min Sum Set Cover problem on H.

Proof. As defined in the algorithm, let zs,t =
∑
t′ K(t, t′)xs,t′ be the weight

assigned for any vertex s and time period t after rounding. Fix a hyperedge e ∈ T .
Let e = {v1, . . . , vc}. Let ze,t =

∑c
i=1 zvi,t be the total weight of vertices covering e

at exactly time t, after applying the kernel K to the LP solution x, and let ze,<t =∑
t′<t ze,t′ . Let qt(e) = P[e is not scheduled before time t in τ ], and define pt(e) =

((1− ze,<t/c)c)+, which we will show is an upper bound on the former probability.
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Define the cost of covering e ∈ T in the LP (cx(e)), a bound on the time e is
scheduled in the tentative order τ (cz(e)), and the cost of covering e in the final order
σ (cσ(e)) as follows:

(i) LP cost: cx(e) =
∑
t(1−

∑
t′<t

∑c
i=1 xvi,t′)+, where (·)+ = max{0, ·}.

(ii) Upper bound on expected schedule time in τ : cz(e) =
∑
t pt(e).

(iii) Cost in σ: cσ(e) = E[min{t : σt ∈ {v1, . . . , vc}}].
Note that the LP objective is

∑
e∈T cx(e) and the objective value of the order-

ing returned by α-point rounding is
∑
e∈T cσ(e). Therefore, it suffices to show that

( 2c
c+1 )2cx(e) ≥ cσ(e). To do so, we separately show that ( 2c

c+1 )cx(e) ≥ cz(e) and
( 2c
c+1 )cz(e) ≥ cσ(e). We begin with the latter.

Part A. We would like to show first that ( 2c
c+1 )cz(e) ≥ cσ(e). The following

argument can be generalized to a variety of kernels for α-point rounding.5 We apply
it to our choice of kernel with β = 2c

c+1 .

Claim 1. For the kernel K(t′, t) = 2c
c+1

t′2/(c−1)∑t
i=1 i

2/(c−1) ·1[t ≥ t′],
∑
v zv,t ≤ 2c/(c+1) =

β.
We have that for any t,∑

v

zv,t =
∑
v

∑
t′

K(t, t′)xv,t =
∑
t′

K(t, t′)
∑
v

xv,t

≤
∑
t′

K(t, t′) =
2c

c+ 1

t∑
t′=1

t′2/(c−1)∑t
i=1 i

2/(c−1)

=
2c

c+ 1

∑t
t′=1 t

′2/(c−1)∑t
i=1 i

2/(c−1)
=

2c

c+ 1
.

Claim 2. The quantity pt(e) = ((1 − ze,<t/c)c)+ upper-bounds qt(e) and is 0
for sufficiently large t.

For all v, we have that∑
t

zv,t =
∑
t

∑
t′

K(t, t′)xv,t′

=
∑
t′

xv,t′
∑
t

K(t, t′)

=
∑
t′

xv,t′
∑
t≥t′

2c

c+ 1

t′2/(c−1)∑t
i=1 i

2/(c−1)

=
∑
t′

xv,t′
2c

c+ 1
t′2/(c−1)

∑
t≥t′

1∑t
i=1 i

2/(c−1)

>
∑
t′

xv,t′
2c

c+ 1
t′2/(c−1)

∑
t≥t′

1∫ t+1

0
i2/(c−1)di

=
∑
t′

xv,t′
2c

c+ 1
t′2/(c−1)

∑
t≥t′

c+ 1

c− 1
(t+ 1)−(c+1)/(c−1)

>
∑
t′

xv,t′
2c

c− 1
t′2/(c−1)

∫ ∞
t′+1

(t+ 1)−(c+1)/(c−1)dt

5In particular, claim 1 requires that for some β ≥ 1,
∑
t′ K(t, t′) ≤ β for all t; claim 2 requires

that for all t′ ≥ 1,
∑
tK(t, t′) ≥ 1; and claims 3, 4, and 5 do not otherwise depend on K.
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=
∑
t′

xv,t′
2c

c− 1
t′2/(c−1)

c− 1

2
(t′ + 1)−2/(c−1)

=
∑
t′

xv,t′ · c
(

t′

t′ + 1

)2/(c−1)

≥
∑
t′

xv,t′ · 3(1/2)1

>
∑
t′

xv,t′ · 1

= 1,

where the last equality follows since without loss of generality we may assume that
in the solution of the linear program for MSSC, each vertex v is selected with total
weight 1 across all time steps.

For all v, since
∑∞
t=1 zv,t > 1, for sufficiently large t we have that zv,<t =∑t−1

i=1 zv,i ≥ 1. Therefore, ze,<t =
∑c
i=1 zvi,<t ≥ c for sufficiently large t, and so

pt(e) = 0 for sufficiently large t.
Moreover, by the arithmetic mean-geometric mean inequality, we have that qt(e)

is bounded above by pt(e), since

qt(e) =

c∏
i=1

(1− zvi,<t) ≤

(
1−

c∑
i=1

zvi,<t/c

)c
+

= pt(e).

Claim 3. Upper-bound the expected cost of e in the final ordering σ: We
claim that

(5.1) E[cσ(e)] ≤
∑
t

(qt(e)− qt+1(e))(1 + β(t− 1)− ze,<t + (β − ze,t)/2).

Each term of this sum corresponds to the event that e is scheduled at exactly time t in
τ . This happens with probability qt(e)− qt+1(e). The quantity S(t) = 1 + β(t− 1)−
ze,<t + (β − ze,t)/2 is an upper bound on the expected number of vertices selected in
σ before and including the one that covers e. By Claim 1, in this quantity:

• 1 corresponds to the first vertex which covers e.
• β(t−1)−ze,<t is an upper bound on the expected number of vertices scheduled

in τ before e is covered. Indeed, that quantity is
∑
v 6∈e zv,<t ≤ β(t−1)−ze,<t.

• In expectation, at most β vertices are scheduled at exactly time t in τ , of
which (β − ze,t) do not cover e. In expectation, at most half of these vertices
will be scheduled in σ before e is covered since ties are broken at random,
yielding the bound of (β − ze,t)/2.

S(t) is non-decreasing with respect to t. For each t, replacing qt(e) with pt(e)
increases the right-hand side of Equation (5.1) by (p(t)− q(t))(S(t+ 1)− S(t)) > 0.
Therefore, since pt(e) is positive for a finite number of t (Claim 2), replacing all qt(e)
with the corresponding pt(e) can only increase the sum, and therefore

E[cσ(e)] ≤
∑
t

(pt(e)− pt+1(e))(1 + β(t− 1)− ze,<t + (β − ze,t)/2).

Note that E[cz(e)] =
∑
t pt(e) =

∑
t t(pt(e)− pt+1(e)), so E[cσ(e)] ≤ β E[cz(e)] is
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implied by each of the following inequalities. We prove the last of these in Claim 4.∑
t

(pt(e)− pt+1(e))(1 + β(t− 1)− ze,<t + (β − ze,t)/2) ≤ β
∑
t

t(pt(e)− pt+1(e))∑
t

(pt(e)− pt+1(e))(1− ze,<t − ze,t/2) ≤ β/2
∑
t

(pt(e)− pt+1(e))

(1− β/2)
∑
t

(pt(e)− pt+1(e)) ≤
∑
t

(pt(e)− pt+1(e))(ze,<t + ze,t/2)

1− β/2 ≤
∑
t

(pt(e)− pt+1(e))(ze,<t + ze,t/2)

1/2 ≤
∑
t

(ze,t/2)(pt(e) + pt+1(e))

1 ≤
∑
t

ze,t(pt(e) + pt+1(e)).

Claim 4. Lower-bound
∑
t ze,t(pt(e) + pt+1(e)).

Note that pt(e) is a convex function of ze,<t, as it is 0 when ze,<t ≥ c. Therefore,
for all a < b we have that (b− a)(pt(a) + pt(b)) ≥ 2

∫ b
a
pt(u) du. In particular, for all t

we have that

ze,t(pt(e) + pt+1(e)) = (ze,t+1 − ze,t)(pt(e) + pt+1(e)) ≥ 2

∫ ze,<t+1

ze,<t

pu(e) du,

and so ∑
t

ze,t(pt(e) + pt+1(e)) ≥ 2
∑
t

∫ ze,<t+1

ze,<t

pu(e) du

= 2

∫ c

0

(1− u/c)c du = 2c/(c+ 1) > 1.

Claim 5. Finally, we claim that (2c/(c+ 1))cz(e) ≥ cσ(e).
Claim 3 holds using β = 2c/(c+ 1) (Claim 1). Applying Claim 4, we have that

(2c/(c+ 1))cz(e) ≥ cσ(e) as desired.

Part B. We would now like to show that (2c/(c+ 1))cx(e) ≥ cz(e).
For all vertices v, we have that

zv,<t =
∑
t′<t

zv,t′ =
∑
t′<t

∑
t′′<t′

K(t′, t′′)xv,t′′ =
∑
t′′<t

xv,t′′
t−1∑
t′=t′′

K(t′, t′′).

To analyze this sum, we use the following lemma, which we prove in Appendix A.

Lemma 5.3. For t ∈ N and 0 < p ≤ 1,
∑t
i=1 i

p ≤ p
p+1

tp(t+1)p

(t+1)p−tp .

Examining the inner sum
∑t−1
q=t′′ K(q, t′′) more closely and applying Lemma 5.3

with p = 2/(c− 1), we have that

t−1∑
q′=t′′

K(q, t′′) =
2c

c+ 1
t′′2/(c−1)

t−1∑
q′=t′′

1∑q
i=1 i

2/(c−1)
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≥ 2c

c+ 1
t′′2/(c−1)

t−1∑
q′=t′′

c+ 1

2

(
1

q2/(c−1)
− 1

(q + 1)2/(c−1)

)

=
2c

c+ 1
t′′2/(c−1)

c+ 1

2

(
1

t′′2/(c−1)
− 1

t2/(c−1)

)
= c

(
1− t′′2/(c−1)

t2/(c−1)

)
.

Thus

zv,<t =
∑
t′′<t

xv,t′′
t−1∑
t′=t′′

K(t′, t′′) ≥
∑
t′′<t

c

(
1− t′′2/(c−1)

t2/(c−1)

)
xv,t′′ ,

and so

cz(e) =
∑
t

pt(e) =
∑
t

(
1−

c∑
i=1

zvi,<t/c

)c
+

≤
∑
t

(
1−

∑
t′<t

(
1− t′2/(c−1)

t2/(c−1)

) c∑
i=1

xvi,t′

)c
+

.

We now modify the LP solution x in order to bound cz(e). These modifications
do not decrease our lower bound cz(e) and do not increase the LP cost cx(e). First,
decrease x as necessary so that

∑c
i=1 xvi,<t =

∑
t′<t

∑c
i=1 xvi,t′ ≤ 1 for all t. Second,

for all t, replace each xvi,t by their average value at =
∑c
i=1 xvi,t/c. As cz(e) depends

only on the total
∑c
i=1 xvi,t and not the distribution of weight between these vertices,

this does not change cz(e). Then our goal is to show that

cz(e) ≤
∑
t

(
1−

∑
t′<t

(
1− t′2/(c−1)

t2/(c−1)

) c∑
i=1

xvi,t′

)c
+

≤ 2c

c+ 1

∑
t

(
1−

∑
t′<t

at′

)c
=

2c

c+ 1
cx(e),

for all nonnegative a with ||a||1 = 1.
Note that for each t, the corresponding summand (1 − d · a)c is positive and

a convex function of a, since the vector d given by (d)t′ = t′/t · 1[t′ < t] satisfies
||d||∞ ≤ 1. Therefore cz(e) is a convex function of a. Moreover, cx(e) is a linear
function of a. Therefore, by Fact 8 of [4], the quotient cz(e)/cx(e) is maximized at an
extreme point a of the positive simplex, i.e. for some u, au = 1 and au′ = 0 for u′ 6= u.
At this point a, we have that 2c/(c+ 1)cx(e) = 2c/(c+ 1)u and

cz(e) =
∑
t

(
1−

∑
t′<t

(
1− t′2/(c−1)

t2/(c−1)

)
at′

)c

=

u∑
t=1

(
1−

∑
t′<t

(
1− t′2/(c−1)

t2/(c−1)

)
at′

)c
+
∑
t>u

(
1−

∑
t′<t

(
1− t′2/(c−1)

t2/(c−1)

)
at′

)c

= u+
∑
t>u

(
1−

(
1− u2/(c−1)

t2/(c−1)

))c
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≤ u+

∫ ∞
u

(u/t)2c/(c−1)dt

= u+ lim
b→∞

(
−c− 1

c+ 1
u2c/(c−1)t−(c+1)/(c−1)

) ∣∣∣b
u

= u+
c− 1

c+ 1
u2c/(c−1)u−(c+1)/(c−1)

= u+
1

2c/(c− 1)− 1
u

= 2c/(c+ 1)u.

Therefore, cz(e) ≤ 2c/(c+ 1)cx(e) as desired.

We show that the approximation guarantee for c-uniform hypergraphs extend
to all hypergraphs H in which each edge contains at most c vertices. In the MRT
problem, this corresponds to networks in which each tree edge is covered by at most c
switches.

Theorem 5.4. Let G = (V,E) be the given network, let T ⊆ E be a spanning tree
on G with edge weights b(e) ∈ R+ for all e ∈ T . Let the set of switches be S = E \ T ,
and let c = maxe∈T |{s ∈ S : T − e + s is connected}| be the maximum coverage of
any edge in the tree. Then, if c ≥ 2, there is a polynomial-time ( 2c

c+1 )2-approximation
algorithm for the MRT problem on G.

Proof. For each edge e with fewer than c vertices, modify H by adding additional
dummy vertices belonging only to e, until e has exactly c vertices. Solve the LP on
the resulting c-uniform hypergraph H ′. Note that the objective value of the LP on
H ′ is the same as the objective value of the LP on the original hypergraph H, since
assigning all weight given to a dummy vertex at a given time to a non-dummy vertex
which covers the same edge cannot increase the LP objective.

Apply α-point rounding with kernel

K(t, t′) =

{
4 t′(t′+1)
t(t+1)(t+2) · 1[t ≥ t′], c = 2,
2c
c+1

t′2/(c−1)∑t
i=1 i

2/(c−1) · 1[t ≥ t′], c ≥ 3,

to the LP solution on H ′. By Theorem 5.2, or Theorem 22 of [4] if c = 2, the expected
objective value of the solution σ′ produced by α-point rounding is at most ( 2c

c+1 )2

times the LP objective.
Finally, convert σ′ into an ordering σ of the vertices of H as follows. For each

dummy vertex in σ′, exchange its place in the ordering with a non-dummy vertex later
in the ordering which covers the same edge. When no more such exchanges can be
made, remove the dummy vertex from the ordering. This procedure cannot increase
the time at which each edge e is covered, and hence cannot increase the objective
value. Therefore, the expected objective value of the resulting ordering σ of the vertex
set V is at most ( 2c

c+1 )2 times the LP objective, as desired.

We further show that this approximation ratio is tight with respect to the natural
LP relaxation. The following result generalizes Lemmas 26 and 27 of [4] on the
integrality gap for MSVC.

Theorem 5.5. Let c ≥ 2. Then the integrality gap of the LP for MSSC on
c-uniform hypergraphs is at least ( 2c

c+1 )2.

We include a detailed proof in Appendix B. The key idea of the proof is to construct
a c-uniform instance out of the union of disjoint complete c-uniform hypergraphs of
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varying sizes. These complete hypergraphs can be efficiently covered by a fractional
LP solution, which completely covers each complete hypergraph in turn, moving
from largest to smallest. In contrast, each complete hypergraph requires many time
periods to be covered by an optimal integral solution, which can be obtained by
the greedy algorithm. The greedy algorithm will select vertices from the largest
complete hypergraph until it has as many vertices remaining as the second-largest,
then alternately select vertices from both until they have as many vertices remaining
as the third-largest, etc. By constructing an instance from increasingly large numbers
of increasingly large complete c-uniform hypergraphs, the ratio between the objective
values of these two solutions approaches (2c/(c+ 1))2.

Note that this ratio matches the approximation guarantee of Theorem 5.2, and
approaches the general approximation ratio of 4 as c→∞.

We finally note that our results in this section are worst-case. Computationally, we
find that the greedy algorithm and the α-point rounding approaches are competitive
(the latter outperforms the former for some instances on synthetic networks). We
include computationally observed approximation factors in Section 7.3.

6. Balancing multiple reliability and energy loss metrics. Different choices
of the initial spanning tree T ⊆ E and reconnection order σ on S = E \ T can have
widely diverging performance on R-Time and SAIDI, as well as energy costs dependent
on the choice of the tree (see, for example, the system in Figure 1). Moreover, as
we discuss in Section 7.1, the choice of optimization metric will affect the expected
reconnection times of various types of buses (e.g. in residential or commercial area)
differently.

In this section, we give a local search method for choosing a spanning tree T ⊆ E,
including bookkeeping techniques to speed up this method. The idea of local search
for maximizing monotone submodular functions goes back to Calinescu et al. [9]. Our
objectives require us to minimize a product of sums of supermodular functions over
changing network topologies, thus making the analysis of the overall local search
process more difficult.

6.1. Branch exchange local search. Since we would like to simultaneously
minimize all the three objectives as best as possible to decrease loss of energy and
improve service reliability across all customers, our goal is to find a single choice
of T and σ that achieves strong performance on all three objectives. This becomes
a multi-objective optimization problem, which we model as a composite product
objective

SAIDI · R-Time · Energy =

∑
e∈T f(e)p(e)t(e)∑

v∈V w(v)
·
∑
e∈T p(e)t(e)∑
e∈T p(e)

·
∑
e∈T

r(e)f(e)2,

by using a well-known local search heuristic, called branch exchange, on spanning trees.
If the objective function is chosen to be linear in the weights b(e) of the edges,

for instance if it is a linear combination of the R-Time and SAIDI objectives, then it
is possible to find an optimal spanning tree and reconnection order using an integer
programming formulation (see Appendix C.) However, this program is large and solving
it is intractable for larger networks.

The branch exchange search, Algorithm 6.1, takes as input a network G with
initial spanning tree T0 and an objective function F (T, σ), which can be a combination
of multiple metrics on T (such as energy) and σ (such as R-Time and SAIDI). In
each iteration, the local search tests a random pair (e, s) ∈ T × S that is feasible (i.e.,
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Algorithm 6.1 Branch exchange local search
1: Input: Network G = (V,E); initial spanning tree T0 over V and order σ0 over S = E \ T ;

probabilities of failure p(e) for each edge e ∈ T0; vertex weights w(v) for each v ∈ V ; objective
function F (T, σ).

2: Output: A spanning tree T over V ; a reconnection order σ over E − T .
3: T ← T0, σ ← σ0, P ← T × (E − T )
4: while |P | > 1 do
5: (e, s) ∼ P
6: P ← P \ {(e, s)}
7: T ′ ← T − e+ s
8: Find a reconnection order σ′ using greedy or other algorithms for metrics used in F .
9: if F (T ′, σ′) < F (T, σ) then
10: T ← T ′, P ← T × (E − T )
11: return T, σ

T ′ = T − e+ s is still connected.) This step, exchanging tree and non-tree edges, gives
the algorithm its name. The algorithm then generates an order σ′ on the new set of
switches S+ e− s and compares the new objective value F (T ′, σ′) to the current value
F (T, σ). If the objective is improved, the branch exchange is accepted; otherwise,
another random pair (e, s) is sampled and this process is repeated. The algorithm
stops when no feasible branch exchange improves the objective value.

Note that the component of the composite product objective that depends on σ′,
SAIDI · R-Time, can no longer be written an instance of MRT. Therefore, we use a
version of the greedy algorithm to choose σ′, where at each time step i we choose the
switch s which achieves the greatest marginal increase in the product of the weights
p(e)f(e) and p(e) used for SAIDI and R-Time, respectively.

6.2. Efficient updates. Given a network G = (V,E), a substantial portion of
the running time of the branch exchange local search Algorithm 6.1 is updating the
connectivity information, i.e. for which pairs of switches s and tree edges e the tree
T − e+ s remains connected. During the local search procedure, T and S = E \ T will
evolve, requiring connectivity updates at each step. Indeed, updating this information,
which is input to the greedy algorithms for MRT, is significantly more computationally
expensive than executing those algorithms, computing energy costs, and comparing the
objective values to evaluate whether to accept a branch exchange. This information is
also useful in filtering and efficiently choosing (at random) feasible branch exchange
pairs (e, s).

In this section, we give a description of those pairs of tree edges and switches
whose connectivity data might change after a branch exchange update. Updating only
these pairs improves the computational efficiency of this step significantly: by a factor
of Ω(min{|E − T |, |V |/d}), where d is the circumference, or length of a longest cycle
in G.

Consider a branch exchange update on T ⊆ E. This update replaces T with
T ′ = T − e+ se, where e ∈ T , se ∈ E − T , and T ′ is connected. That is, it exchanges
the tree edge e for the switch se, yielding the new spanning tree T ′. To compute a
reconnection order on the new set of switches E−T ′, whether by the greedy algorithm
or an integer program, it is necessary to know the covering data of G and T ′, i.e. for
which pairs (f, s) of edges f ∈ T ′, s ∈ E − T ′ the graph T ′ − f + s is connected. If
we have already computed the covering data for G and T , to update this list for T ′ it
suffices to consider only those pairs (f, s) excluded by the following lemma.

Lemma 6.1. Let G = (V,E) be a graph and let T ⊆ E be a spanning tree of G.
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Let e ∈ T , se ∈ E − T be an edge and a switch such that T ′ = T − e+ se. Then, all
covering data for T also hold for the new spanning tree T ′, except the following pairs
(f, s):
(i) f is in the unique cycle Ce in T + se and the unique cycle Cs in T + s contains e.
(ii) f is in the unique cycle C ′e in T ′+ e and the unique cycle C ′s in T ′+ s contains se.
In other words, T − f + s is connected if and only if T ′ − f + s is connected, for all
other such pairs of edges (f, s).

To prove this result, we show a second lemma:

Lemma 6.2. Let G = (V,E) be a graph and let T ⊆ E be a spanning tree of G. Let
se, sf ∈ S = E − T and let Ce, Cf be the unique cycles in T + se, T + sf , respectively.
Let e ∈ Ce ∩ T and f ∈ Cf ∩ T . Then if e 6∈ Cf or f 6∈ Ce, T − e − f + se + sf is
connected.

Proof. By symmetry, it suffices to show the result when e 6∈ Cf .
By hypothesis, T − e+ se is a spanning tree on G. Let u and v be the two vertices

incident to f . Then T − e − f + se has two connected components, one containing
u and one containing v. Therefore, it suffices to show that there is a path between
u and v in T − e − f + se + sf . Indeed, Cf − f is such a path, since e 6∈ Cf . Thus
T − ef + se + sf is connected.

Proof of Lemma 6.1. Suppose neither of the conditions holds.
If T − f + s is connected, f ∈ Cs. Since condition (i) does not hold, either e 6∈ Cs

or f 6∈ Ce. Therefore, by Lemma 6.2, T − e− f + se + s = T ′ − f + s is connected.
If T ′−f +s is connected, f ∈ C ′s. Since condition (ii) does not hold, either f 6∈ C ′e

or se 6∈ C ′s. Therefore, by Lemma 6.2, T ′ − se − f + e+ s = T − f + s is connected.
Therefore T − f + s is connected if and only if T ′ − f + s is connected.

In general, computing the connectivity of T − f + s for all pairs (f, s) of edges
f ∈ T , s ∈ E − T takes O(|V |2|E − T |) time, for instance by performing a depth-first
search on each of the |V ||E − T | graphs T − f + s. Let d be the circumference (length
of longest cycle) of G. Then by updating connectivity only for those pairs excluded in
Lemma 6.1, the time needed to update connectivity for T ′ = T − e+ se is reduced to

O(|V |(|E − T |+ |V |+ |Ce||E − T |+ |C ′e||E − T |) = O(|V |(|V |+ d|E − T |))
= O(|V |2 + d|V ||E − T |).

Therefore, updating only pairs (f, s) as described in Lemma 6.1, we can save
an overall factor of Ω(min{|E − T |, |V |/d}) runtime in each step of the local search
procedure.

7. Computations. In this section, we test our methods for improving reconnec-
tion metrics on the Greensboro, NC urban-suburban synthetic network from the NREL
SMART-DS project. We describe methods for reducing the size of large instances,
improving tractability, and give experimental results using greedy and α-point rounding
methods for MRT and our local search methods.

7.1. Greensboro dataset. The NREL SMART-DS synthetic network covers
most of the Greensboro area, including residential, industrial, and other areas, and
contains 145052 buses [61]. The network also contains demand data for each bus,
which we treat as the vertex weights w(v), and lines between buses, whose coordinates
are also given. We take the failure probability p(e) of each line e to be proportional to
the straight-line distance between its endpoints, as in practice, failure rates tend to be
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Fig. 4. (left) Buses shown on a satellite image of Greensboro, NC. (right) Each color is a
different connected component in the graph where all the switches (black edges) are removed.

proportional to length [6]. The network contains 19 distinct connected components. Of
these, 18 correspond to radial distribution networks, each with its own substation, while
the other links the substations. We apply our methods to each of the 18 distribution
networks, treating them as entirely separate and independent networks. The left image
in Figure 4 shows the locations of the buses, plotted as red dots, on a satellite image
of Greensboro. On the right, each of the 19 components are plotted in a distinct color,
showing how they partition the city.

Components may have over 10000 vertices each. Before performing local search
or other computationally intensive procedures on a component, we may wish to pre-
process the network to simplify and reduce its size while retaining key information
about its structure. We employ two reduction steps in this pre-processing:

1. Let v be a vertex of degree 2 in T with neighbors u and w. Then v may be
removed. Add an edge between u and w, with half its weight w(v) added to
the demands of each of u and w.

2. Let v be a vertex of degree 1 in T with neighbor u. Then if w(v) is less than
some chosen threshold W , contract the edge uv in T and add w(v) to w(u).

These steps eliminate bridge vertices, as well as leaves corresponding to buses with
low weight. We give precise pseudocode in Algorithm 7.1. Repeatedly applying these
steps significantly reduces the size of the network. Using a threshold of W = 10 kW
on the Greensboro network, the resulting contracted trees have an average of 17% of
the the number of nodes of the original trees. These simplifications primarily consist
of contracting leaves corresponding to low-demand buses in residential areas, and do
not significantly change the network topology.

7.2. Adding switches. The synthetic network has only 108 switches (non-
spanning tree edges) across its 18 distribution networks. To increase coverage, we
introduce additional switches, aiming to maximize coverage while minimizing the
number and length of the added switches. To do so, we use a two-step procedure for
each contracted component.

First, we generate a large set R of candidate switches. We specify a maximum
length `. For each pair (u, v), we add the switch s between them if the distance
between u and v is at most ` and the set of edges covered by s is maximal with respect
to inclusion over all such edges.
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Algorithm 7.1 (Tree Contraction) Reducing tree size
1: Input: Spanning tree T over a vertex set V ; probabilities of failure p(e) for each edge e ∈ T ;

weights w(v) for each v ∈ V , weight threshold W .
2: Output: A tree T ′.
3: Initialize: T ′ = T .
4: while a vertex was deleted in the previous loop do
5: for v ∈ V do
6: if degT ′ (v) = 1 and w(v) < W then
7: Add w(v) to w(u), where u is v’s neighbor.
8: Add p(uv) · w(v)/w(u) to p(uw), where w is u’s parent. Delete v.
9: if degT ′ (v) = 2 then
10: Add w(v)/2 to w(u) and w(v), where u and w are v’s neighbors.
11: Add edge uw with failure probability p(uw) = p(uv) + p(vw). Delete v.
12: return T ′.

Once we have obtained a candidate set of switches s, each of length at most `
meters, we use a greedy algorithm to choose a set of switches S ⊆ R that obtains
good coverage while being as inexpensive as possible to construct. Define the exposure
of each edge e ∈ T to be x(e) = f(e)p(e). This quantity, the product of flow and
failure probability, corresponds to the coefficient of the reconnection time t(e) in the
definition of SAIDI. We then apply a greedy algorithm, which picks switches from R
one-by-one to create S. At each step, it picks the switch s that maximizes∑

e covered by s

2−|{t∈S:t covers e}|x(e),

so that each time an edge is covered its exposure is halved. The algorithm terminates
when each edge that can be covered has been covered.

Note that the additional switches in S are simply options. In practice, the coverage
gains from adding switches decrease quickly and would soon become outweighed by the
associated building and maintenance costs. For most components, excellent coverage
(over 90% of total exposure) can be achieved by setting ` = 1000m and adding at most
20 switches from S. Figure 5 shows how coverage improves as the number of switches
added increases, and how this depends on the choice of `.

Since they are not all needed to ensure good coverage, the set of switches S has
some redundancy, due to the halving of exposures in the greedy algorithm. We make
this choice in order to allow for greater flexibility when choosing a reconnection order
and reconfiguring the network.

7.3. Approximations for MRT. Having computed additional switch sets S for
each of the 18 component networks, using a maximum length of 1000m, we examine
reconnection orders for R-Time and SAIDI. To do so, we compare three different
approaches for solving MRT:

• greedy algorithm
• α-point rounding on linear program solution
• integer program

The first two of these are polynomial time, with greedy being extremely computationally
inexpensive (hence our use of it in our local search algorithms) and solving the linear
program taking the majority of the time for α-point rounding. On many of the
components, solving the integer program was of comparable speed to α-point rounding,
but on some it took much longer. Moreover, in our experiments on random synthetic
instances of c-uniform MSSC, which were not MRT instances, the integer program
took hours to solve even on instances with only a few hundred hyperedges.
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Fig. 5. Left: The coverage obtained by the switches added by the greedy algorithm for switch ad-
dition. For each component, we measure coverage by the fraction

∑
e covered by s∈S x(e)/

∑
e∈T x(e)

of the total exposure of the tree which is covered by S. For different maximum lengths ` =
250, 500, 750, 1000, 1250, 1500m, we compare the average of this fraction over all 18 com-
ponents. By adding a number of switches equal to an average of 0.18% of the total number of tree
edges in each component, we are able to cover 90% of SAIDI exposure. Right: Performance of
α-point rounding, the greedy algorithm, and an integer program for minimizing R-Time over the 18
components of the Greensboro network, compared to the linear program objective. For each metric,
the solid line denotes the average performance of the corresponding method over the 18 components,
while the dotted lines indicate the highest and lowest observed percentage differences.

Table 1
Graphical data and reconnection metrics for the 18 distribution networks. The switches (Sw.)

column contains the number of preexisting switches in the component, as well as the number added
by the modified greedy algorithm which selects switches from the candidate set with maximum length
1000m. For each metric, the percentage given is the relative increase in objective value (the starred
metric) from using the greedy algorithm to optimize for the other metric. R-Time is given in units of
meters · ε, where the length of each line e is proportional to its probability of failure p(e) [6]. SAIDI
is given in units of 1000 (meters · ε · kW).

# Vert. Sw. New SAIDI* R-Time SAIDI R-Time* SAIDI R-Time
gap gap

1 8529 4 47 39.0 120.67 41.35 114.1 6.01% 5.75%
2 8396 7 45 32.24 114.54 39.68 108.34 23.07% 5.72%
3 13010 7 49 43.18 110.52 43.43 94.72 0.56% 16.68%
4 9841 15 48 66.82 99.96 75.92 94.48 13.61% 5.8%
5 9319 1 46 27.25 113.82 30.64 97.07 12.45% 17.26%
6 6238 8 47 64.37 172.25 64.75 134.08 0.59% 28.47%
7 8538 3 45 47.27 130.91 55.32 113.02 17.01% 15.83%
8 8147 8 46 51.59 137.96 62.66 121.76 21.45% 13.3%
9 7286 8 42 87.6 120.33 167.51 96.07 91.21% 25.25%

10 5901 5 47 45.88 138.51 67.73 124.93 47.6% 10.87%
11 11031 8 47 52.87 113.93 57.87 99.52 9.44% 14.48%
12 11536 6 49 19.3 91.39 20.63 86.36 6.86% 5.83%
13 2427 3 43 67.45 187.84 86.09 156.84 27.63% 19.77%
14 6950 3 42 23.28 84.32 24.01 78.47 3.15% 7.45%
15 5914 4 46 47.2 160.84 56.68 149.98 20.08% 7.24%
16 7006 2 43 29.86 169.19 31.83 161.11 6.57% 5.01%
17 4008 2 46 24.99 212.38 31.41 199.7 25.69% 6.35%
18 10953 14 46 65.05 125.62 79.44 106.44 22.13% 18.02%

Table 1 gives statistics on the 18 distribution networks and the reconnection
metrics after the greedy algorithms are applied to minimize R-Time and SAIDI,
respectively. For each objective, we compute the values of both reconnection metrics.
Note that in both cases, the choice of objective matters substantially. The value
of SAIDI is on average more than 50% greater when greedy attempts to minimize
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R-Time than when its objective is SAIDI, and the value of R-Time is on average more
than 14% greater when SAIDI is the objective than when R-Time is the objective.

Figure 5 compares the performance of the three methods, expressed as a percentage
difference relative to the LP objective. For each method, the solid line shows the
average performance across the 18 components, and the dotted lines show the best
and worst performance over all components. For α-point rounding, 500 sets of
samples of rounding points αs were taken for each component and each value of c in
K(t, t′) = 2c/(c− 1)(t(t+ 1)2/(c−1)), and the sample yielding the best objective value
was chosen. Note that α-point rounding performs best for small values of c where
the kernel decays more aggressively, resulting in a solution that tends to be closer to
the LP solution, even when some edges in the tree are covered by many switches and
the applicable approximation guarantees do not hold. Overall, both polynomial-time
methods are competitive, usually within a few percentage points of the optimum, with
the greedy method sometimes obtaining the optimal solution and sometimes being
outperformed by α-point rounding.

7.4. Choice of optimization metric. Of the 145052 buses in the network, 63
run at a medium voltage, with a demand of at least 700 kW, while the rest run at
a low voltage and have a demand of at most 350 kW. The medium voltage buses
correspond to commercial and industrial areas, while most low voltage buses occur
in residential areas. Choosing a reconnection order in each component to minimize
SAIDI will tend to prioritize quickly restoring power after the failure of tree edges
that supply power to high-demand medium voltage buses, whereas minimizing MRT
will tend to prioritize quickly restoring power to the more numerous low voltage buses.
Indeed, optimizing for SAIDI produces an 8% longer expected reconnection time for
low voltage buses compared to optimizing for R-Time (expected reconnection time
for low voltage buses is 2.70 units, when optimizing for R-Time, and 2.91 units when
optimizing for SAIDI), but a 33% reduction in expected reconnection time for medium
voltage buses (expected reconnection time for medium voltage buses is 3.86 units when
optimizing for R-Time, and 2.57 units when optimizing for SAIDI).

7.5. Local search for multi-objective optimization. In the branch exchange
Algorithm 6.1 for local search, for any potential exchange of e ∈ T and s ∈ S, the
energy cost is immediately known. Computing SAIDI·R-Time requires specifying a
reconnection order σ. To do this efficiently, we again use a greedy approach, where at
each time step i we choose the switch s which achieves the greatest marginal increase∑

e∈U covered by s

w(e)p(e) ·
∑

e covered by {σ1,...,σi−1}

p(e)

+
∑

e∈U covered by s

p(e) ·
∑

e covered by {σ1,...,σi−1}

w(e)p(e)

in the objective SAIDI·R-Time, where U is the set of edges not covered by σ1, . . . , σi−1.
Figure 6 (left) shows the results of 25 different applications of local search to

each component of the Greensboro network, each stopping after 100 exchanges or
when a local optimum was reached. For each component, we take the local search run
achieving the best product, expressing the value of each objective (SAIDI, R-Time,
energy, and the product of all three) at each step as a ratio to the initial values on that
component. Finally, we plot the average of these ratios over time for all 18 components.

Since the possible branch exchanges are sampled randomly, the results of the
local search can vary across multiple runs. Figure 6 (right) shows the results of 50
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Fig. 6. R-Time, SAIDI, energy, and product objectives for Greensboro components during
the branch exchange local search. Objectives are plotted as a ratio of their value after each step to
the initial values. Left: Average best values for each objective, taken over 25 applications of the
branch exchange local search on all components. Right: Median values and percentiles (first to last
deciles) for each objective, taken over 50 applications of the branch exchange local search on the
component 9. Since the local search is on the “product”, even though the product decreases, one can
see an increase in each of the terms, as shown in the plot. In component 9, we see a significant
improvement in energy and smaller improvements in R-Time and SAIDI. This component highlights
the large improvements that can be made by local search, as well as how R-Time and SAIDI often
behave differently.

different applications of local search to component 9 of the Greensboro network, each
stopping after 90 exchanges. For each step, the median of each metric across all 50
runs is plotted in the band between the 10th and 90th percentile values. All three
objectives improved substantially during the local search, with energy losses decreasing
by 85%, SAIDI by 43%, R-Time by 17%, and their product by 93%. Similar plots
for local search on other components are included in Appendix D. Note that while
the performance of local search varies from component to component, there are no
obvious trends relating the features of the networks for various components to the
local search results.

8. Conclusion. We analyzed a decentralized self-healing approach for automati-
cally reconfiguring a distribution system into an operational radial network after a fault
occurs by creating an ordering in which switches automatically close upon detection
of a downstream fault. The choice of the switches’ waiting times, which requires
small intervals between each switch’s assigned times to avoid creating cycles in the
network, is equivalent to choosing a reconnection ordering. The choice of this ordering
significantly impacts the expected time to reconnect under normal disruptions and
thus affects reliability metrics such as SAIDI, which are the basis for regulator-imposed
financial incentives for performance.

We modeled SAIDI and expected reconnection time R-Time using a new problem
called Minimum Reconnection Time (MRT), which we showed is a special case of
the well-known minimum linear ordering problem. We showed that MRT is NP-hard
and generalized the kernel-based rounding approaches of Bansal et al. to interpolate
approximation guarantees from 9/4 to 4 dependent on the coverage of each tree
edge. Finally, using local search, we optimized multiple metrics simultaneously on the
NREL SMART-DS Greensboro dataset, thereby giving a proof of concept that branch
exchange might be implemented efficiently using proxies for MRT subproblems.

We demonstrated that the choice of reconnection metric during the optimization
process has a large impact on the behavior of the reconnection order. Optimizing
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for SAIDI resulted in a 33% reduction in reconnection time for the medium voltage
buses that occur in commercial and industrial areas, while optimizing for R-Time
reduced reconnection time in the more numerous but lower-demand low voltage buses.
Depending on the priorities of the network designers, incorporating both metrics
into the optimization process, as we do in our branch exchange local search, may be
appropriate.

Our work raises interesting theoretical and practical open questions. First, it
is open if the greedy algorithm for MRT attains a worst-case ratio better than 4-
factor, as our experiments suggest. Second, local search is currently well-understood
for maximization of submodular functions under matroid base constraints [9], but
our problem here requires analysis of local search for minimizing the product of
supermodular functions over the matroid base constraint. This seems to be a non-
trivial extension, and we leave this as an open question. Lastly, we hope that our
work provides a starting point for analyzing multiple simultaneous failures in the
distribution network, a situation that might be interesting for major disruptions in
practice.
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Appendix A. Proof of Lemma 5.3.
Lemma 5.3 For t ∈ N and 0 < p ≤ 1,

∑t
i=1 i

p ≤ p
p+1

tp(t+1)p

(t+1)p−tp .

Proof. We proceed by induction on t. The claim holds for t = 1 since 2p − 1 ≤ p
and therefore

t∑
i=1

ip = 1 ≤ p · 2p

(p+ 1)(2p − 1)
=

p

p+ 1

tp(t+ 1)p

(t+ 1)p − tp
.

Now suppose
∑t
i=1 i

p ≤ p
p+1

tp(t+1)p

(t+1)p−tp holds for some t ≥ 1. Then

t+1∑
i=1

ip ≤ p

p+ 1

tp(t+ 1)p

(t+ 1)p − tp
+ (t+ 1)p

=
p

p+ 1

tp(t+ 1)p + p+1
p (t+ 1)2p − p+1

p (t+ 1)ptp

(t+ 1)p − tp

=
p

p+ 1
(t+ 1)p

p+1
p (t+ 1)p − 1

p t
p

(t+ 1)p − tp

=
p

p+ 1
(t+ 1)p

(
(t+ 1)p

(t+ 1)p − tp
+

1

p

)
.(A.1)

The derivative of f(t) = (t+1)p

(t+1)p−tp is

f ′(t) = p
(t+ 1)ptp−1 − (t+ 1)p−1tp

((t+ 1)p − tp)2
= p

(t+ 1)ptp−1 − (t+ 1)p−1tp(
p
∫ t+1

t
xp−1dx

)2 .
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To bound the denominator of the derivative, we use the following lemma, due to
Pinelis [64].6

Lemma A.1. Let q ∈ (−1, 0], v ≥ 1, and u ∈ (0, v). Then∫ v

u

xqdx ≤ (v − u)uq/2vq/2.

Proof. Note that the desired inequality is homogenous of degree q + 1 in u and
v. Therefore, by rescaling u and v simultaneously, we may assume without loss of
generality that u = 1. Then the desired inequality is equivalent to

(q + 1)

(∫ v

u

xqdx− (v − u)uq/2vq/2
)

= vq+1 − 1− (q + 1)(v − 1)vq/2 ≤ 0.

We next show that for all q, the derivative with respect to v of the expression
g(v, q) = vq+1 − 1− (q + 1)(v − 1)vq/2,

d

dv
g(v, q) = (q + 1)vq − (q + 1)

(
vq/2 +

q

2
(v − 1)vq/2−1

)
=
q + 1

2
vq/2−1(2vq/2+1 − 2v − q(v − 1))

is negative.
As a function of q for any fixed v, hv(q) = 2vq/2+1 − 2v − q(v − 1) is convex.

Moreover, hv(−1) = −(
√
v − 1)2 < 0 and hv(0) = 0. Therefore hv is negative for all

q ∈ (−1, 0], and since q+1
2 vq/2−1 ≥ 0, the derivative d

dv g(v, q) is negative as desired.
For all q and v = 1, g(v, q) = 0, so since g(v, q) is decreasing in v, g(v, q) ≤ 0 for all q
and v. This proves the desired inequality.

For all u > 0, applying Lemma A.1 with q = p− 1 and v = u+ 1 yields

f ′(u) = p
(u+ 1)pup−1 − (u+ 1)p−1up(

p
∫ u+1

u
xp−1dx

)2
≥ p (u+ 1)pup−1 − (u+ 1)p−1up

p2(u+ 1)p−1up−1

=
(u+ 1)− u

p
=

1

p
.

Therefore f(t+ 1) ≥ f(t) + 1/p, and from Equation A.1 we have that

t+1∑
i=1

ip ≤ p

p+ 1
(t+ 1)p

(
(t+ 1)p

(t+ 1)p − tp
+

1

p

)
=

p

p+ 1
(t+ 1)p(f(t) + 1/p)

≤ p

p+ 1
(t+ 1)pf(t+ 1)

=
p

p+ 1

(t+ 1)p(t+ 2)p

(t+ 2)p − (t+ 1)p

which completes the induction.

6This lemma is similar to the bound of (v − u)(uq + vq)/2 given by the Hermite-Hadamard
inequality on convex functions, but with the arithmetic mean replaced by the geometric mean.
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Appendix B. Proof of Theorem 5.5.

Proof. For a suitable k = ω(1) and i = 1, . . . , k, let ni = Ni−α where α =
2/(c+1)+ε, with ε approaching 0 and N large enough that ni can be rounded without
affecting the solution. Let H be the hypergraph consisting of disjoint copies of the
complete c-uniform hypergraphs Ki on ni vertices.

We first upper-bound the LP cost of MSSC on H. Setting

xv,t =

{
1
ni
, if v ∈ Ki and

∑
j<i

nj

c < t ≤
∑
j≤i

nj

c

0, otherwise,

gives a feasible solution. In this solution, each edge e in Ki is completely covered by
time (n1 + · · ·+ ni)/c, and so the LP objective is at most

k∑
i=1

(
ni
c

)
n1 + · · ·+ ni

c
≤

k∑
i=1

N c

c!
i−cα

N

c

i∑
j=1

j−α

≤
k∑
i=1

N c+1

c!c
i−cα

i1−α

1− α

≤ N c+1

c!c(1− α)

k∑
i=1

i1−(c+1)α =
N c+1

c!c(1− α)

k∑
i=1

i−1−(c+1)ε.

As we make ε arbitrarily small,
∑k
i=1 i

−1−(c+1)ε ≤ 1+
∫∞
1
x1−eε dx = 1+1/(c+1)ε.

Thus, the objective of the LP solution is at most

N c+1

c!c(1− α)

k∑
i=1

i−1−(c+1)ε ≤ N c+1

c!c( c−1c+1 − ε)
1

(c+ 1)ε
.

This gives a bound of approximately N c+1/c!c(c − 1)ε for the LP solution for
sufficiently small ε and large k.

Next, we show that the greedy algorithm gives an optimum solution to MSSC on
H, and lower-bound the cost of this solution.

In any solution σ to MSSC, the jth vertex selected from Ki covers
(
ni−j+1

c

)
hyperedges that had not been covered before. Therefore, the order of vertices chosen
within each Ki does not matter, and permuting the order in which vertices from each
Ki are chosen relative to each other does not change the number of hyperedges those
vertices cover. Thus the greedy algorithm, which at each time step picks a vertex from
one of the Ki with the greatest number of unpicked vertices, produces an optimal
solution.

For any 1 ≤ i ≤ k−1, consider the i(ni−ni+1) time steps during which the greedy
algorithm selects vertices from K1, . . . ,Ki until ni+1 vertices remain in each. During
each of these time steps, there are

(
ni+1

c

)
uncovered edges in each of K1, . . . ,Ki, and(

nj

c

)
uncovered edges in each Kj for j ≥ i+ 1. Therefore, the objective cost is at least

k−1∑
i=1

i(ni − ni+1)

i · (ni+1

c

)
+

k∑
j=i+1

(
nj
c

) .
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Since
(
ni

c

)
≈ nci/c!, we have that

i ·
(
ni+1

c

)
+

k∑
j=i+1

(
nj
c

)
≈ N c

c!

(
i1−cα +

∫ k

i

j−cα dj

)

=
N c

c!

(
i1−cα +

1

cα− 1
(i1−cα − k1−cα)

)
.

Using this and ni − ni+1 ≈ Nαi−1−α, the objective is at least

N c+1

c!

k∑
i=1

i · αi−1−α
(

cα

cα− 1
i1−cα +

1

cα− 1

)

=
N c+1

c!

(
k∑
i=1

cα2

cα− 1
i1−(c+1)α +

αk1−cα
∑k
i=1 i

−α

cα− 1

)
.

In this expression, as k increases and ε decreases, the first term goes to

N c+1

(c− 1)!

α2

cα− 1

1

(c+ 1)α− 2
≈ N c+1

(c− 1)!

22

(c+ 1)2 c−1c+1

1

(c+ 1)ε
=

4N c+1

(c− 1)!(c− 1)ε(c+ 1)2
.

Combining the two objective bounds yields the desired integrality gap of

4Nc+1

(c−1)!(c−1)ε(c+1)2

Nc+1

c!c(c−1)ε
=

(
2c

c+ 1

)2

.

Appendix C. Integer programming formulations. As above, let b(e) be
the weights used in the objective for MRT. Then the problem of finding an optimum
spanning tree T ⊆ E and switch reconnection order σ on S = E \ T can be formulated
as an integer program:

minimize
∑
e,t

t · b(e)xet

subject to
∑
e⊂C

se ≤ |C| − 1, ∀ cuts C,∑
e

se = n− 1,∑
t

xet = se, ∀e,

xet ≤
∑
f

ceft ∀e, t,

ceft ≤ yft, ∀e, f, t,
yet ≤ 1− se, ∀e, t,∑
e

yet = 1, ∀t,

ceft ≤
∑

g across C

sg − se, ∀e, f, t, cuts C crossed by e but not f,
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w(e) ≥ |C|

1−
∑

f crossing C

sf − se

 , ∀e, cuts C not containing the source vertex

all variables binary except w(e) ≥ 0

This exponential-size formulation is intractable for large graphs, so we adapt
the O(mn)-size formulation due to Martin [52]. This yields an O(mn2(m− n))-size
formulation. Note that if the graph is planar or otherwise low genus, even smaller
formulations for the spanning tree polytope and hence for this IP exist.

minimize
∑
e,t

t · b(e)xet

subject to
∑
e

se = n− 1,

se = ak,i,j + ak,j,i, ∀e ∈ E, 1 ≤ k ≤ n,∑
j

ak,i,j ≤ 1, ∀1 ≤ i, k ≤ n,

ak,k,j = 0, ∀1 ≤ j, k ≤ n,∑
t

xet = se, ∀e,

xet ≤
∑
f

ceft ∀e, t,

ceft ≤ yft, ∀e, f, t,
yet ≤ 1− se, ∀e, t,∑
e

yet = 1, ∀t,

ceft ≤ ref , ∀e, f, t,
ref ≤ 1− se, ∀e, f∑
g

se,f,g = n− 1, ∀e, f

se,f,e = 0, ∀e, f
se,f,f = 0, ∀e, f
se,f,g = be,f,k,i,j + be,f,k,j,i, ∀e, f ∈ E, g ∈ E \ {e}, 1 ≤ k ≤ n,∑
j

be,f,k,i,j ≤ 1 + n(1− ref ), ∀e, f,∈ E, 1 ≤ i, k ≤ n,

be,f,k,k,j = 0, ∀e, f ∈ E, 1 ≤ j, k ≤ n,
all variables binary

Here ref denotes that if edge e is deleted and switch f is closed, the graph will
remain connected and be,f,k,i,j denotes the orientation of the edge between i and j
in the graph rooted at vertex k where edge e is deleted and switch f is closed. Here
is one IP which encodes the MRT problem with constant failure probabilities and a
fixed network. Here f ∈ S and each switch f covers an associated set of tree edges Cf .
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Indices t ∈ [|S|] denote waiting times (with ε = 1) or reconnection order.

Appendix D. Plots for local search on other Greensboro components.

Fig. 7. R-Time, SAIDI, energy, and product objectives for Greensboro components 1-6 during
the branch exchange local search. Objectives are plotted as a ratio of their value after each step to
the initial values, and each plot shows the median values and percentiles (first to last deciles) for
each objective, taken over 50 applications of the branch exchange local search on the component.
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Fig. 8. R-Time, SAIDI, energy, and product objectives for Greensboro components 7-12 during
the branch exchange local search. Objectives are plotted as a ratio of their value after each step to
the initial values, and each plot shows the median values and percentiles (first to last deciles) for
each objective, taken over 50 applications of the branch exchange local search on the component.
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Fig. 9. R-Time, SAIDI, energy, and product objectives for Greensboro components 13-18 during
the branch exchange local search. Objectives are plotted as a ratio of their value after each step to
the initial values, and each plot shows the median values and percentiles (first to last deciles) for
each objective, taken over 50 applications of the branch exchange local search on the component.
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