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Co-Optimization of Damage Assessment and
Restoration: A Resilience-Driven Dynamic Crew

Allocation for Power Distribution Systems
Ali Jalilian, Babak Taheri, and Daniel K. Molzahn

Abstract—This study introduces a mixed-integer linear pro-
gramming (MILP) model, effectively co-optimizing patrolling,
damage assessment, fault isolation, repair, and load re-
energization processes. The model is designed to solve a vital
operational conundrum: deciding between further network ex-
ploration to obtain more comprehensive data or addressing the
repair of already identified faults. As information on the fault
location and repair timelines becomes available, the model allows
for dynamic adaptation of crew dispatch decisions. In addition,
this study proposes a conservative power flow constraint set that
considers two network loading scenarios within the final network
configuration. This approach results in the determination of
an upper and a lower bound for node voltage levels and an
upper bound for power line flows. To underscore the practicality
and scalability of the proposed model, we have demonstrated
its application using IEEE 123-node and 8500-node test
systems, where it delivered promising results.

Index Terms—Damage assessment, fault management, field
crew, resilience, and service restoration.

NOMENCLATURE
Sets and Indexes:

B, b Set and index of buses
L, ℓ Set and index of sections (lines)
Z, z Set and index of electrical zones
Q, q Set and index of unpatrolled zones
R, r Set and index of RCSs

M,m Set and index for manual switches (MS)
F , f Set and index of faults
C, c Set and index of available crews
E , e Set and index of equipment in patrol zones
P, p Set and index of all locations in crew routing
T , t Set and index of time steps

Subsets:
M\Rz,z′ Set of MSs \ RCSs connecting z and z′

Fz\Bz Set of faults \ buses in z
PC Set of crews’ initial locations

PF\PM Set of faults \ MSs’ locations
PM′ Duplicate set of MSs’ location for 2nd switching
FQ Set of hypothetical faults in unpatrolled zones

Parameters:
T repair Required repair time for faults
T patrol Estimated patrol time of patrol zones
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ρe Failure probability of equipment
Cout

z Cost coefficient commensurate to ENS
C tra Cost coefficient commensurate to crews’ travels
∆p,p′ Travel time between two points for crews
BT A large out-of-scope amount of time
Pz Zonal power consumption
M Big-enough constant positive value

αsub
b Binary value showing if a bus is a substation

βMSI
m Binary value showing if an MS is initially closed
Db Active and reactive demand

Binary Variables:
βp,p′ = 1 if a path from p to p′ is traversed by a crew
βV
p Indicates if a crew visits p

βMSP
m Indicates if a crew opens an MS during a patrol
βzz
z′,z Indicates if z is energized by z′

βMSF
m Indicates if an MS is finally closed
βRCS
r Indicates if an RCS is finally closed
βline
ℓ Indicates if a line is finally connected

αroot
z Indicates if there is a substation or a master DG

αDG
b Indicates if there is a master DG in b

βzt
z,t Indicates if a zone is energized in a time step

ζz,z′ Indicates if zone z is energized earlier than z′

Continuous Variables:
T out
z Outage time
τ cp Finish time of an action in p by crews

T op
p Operation time for a remedial action in p

Ub Voltage magnitude of buses
φℓ\Gb Active and reactive line flow \ power generation

I. INTRODUCTION

CRITICAL infrastructures (CIs), such as electricity, are
integral to the functioning of societies. These backbones

of economy, security, and health are increasingly susceptible to
high-impact, low-probability (HILP) events, including natural
disasters and adverse weather conditions [1], [2]. A disruption
in these infrastructures, especially in power distribution sys-
tems, not only affects other essential CIs, like transportation,
communication, and water supply, but also has considerable
societal consequences. With climate change intensifying the
frequency and severity of such extreme events, the resilience
of power systems, i.e., their ability to prepare for, withstand,
and recover swiftly from disruptive events, is gaining increased
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attention. Traditional power systems designed to endure low-
impact high-probability (LIHP) events are being challenged to
evolve and handle these significant HILP incidents. The need
for resilience is particularly critical at the distribution level,
where 80 – 90% of power outages occur [3], thus justifying
the recent surge in related research.

This paper addresses this critical issue, focusing on strate-
gies to expedite power restoration following disruptions at
the distribution level. It offers a comprehensive model that
takes into account fault isolation, damage assessment, network
reconfiguration, and microgrid formation. Our model aims to
bridge gaps in existing literature, particularly in dealing with
these complex, interrelated processes. Therefore, our literature
review touches upon five pivotal facets in the realm of power
system restoration: micro-grid formation, network reconfig-
uration, fault isolation, damage assessment, and addressing
technical constraints.

Microgrid Formation: As access to the upstream network is
often impaired during fault conditions, deploying a multitude
of distributed energy sources at the distribution network level
in a microgrid can improve resilience. Studies [4], [5] have
emphasized the importance of such resources in the form of
distributed generators (DGs) or mobile energy units [6]. While
a substantial amount of research has focused on the energy
sufficiency, economic viability, and technical limitations of
microgrids, others have shed light on microgrid formation
through network reconfiguration tactics [7], [8].

Network Reconfiguration: A multi-stage load restoration
process inherently calls for iterative network reconfigurations,
utilizing sectionalizing switches at each stage. These switches
could be remote-controlled or manual. The act of manual
switching necessitates field crew presence, which could extend
the switching time due to variables such as geographical at-
tributes, traffic conditions, and crew availability. Various stud-
ies have dissected the implications of the remote-controlled
switches’ (RCS) switching actions in distribution networks
[9], [10]. Manual switches (MSs), i.e. manual sectionalizers,
cut-out fuses, or even circuit breakers without remote control
capability, also provide pragmatic and efficient load restoration
capabilities. Also, due to the possibility of damage to the cyber
network, especially in the event of severe fault conditions [11],
remotely unreachable RCSs could still be engaged manually to
help achieve a faster restoration. However, few references have
incorporated the optimal performance of MSs in their proposed
restoration processes. In [12]–[14], operation crews for closing
MSs were considered. These papers assume that all of the MSs
have been opened in the fault isolation phase. This assumption
overlooks the importance of optimal fault isolation.

Fault Isolation: Establishing optimal primary fault isolation
paves the way for accelerated load pick-up during the restora-
tion process. However, this crucial step has been overlooked
in several studies [4]–[14]. On the other hand, other strategies,
such as the minimum-area fault isolation approach proposed in
[15], target the isolation of faults through the strategic opening
of the nearest switches. A similar approach in [16] performs
fault isolation by disconnecting the predefined set of upstream
and downstream sectionalizers. The fault isolation scheme in
[17] enforces a zero voltage for terminal buses of a faulty line.

Then optimal RCS switching ceases zero-voltage propagation.
Reference [18] considers fault isolation optimization by de-
termining MSs’ optimal open/close operation. Therefore, two-
time manual switching is incorporated into their crew dispatch.

Damage Assessment: A recurrent assumption in outage
management research stipulates the known parameters of
damage locations and repair times [19]–[21]. However, such
an assumption has been challenged in some references [17].
For instance, [5] proposed a dynamic crew grouping dispatch
algorithm to overcome the unpredictability of repair workloads
while still assuming awareness of the faults’ locations from an
already finished assessment phase. In the recommended coor-
dinated damage assessment with service restoration scheme
in [18], the repair times and locations of faults are dynami-
cally prepared by assessors and fed to the restoration model.
However, the assessment process itself is not optimized. In
[22], fault location, fault isolation, and service restoration
for healthy parts of the network are coordinated. However,
the proposed method does not involve infrastructure repair.
Damage assessment provides two important parameters: fault
locations and fault repair times. The unavailability of such
information imposes challenges when optimizing the fault
management process since the data collection process is time
consuming and can interfere with other field corrective actions
(switching and repair). Therefore, an integrated framework
incorporating various tasks of fault location and damage
assessment via feeder patrolling, fault repair, reconfiguration,
and load recovery is of paramount importance.

Technical Constraints: Some studies have employed fixed-
time steps with a single set of power flow equations for each
step [15], [17]. However, this methodology can compromise
the solution’s optimality and escalate computational complex-
ity [12]. Interestingly, [23] posits that checking power flow
solely in a network’s final configuration might be sufficient
to ensure the safe operation of preceding configurations. This
claim, however, comes with caveats. For instance, even though
distributed generators (DGs) are factored into the model, zones
with DGs must not connect either to one another or to a
substation. To avoid explicit power flow models at every junc-
ture, the authors in [23] introduce specific checkpoints. These
checkpoints accommodate configurations that feature multiple
connected zones with DGs or a substation. Notably, the count
of these checkpoints correlates with network elements, such
as DGs or capacitors, that can potentially raise voltage levels.

Despite the fact that numerous research efforts have tackled
different aspects of power service restoration, none has intro-
duced an efficient model that optimizes the process holistically.
Given the interdependency of different restoration stages,
strategies, and limitations, there is an urgent need for a com-
prehensive model that is both inclusive and computationally
efficient enough for real-world networks. We propose a model
that addresses these shortcomings, integrating different stages
into a unified restoration package using a state-of-the-art
approach. The main contributions of our model include:

• Streamlining the entire restoration process, our model
integrates everything from damage assessment and fault
isolation to repair and network re-energization, thereby
avoiding decision-making conflicts in resource allocation
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for different outage management tasks. We emphasize
that, to the best of our knowledge, none of the existing
literature holistically considers these aspects when opti-
mizing restoration processes.

• Uncovering non-anticipative information about fault loca-
tions and repair times, our model incorporates an ongoing
damage assessment. A dynamic proactive-responsive re-
optimization framework is deployed for this process.

• Improving the description of manual switching through-
out the entire process, our methodology takes into account
both during-patrol and after-patrol open/close actions.

• Incorporating two network loading conditions into con-
ventional power flow constraints at the network’s fi-
nal configuration, our model establishes boundaries for
nodes’ voltage levels and limits for line power flows.
This results in safe operations across all stages, and
importantly, the proposed constraints do not necessitate
the segregation of zones with power sources, such as
substations or DGs.

• Demonstrating the effectiveness and scalability of our
proposed algorithm through numerical experiments, we
present results from medium- and large-scale test cases.

This paper is structured as follows: Section II explains
our proposed methodology. Section III shows our numerical
results. Section IV offers conclusions and future directions.

II. PROPOSED METHODOLOGY

Our methodology devises an intelligent decision-making
framework tailored for the complex process of restoring a
distribution network after severe weather-induced equipment
failures. By balancing system repair tasks, switching opera-
tions, and damage assessments, this methodology navigates
the challenges efficiently.
A. Decision Framework

1) Event Description and Network Blackout: Severe
weather is notorious for instigating a chain of equipment
failures within distribution networks. Protective devices, sens-
ing these faults, trigger automatic shutdown protocols in
the preliminary phase of such an event. The situation often
exacerbates as the event unfolds, causing more damage, and
inducing more faults. In this condition, multiple equipment
failures, communication outages, or even the power outage
itself may limit situational awareness about the network. Field
crews can only be deployed once safe operational conditions
are restored. As a result, during this stage, comprehensive
information regarding the damage—such as the number and
location of faults, extent of the damage, and anticipated repair
duration—is typically scarce.

2) Damage Assessment and Patrol Tasks: In light of the
transportation network’s characteristics, the distribution feeder
is divided into several patrolling areas for damage evaluation
and data gathering. Here, we assume that the number and
extent of patrol zones are predetermined. Taking into account
the event’s severity and the equipment’s fragility curves,
we determine the likelihood of equipment failure [24]. To
each area, we assign a hypothetical fault with a repair time
equivalent to the sum of the patrolling duration for that area

Figure 1. Task distribution for repair crews

and the expected repair time. This repair time is deduced from
equation (1):

T repair
q = T patrol

q +
∑
e∈Eq

T repair
e ρe. (1)

Here, (1) computes the repair time T repair
q for the hypothetical

fault in patrolling area q. This time is the sum of the patrol
time T patrol

q and the product of each equipment’s repair time
T repair
e and failure probability ρe within the area Eq .
3) Task Assignment: One of the significant challenges

during the restoration process is to determine the optimal
allocation of various tasks—such as switching operations and
repair of actual and hypothetical (patrolling) faults—to the
repair crews. The distribution of tasks among repair crews is
depicted in Fig. 1.

We consider three types of manual switching actions:

1) During-patrol MS opening (optimal primary fault isola-
tion).

2) Deploying a crew for the first switching action of an MS
(open/close).

3) Deploying a crew for the second switching action of an
MS (close).

The first switching type is described within a patrol action,
forming a single patrol-and-switch task, while the second
and third switching types are single-task duties. Consequently,
under our proposed methodology, normally closed MSs can be
opened either during patrol or by directly deploying a crew.
If an MS is opened, it can be closed via the second switching
action. Conversely, normally open switches can only be closed
through a first-time direct switching operation. To manage the
modeling complexity and computational challenges, in this
paper, we do not operate each MS more than two times.
This modeling choice prevents reconfiguration of the energized
parts of the network in each set of decisions.

4) Chronological Description: As highlighted in Sec-
tion II-B, we dispatch our crews based on specific rout-
ing decisions. Keeping these decisions updated is of utmost
importance. To address this, we incorporate proactive re-
optimization, scheduled either at set times or regular intervals.
Additionally, we use responsive re-optimization, which is
initiated after an area has been patrolled or when a new fault
comes to light and has been thoroughly evaluated. For the
purposes of our research, we focus on the timings associated
with crew actions and the energization of zones. These have
been integrated as decision variables within our optimization
framework. Consequently, our proposed methodology operates
by responding to variable time events. We define a set of
events, represented by T , which captures the order of zone en-
ergizations and assigns a unique set of power flow constraints
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for each instance of t ∈ T . Instead of continually checking,
we also consider an alternative approach that verifies power
flow only when the network reaches its final configuration,
i.e., no further zones are left to be restored. This approach
eliminates the need to explicitly model power flow across the
expansive set of events, T , thus greatly improving computa-
tional efficiency. Fig. 2 provides a chronological overview of
our model.

Figure 2. Chronological description of the model

B. Mathematical Formulation

The primary goal of a restoration plan is to minimize the
overall cost incurred from an event. A significant portion of
this cost accrues from electric service disruptions. There are
also costs associated with the restoration process, such as
crew mobilization expenses, which are comparatively minimal
but essential to consider to prevent the dispatch of remote
crews for certain tasks. The proposed model, grounded in this
concept, aims to minimize the total cost:

Cost =
∑
z∈Z

T out
z PzC

out
z +

∑
p,p′∈P

βp,p′∆p,p′C tra , (2)

where Z represents the set of all electrical zones, with z
as an index. The outage duration is represented by T out

z ,
Pz is the power consumption, and Cout

z is a cost coefficient
corresponding to the energy not supplied. The first term
represents the customers’ damage costs, which is a function
of these variables. In the second term, P denotes the set of
all locations within the crew routing, with a pair of indexes
(p, p′). The binary variable βp,p′ indicates whether a crew
traverses a path from location p to location p′, ∆p,p′ represents
the travel time between these locations, and C tra is a cost
coefficient corresponding to the crews’ travel. The second term
encapsulates the cost associated with crew teams and their
vehicles, accounting for the distance covered, the duration
of travel, and the related cost coefficient. The summation is
performed over all location pairs.

The optimization problem we address is bound by multiple
technical and operational constraints. Fig. 3 illustrates the
primary characteristics of five distinct constraint classes and
the interrelationships among them. Notably, action sequences,
which are pivotal decision variables in crew routing con-
straints, have a significant influence over various action tim-
ings. This is because an action’s completion time is contingent
on its placement within a crew’s list of duties. Furthermore,
these sequences are crucial for network reconfiguration, as
they dictate decisions regarding the switching of MSs. Each
class of constraints will be detailed in the ensuing sections.

Figure 3. High-level description of the constraints

1) Crew Routing: The process of optimally allocating re-
pair crews for manual switching and fault repairs is a routing
problem. As previously discussed, to maintain an accurate de-
scription of the restoration process without assuming the MSs
are open at the start of the switching process, it is necessary to
consider the possibility of two switching operations for each
MS. With this in mind, the crew routing constraints are:∑

p′∈P
βp,p′ ≤ βV

p ; ∀p ∈ P (3a)∑
p′∈P

βp′,p = βV
p ; ∀p ∈ P\PC (3b)

βV
p′ ≤ βMSP

m + βV
p ≤ 1;

∀m ≡ p ≡ p′,m ∈ M, p ∈ PM, p′ ∈ PM′ (3c)
βp′,p = 0; ∀ (p ∈ PC , p

′ ∈ P) or (p = p′ ∈ P) . (3d)

In these equations, PC denotes the set of crews’ initial
locations, and M represents all MSs. The sets of locations
for the first and second switch operations of MSs are given by
PM and PM′ , respectively. The expression p ≡ p′ signifies
that p and p′ are pointing to the same location but p ∈ PM
and p′ ∈ PM′ , i.e., p refers to a manual switching operation
occurring for the first time, while p′ refers to a manual switch-
ing operation of the same switch occurring for the second
time. The binary variable βV

p indicates whether a crew visits
location p, and βMSP

m represents whether a crew operates MS
m during a patrol. Equation (3a) states that a crew can only
be dispatched from a location if it has been visited. When a
remedial action, such as repair or switching, is implemented at
a location, (3b) ensures a crew is dispatched to that location.
It is important to note that the visiting variable

(
βV
p

)
is set to

1 for the crews’ initial locations and fault locations since the
restoration horizon includes repairing all faults and energizing
all loads. Furthermore, (3c) allows a second switching of an
MS if a crew has been directly dispatched to an MS for
the first switching or the MS was opened during a patrol
operation. Finally, (3d) restricts the route selection variable
βp′,p. Specifically, this variable is set to zero when: (i) the
route destination is the crews’ initial locations, given that all
manual operation locations are defined outside PC ; (ii) the
starting and destination locations are identical. It is important
to note that the last condition does not necessarily imply that
a crew must move after every re-optimization. Consider a
scenario where a crew is currently engaged in a task, such
as repairing a fault, when a decision to re-optimize is made.
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In this situation, the optimization model considers the current
location of the crew in the initial crew locations set PC and
the location of the fault, which is the same location as the
current location of the crew, in the fault locations set PF .
Since the travel time ∆p,p′ from the crew to the fault is zero,
the optimization model can determine whether the crew should
continue working on the current fault without delay or move
to another location.

2) Action Times: Based on the movement paths of the
crews, as defined in the previous constraints, and the timing
for each repair or switching operation, we aim to determine
the times that MS switching, fault repair, and zone patrol are
completed. Generally, for a selected path, the time to perform
a new action is calculated as the sum of the time taken to
perform the previous action, the time for the crew to move to
the new location, and the operation time for the new action:

τ cp ≥ τ cp′ +∆p′,p + T op
p +M (βp′,p − 1) ; ∀p, p′ ∈ P (4a)

τ cp ≥ τ cp′ +M
(
βMSP
m − 1

)
;

∀m ≡ p,m ∈ M, p ∈ PM, p′ ∈ PFQ (4b)

τ cp ≥ BT
(
1− βV

p

)
; ∀p ∈ PM′ (4c)

τ cp ≥ BT
(
1− βV

p − βMSP
m

)
;

∀m ≡ p,m ∈ M, p ∈ PM (4d)
τ cp′ ≥ τ cp ; ∀p ≡ p′, p ∈ PM, p′ ∈ PM′ . (4e)

In these equations, PFQ denotes the set of locations of
hypothetical faults, τ cp is the time when a crew completes
its operations at location p, ∆p′,p is the travel time between
locations p′ and p, T op

p is the operation time at location p,
M is a large constant, and BT is a large out-of-scope time
value. Equation (4a) gives the earliest time τ cp at which a
crew can finish its operations at the new location p, (4b)
stipulates that the time for an MS opening through patrolling
must be greater than the patrol time. If an MS is not switched
for the first or second time, a large out-of-scope value is
assigned to the switching time in (4c) and (4d). The second
switching time for an MS exceeding BT implies that the MS
status remains unchanged, retaining the status after the first
switching. Similarly, the first switching time for an MS greater
than BT indicates that the second switching time will also
exceed BT according to (4e). This signifies that the MS status
remains the same as its initial status. As per (4e), the second
manual switching of an MS must occur after the first one.

3) Network Reconfiguration Constraints: The next set of
constraints relates to the energization paths for each load or
zone and governs whether parts of the network operate as
isolated islands or remain connected to the upstream network:

αroot
z =

∑
b∈Bz

{
αsub
b + αDG

b

}
; ∀z ∈ Z (5a)

αroot
z +

∑
z′∈Z

βzz
z′,z = 1; ∀z ∈ Z (5b)

βzz
z′,z + βzz

z,z′ ≤ 1; ∀z, z′ ∈ Z (5c)

βzz
z′,z + βzz

z,z′ =
∑

r∈Rz,z′

βRCS
r +

∑
m∈Mz,z′

βMSF
m ;∀z, z′ ∈ Z

(5d)

βMSF
m =

{
βMSI
m

(
1− βV

p − βMSP
m + βV

p′

)
+
(
1− βMSI

m

) (
βV
p − βV

p′

) }
;

∀m ≡ p ≡ p′,m ∈ M, p ∈ PM, p′ ∈ PM′ (5e)

βline
ℓ =


βRCS
r ; ℓ = LRCS

r

βMSF
m ; ℓ = LMS

m

1; otherwise
∀ℓ ∈ L,m ∈ M, r ∈ R, (5f)

where αroot
z is a binary variable indicating the power supply

reference zone; αsub
b is a binary value showing if bus b is

a substation; αDG
b is a binary variable indicating if bus b is

hosting a master DG, i.e., a DG that remains separated from
substations or other master DGs; and Bz is the set of buses in
zone z. The term βzz

z′,z is a binary variable indicating whether
zone z is energized by zone z′; βRCS

r is a binary variable
indicating the connection status of RCS r in (5d); Rz,z′ and
Mz,z′ are the sets of all RCS and MSs between zone z and
z′, respectively; and βMSF

m is a binary variable representing
the final status of MS m. In (5e), βMSI

m represents the initial
status of MS m. In (5f), βline

ℓ is the final line connection status,
and LMS

m and LRCS
r are the lines switchable by MS m and

RCS r, respectively.
Each zone containing a substation is a reference zone. Other

zones having DGs but not having a substation can also serve
as reference zones and initiate energization paths. For such
zones, a specific DG must be designated as the “master DG,”
denoted by the optimization model (αDG

b = 1). Therefore, the
reference zone includes a substation bus or a master DG (5a),
so it is not energized through another zone. This statement
is reflected in (5b) which indicates that each zone is either a
reference zone or is energized by another zone. This condition
also implies maintaining the radial structure of the network.
As described in (5c), for a pair of zones in the network, only
one zone can energize the other (parent/child relation). In a
complex network structure, it is possible for two zones to be
connected via multiple switches. If one zone energizes another
zone, only one switch (RCS or MS) between the two zones
must be in the connected state (5d). The MS final status is
calculated based on its initial status and switching actions in
(5e). The final line connection status is calculated based on
the final MS or RCS status (5f).

4) Zone Restoration Times: So far, the constraints related
to the energization path of the network zones, switching, and
repair times have been introduced. Knowing these values,
the outage duration (energization time) of different zones is
calculated. The parent must be energized before the child for
each for each pair of connected zones:

T out
z ≥ T out

z′ −M
(
1− βzz

z′,z

)
; ∀z, z′ ∈ Z, (6)

where T out
z is the outage duration of zone z. If an MS isolates

two zones, the zones on each side of the switch cannot have
a restoration time smaller than the switching time. Before
the MS is opened, these two zones are connected and they
thus cannot be restored due to the lack of fault isolation or
violations of technical constraints:

T out
z ≥ τ cp −M

(
1− βV

p − βMSP
m

)
;

∀z, z′ ∈ Z,m ∈ Mz,z′ , p ≡ m, p ∈ PM, βMSI
m = 1, (7)



6

where Mz,z′ is the set of all MSs connecting zones z and
z′ and βMSI

m = 1 indicates that MS m is initially closed.
If an MS is finally closed after a second switching, one of
its connected zones will be the parent and the other will be
the child. In this case, according to the description of the
load restoration process, first, the switch is opened in order to
separate the two zones and energize the parent zone, and then
it is closed again in order to restore the child zone. Therefore,
only the child zone will have a restoration time greater than
the second switching time:

T out
z ≥ τ cp −M

(
2− βzz

z′,z − βV
p

)
;

∀z, z′ ∈ Z,m ∈ M′
z,z′ , p ≡ m, p ∈ PM′ , βMSI

m′ = 1, (8)

where M′
z,z′ represents the set of MSs connecting z and z′ for

second switching actions. For a child zone restored by closing
a normally open MS, the zone restoration time will be greater
than the manual switching time:

T out
z ≥ τ cp −M

(
2− βzz

z′,z − βV
p

)
;

∀z, z′ ∈ Z,m ∈ Mz,z′ , p ≡ m, p ∈ PM, βMSI
m = 0. (9)

If a normally closed MS remains closed, it will surely energize
one of the two zones on its two sides. In this situation, the
parent zone cannot be energized before the child zone because
these zones are connected during the entire procedure:

T out
z ≥ T out

z′ −M
(
1− βzz

z,z′ + βV
p + βMSP

m

)
;

∀z, z′ ∈ Z,m ∈ Mz,z′ , p ≡ m, p ∈ PM, βMSI
m = 1. (10)

A zone cannot be energized until all related faults have been
repaired. Therefore, the time to restore a zone must be longer
than the time to repair all the faults in that zone:

T out
z ≥ τ cp ; ∀z ∈ Z, f ∈ Fz, p ≡ f, p ∈ PF , (11)

where Fz is the set of all faults in zone z and PF is the set
of all locations p with a fault. If an MS were closed before all
faults are repaired in the child zone, the parent zone would be
subject to the repair time of the offspring zone. Therefore, it
is preferred that the MS does not have a closing time earlier
than the restoration time of the child zone:

τ c
p

(
1− βMSI

m

)
+ τ c

p′

(
βMSI
m

)
≥ T out

z −M
(
1− βzz

z′,z

)
;

∀z, z′ ∈ Z,m ∈ Mz,z′ ,m ≡ p ≡ p′, p ∈ PM, p′ ∈ PM′ . (12)

In essence, constraints (6)–(12) define the interactions be-
tween zones, switches, and repair activities during restoration.

5) Power Flow Expression: Here, we discuss power flow
expressions, which consist of multi-time-step conventional
power flow (PF) and a time-step free conservative PF in
accordance with the proposed routing framework.

The conventional PF model is discussed first. Consider two
generic zones able to be connected by a switch that possibly
have their own active\reactive power injections. When a zone
z energizes another zone z′ after its own energization, the
power flow and voltage conditions may change in zone z.
Therefore, for a network with n zones, n sets of power flow
equations are required to guarantee safe voltage and line flow
values. During the restoration process, each step involves the
energization of one zone, and one set of power flow constraints

is added at each step. These constraints are:

ζz,z′ ≥
(
T out
z′ − T out

z

)
/Tmax ; ∀z, z′ ∈ Z (13a)∑

z∈Z
βzt
z,t = t; ∀t ∈ T (13b)

βzt
z,t ≥ βzt

z,t−1; ∀t ∈ T , z ∈ Z (13c)∑
t∈T

(
βzt
z,t − βzt

z′,t

)
≥ 1− (1− ζz,z′)M ; ∀z, z′ ∈ Z (13d)∑

t∈T

(
βzt
z,t − βzt

z′,t

)
≥ 1−

(
1− βzz

z,z′

)
M ; ∀z, z′ ∈ Z, (13e)

where ζz,z′ is a binary variable indicating earlier energization
time for zone z than z′ and Tmax is the maximum possible
outage time. The binary variable βzt

z,t in (13b) and (13c) tracks
the energization status of each zone at each time step, where
t represents a time step and T is the set of all time steps.
In each time step, one zone is energized (13b) and remains
at that state for the rest of the process (13c). For any pair of
zones z and z′, if z is energized earlier (ζz,z′ = 1 in (13d))
or is the parent zone (βzz

z,z′ = 1 in (13e)), then it has been
in the network for more time steps. Otherwise, the constraints
are relaxed by a large margin of M . These constraints ensure
that power is transferred in the correct order following the
energization paths.

A set of power flow equations consists of voltage drop
equation (14a) (see [25] for details on the model we use in this
paper), power balance (14b), power source limitations (14c),
and voltage and line flow limits (e.g., see [26]):

± F (Ub,t, φℓ,t) ≤ M
(
1− βline

ℓ

)
(14a)∑

ℓ∼b

φℓ,t + βzt
z,tDb −Gb,t = 0;∀b ∈ Bz, z ∈ Z, t ∈ T (14b)

βzt
z,tG

min
b ≤ Gb,t ≤ βzt

z,tG
max
b ;∀b ∈ Bz, z ∈ Z, t ∈ T , (14c)

Umin ≤ Ub,t ≤ Umax, |φℓ,t| ≤ φmax, (14d)

where F (Ub,t, φℓ,t) in (14a) represents the voltage drop as a
function of the voltage magnitude at bus b at time t, Ub,t, and
the flow of line ℓ at time t, φℓ,t. In (14b), the summation term
represents the total power flow export from bus b to all lines
connected to it, denoted as ℓ ∼ b, Db is the demand at bus
b, and Gb,t is the generation at bus b at time t. Variables φ,
D, and G concisely represent both active and reactive powers.
In (14c), Gmin

b and Gmax
b are the minimum and maximum

generation at bus b, respectively. Maintaining voltage levels
and line flows within statutory ranges are ensured by (14d)
(see [26] for a linear approximation of the flow limits).

The concept of conservative PF is introduced to reduce
the computational burden of solving multiple sets of power
flow equations. In the final network configuration, two distinct
loading conditions with different sets of variables, namely
passive loading and active loading, collectively establish upper
and lower bounds for nodes’ voltage levels and an upper
bound for lines’ power flows throughout every steps of the
restoration process. To acquire these bounds, in this paper, we
assume that as the result of a good switch placement strategy
in a previous planning stage, our network loading in electrical
zones is nearly three-phase balanced [12], the condition at
which voltage levels and line loading conditions monotonically
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Figure 4. Passive loading condition

change along the feeder [27].
Passive loading: The purpose of this loading condition is

to determine a lower bound for voltage levels, LB{U}, in
all restoration steps. This condition is referred to as “passive
loading.” Since DGs and capacitors can supply power up
to their designated zone’s and downstream zones’ aggregate
demand while respecting their own generation upper limits.
However, in the passive loading condition, active and reactive
injections from downstream zones to upstream zones are
prohibited. Furthermore, the DGs’ lower power generation
limits are also relaxed to accommodate cases where the lower
generation limits are above the total power consumption within
their designated zone’s and downstream zones’. Consequently,
each zone treats all of its downstream zones as a collective
passive load as shown in Fig. 4. Passive loading lowers voltage
levels as new zones are restored. For the passive loading
condition, the power flow constraints are:

± F
(
U b, φℓ

)
≤ M

(
1− βline

ℓ

)
(15a)∑

ℓ∼b

φ
ℓ
+Db −Gb = 0; ∀b ∈ B (15b)

Gb ≤ Gmax
b ; ∀b ∈ B (15c)

φ
ℓ
≥ (ζz,z′ − 1)M ; ∀z, z′ ∈ F , (15d)

Umin ≤ U b ≤ Umax,
∣∣∣φ

ℓ

∣∣∣ ≤ φmax, (15e)

where U b is voltage magnitude at bus b, φ
ℓ

is the flow on line
ℓ, and Gb is the generation at bus b, respectively, all in the
passive loading condition. If there is a time difference between
energization of z and z′, then z′ is added as a passive load(
φ
ℓ
≥ 0

)
to z as shown in (15d). This constraint reduces

nodes’ voltage levels monotonically by adding a new zone. In
(15c), lower bounds on the power generation are relaxed since∑

b∈z′ Db ≤
∑

b∈z′ Gmin
b forces T out

z = T out
Z′ such that z′ can

send the extra generated power to z.
Active loading: In the active loading condition, new zones

are added as active loads (φℓ ≤ 0), leading to higher voltage
levels. This paradigm is termed “active loading” because a
specific zone accommodates DGs within its domain along with
power injections from downstream zones to meet the entire
demand within the zone, potentially allowing for power export
to the upstream zone. However, the outbound power trans-
mission from a zone to its downstream counterparts remains
prohibited. To be able to generate that much power, the upper
limit of the DGs’ power generation is relaxed, permitting them
to produce power beyond their rated capacities. This approach
additionally considers the presence of a DG at every node. As
a result, each zone treats its entire downstream network as an
active load as shown in Fig. 5. As new zones are restored,

Figure 5. Active loading condition

active loading increases voltage levels. Thus, if the voltage
levels for the final configuration are within the acceptable
range, the voltage levels of all preceding configurations also
satisfy the voltage limits. For the active loading condition, the
power flow constraints are:

± F
(
U b, φℓ

)
≤ M

(
1− βline

ℓ

)
(16a)∑

ℓ∼b

φℓ +Db −Gb = 0; ∀b ∈ B (16b)

Gmin
b ≤ Gb; ∀b ∈ B (16c)

Gb ≤ Gb; ∀b ∈ B (16d)
φℓ ≤ (1− ζz,z′)M ; ∀z, z′ ∈ Z, (16e)

Umin ≤ U b ≤ Umax, |φℓ| ≤ φmax, (16f)

where U b is the voltage level at bus b, φℓ is the flow on line ℓ,
and Gb is the generation at bus b, respectively, for the active
loading condition. As shown in Section III-A, our numerical
results validate the accuracy of the power flow linearization
from [25] for our formulation, with voltage magnitudes within
0.0058 per unit of the nonlinear AC power flow model. The
appendix provides derivations showing how the passive and
active loading conditions result in upper and lower bounds on
the voltages and upper bounds on the line flows with respect
to the power flow approximation’s outputs.

The full optimization problem can be described either in
a multi-time-step or time-step-free approach. The multi-time-
step formulation is:

min : (2) (17a)
s.t. (3) – (14) (17b)

The time-step-free formulation is:

min : (2) (18a)
s.t. (3) – (13a), (15), (16) (18b)

C. Overall Workflow Summary

To summarize, our proposed method provides a holistic
and dynamic framework for optimizing the decision-making
process in fault management using the following three phases,
as shown in Fig. 6.
Initialization Phase: The first phase initializes the most recent
values for the model including information regarding the
power system network, repair crews, repair times, fault prob-
abilities, fault locations, and travel times between locations
in the network. This includes assigning hypothetical faults to
each unpatrolled zone with expected repair times as defined
in (1).
Re-optimization phase: Using the latest data, the second phase
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New discoveries

InitializationRe-optimization

Recent dataNew orders

Proactive update
Monitoring

Figure 6. Overall workflow summary

solves the optimization problem (17) or (18). This process
updates previous decisions while incorporating the latest real-
time information to enhance the system’s adaptability and
effectiveness in restoring service. Accordingly, repair crews
are informed with new orders.
Monitoring phase: The third phase continuously monitors
real-time information from the repair crews to facilitate dy-
namic decision-making. The monitoring phase incorporates
two schemes: responsive re-optimization and proactive re-
optimization. Under responsive re-optimization, our method
responds to specific events referred to as “new discoveries.”
These events include completing the patrol of a zone as well
as identifying the location and assessing the repair time for
a new fault. To prevent premature responses, we introduce a
minimum update time (e.g., 10 minutes) such that our method
does not respond sooner than the predefined minimum update
time even if a new discovery event occurs. Our numerical
studies in Section III-B indicate that this minimum update
time can speed up the overall restoration process as faster
responses to every new discovery do not always yield faster
load restoration. The proactive re-optimization scheme defines
a maximum update time by triggering a decision update if
no new discovery occurs within a predefined interval (e.g.,
30 minutes). This proactive approach ensures that our system
remains adaptive even in the absence of new discoveries, con-
tributing to the efficiency and responsiveness of our proposed
method. This proactive adaptation is necessary due to other
continuously changing parameters, such as travel times and
the extent of unpatrolled zones, as crews continuously patrol
the network. Upon triggering a re-optimization by either the
responsive or proactive schemes, the method returns to the
initialization phase and then to the re-optimization phase, as
shown in Fig. 6.

III. NUMERICAL RESULTS

This section empirically evaluates the proposed model using
modified IEEE 123-node and IEEE 8500-node [28]
networks. The simulations have been designed to validate
the model’s efficiency and scalability. The 123-node network
shown in Fig. 7 includes 6 MSs and 7 RCSs, dividing the net-
work into 13 distinct zones. For the purposes of these studies,
we assume that the operation time for MSs is 5 minutes, while
the operation time for RCSs is negligible. The parameters
associated with the 2 DGs are presented in Table I. In our
simulated scenarios, system outages are triggered by 12 faults,
the locations and estimated repair times of which are detailed
in Table II. We assume that these parameters are unknown
immediately post-event and are revealed progressively during
the feeder patrolling process.

We have also assumed the availability of 6 crew teams for

Table I
DG PARAMETERS

Name Location P
DG

/PDG Q
DG

/QDG

DG1 Bus 47 200/20 kW ±140 kW

DG2 Bus 77 300/30 kW ±210 kW

field operations, with patrol zones identical to the electrical
zones for the sake of clarity. The cost of damage to customers
is selected randomly from $15 to $45 per kWh, and the travel
cost for crews is set at $0.60 per hour of driving time. Travel
times are calculated based on the straight distance between
any pair of locations in the routing problem.

A. Base Case Evaluation

In the aftermath of an extreme event, the breakers at
the substations activate, and all load points experience an
interruption. After executing our proposed optimization model,
Fig. 7 illustrates the sequence of actions needed to restore
service to the affected load points. The total restoration process
spans 21 optimization steps and a duration of 6 hours and 36
minutes, during which all load points are re-energized. The
timing of decision updates is contingent upon the completion
of zone patrols or the detection and assessment of a fault;
otherwise, the timing defaults to a set value (in this case, 30
minutes). The update time never falls below a minimum length
(in this case, 10 minutes). Fig. 7 presents the final moments
of six selected steps from a total of 21 steps. Solid arrows
connect each crew’s previous location (the initial location in
the time step) to its current location (the final location in the
time step), illustrating their path of travel. Dashed arrows show
the crews’ planned routes based on the latest set of decisions,
which could be altered by subsequent decisions. For example,
at the start (t = 0), crew 1 is scheduled to patrol zones Z1
and Z4, and crew 3 is designated for zone Z2 as shown in
Fig. 7a. However, at t = 29, a fault is discovered in zone Z1
by crew 1. Consequently, the routes are updated as shown in
Fig. 7b, with crew 3 being reassigned to repair the fault before
patrolling Z2. As shown in Fig. 7c, zone Z7 is isolated through
during-patrol MS operation and energized since no damage is
detected in that area. It is also worth noting that some crews
are already engaging in repair and restoration operations while
some zones are still pending patrol.

Numerical simulations were conducted using Gurobi 8.1.1
on a system equipped with an AMD Ryzen7 4800H processor
and 16 GB of memory. The model was found to be computa-
tionally efficient, with the optimization problem for all steps
resolved in less than nine seconds, as depicted in Fig. 8.

The complexity of the routing problem, as shown in Fig. 8,
is indicated by the number of crews, unpatrolled zones,
faults, and the number of MS operations. According to the
description of MSs operation in section II-A3, the number of
potential MS operations is twice the number of closed MSs,
as these could be opened and then reclosed, plus the number
of opened MSs. For the computation of precise minimum
and maximum voltage levels, a multi-time step approach was
employed, incorporating both linear and non-linear AC power
flow constraints. However, the decision variables pertaining to
the routing problem and the ultimate network configuration
remained consistent with the time-step-free conservative sce-
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Table II
REPAIR TIME FOR DIFFERENT FAULT LOCATIONS (MINUTES)

Location

Line 14 Line 33 Bus 44 Line 13 Bus 87 Line 84 Bus 57 Bus 108 Line 64 Line 22 Bus 29 Bus 36

Time 120 100 75 80 70 74 60 110 160 59 75 90

(a) 1st step (b) 2nd step (c) 5th step

(d) 8th step (e) 10th step (f) 16th step

Figure 7. Fault restoration process in IEEE 123-node test feeder; see [29] for an animation of the restoration procedure
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Figure 8. Program run-time across different steps

nario. In Fig. 9, the voltage magnitude ranges are depicted
across three scenarios: the conservative time-step-free model
with linear power flow, the multi-time step model with linear
power flow, and the multi-time step model with non-linear
exact power flow. As expected, the minimum and maximum
values lie within the range of conservative bounds. Note that
in the time-step-free model, the constraints merely enforce

the upper and the lower bounds to be in the statutory range,
allowing these variables to freely extend to the extreme ends.
Therefore, our purpose here is not to assess the tightness of
upper and lower bounds; an assessment of their tightness is
deferred to section III-C.

Figure 9. Ranges of voltage magnitudes across time steps
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B. Decision Update Frequency

In practical scenarios, as data regarding fault locations and
repair times are progressively revealed through ongoing patrol
operations, decision updates must be frequently performed
to accommodate this newly acquired information. However,
the immediacy of response to this new data is curtailed by
factors such as data collection and processing time, as well as
the runtime of various programs required for operations like
load/generation estimation, travel time prediction, and fault
management. Fig. 10 illustrates the sensitivity of the total
network outage cost and energy not supplied (ENS) within the
study horizon to variations in the minimum decision update
time. (In this case, we use the same proactive maximum
update time as the base case, i.e., 30 minutes.) A comparison
of the results for update times of 5 and 10 minutes reveals
that a more rapid response does not necessarily translate to
cost reduction. This finding underscores the challenge of the
exploration-exploitation dilemma in the context of dynamic
decision-making in this environment.

Figure 10. Sensitivity of outage cost and ENS to decision update frequency

C. Time-Step-Free Approach

We next reassessed the base case scenario with the proposed
methodology, replacing our conservative time-step-free power
flow (PF) constraints with conventional multi-time-step linear
PF constraints. This yields a marginal improvement (0.7%) in
the total network outage cost, from $435.9k in the conservative
power flow scenario to $432.9k in the conventional scenario.
The proximity of the outage costs showcases the tightness of
our proposed bounds in this case. The run-times for each stage,
for both the conventional and conservative approaches, are
shown in Fig. 11. While the two approaches suggest differing
decisions and the problem parameters diverge after the initial
stage, a clear uptick in overall computational complexity is
observed when implementing conventional PF constraints.
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Figure 11. Computation times for time-step-free and multi-time-step ap-
proaches

D. Simultaneous Restoration and Damage Assessment

To benchmark the effectiveness of the proposed concurrent
damage assessment and load restoration strategy, we consid-
ered two alternative benchmarks:
1) First Patrol all, then Repair all (FPTR): Here, all crews are
initially dispatched for feeder patrol and damage assessment.

The objective at this stage is to minimize total patrol time [30].
Subsequently, fault repair is carried out to restore all loads.
2) Separate Patrol and Repair Crews (SPRC): In this scenario,
crews 1 and 5 are assigned to patrol, while the others perform
repairs. Fault repair is based on progressively updated infor-
mation about the location and repair time of faults [18].

As Fig. 12 demonstrates, our proposed method outperforms
the others. The SPRC approach keeps repair crews idle until
some faults are assessed. While not leaving any crews idle, the
FPTR approach shows lower performance than our proposed
method since it prioritizes patrol actions over repair activi-
ties. Fig. 13 illustrates the cumulative outage cost from the
beginning of the process.

Figure 12. Restored load over time in different restoration approaches

Figure 13. Cumulative outage cost from the beginning of the process

E. Scalability of the Solution Approach

To assess the applicability of the proposed model for large-
scale, real-world networks, we used the IEEE 8500-node
system [28]. This network was partitioned into 20 patrol
zones, as depicted in Fig. 14. We assumed that the network
experienced a significant event, resulting in 25 equipment
damages. Within this network, 20 crews, initially stationed
at four locations, were tasked with damage assessment and
service restoration. 32 randomly placed DGs with random
capacity from 100 to 600 kW are shown with green-filled
circles. The computation time for all optimization steps was
less than 170 seconds, as shown in Fig. 15. This figure also
reveals the routing problem’s dimension, which includes the
number of crews, unpatrolled zones, faults, and MSs opera-
tions. The results indicate that the proposed method offers an
efficient and scalable solution for power system restoration,
applicable even to large-scale networks. Additionally, to study
how DGs facilitate faster load restoration (especially in cases
with long feeders connected to a single substation), Fig. 16
illustrates the restored load over time for both the original
case described above and that same case modified to remove
the DGs. Observe that the restored power in the case without
DGs significantly lags the case with DGs.
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Figure 14. Patrol zones in the IEEE 8500-node network
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Figure 15. Computation time and routing problem dimension across steps

IV. CONCLUSION

This paper proposes a dynamic fault management plan
designed for co-optimizing damage assessment and service
restoration. The primary objective minimizes the total cost
accrued from both outages and the restoration process. This
objective is achieved by devising a routing plan for field crews,
which includes feeder patrol, damage assessment, manual
switching, and repair actions. To ensure the safe operation of
the network in abnormal configurations, a conservative set of
power flow equations is employed. This approach contributes
to the efficiency and scalability of the proposed framework.

The results demonstrate the efficacy of simultaneous opti-
mization and operation of feeder patrolling, damage assess-
ment, repair, and restoration. By integrating these activities,
significant benefits are observed in terms of outage reduc-
tion for the distribution network. This approach outperforms
sequential phases or the deployment of separate crews for
different actions. The analysis reveals that incorporating con-
servative power flow constraints can substantially alleviate the
computational burden associated with the problem. Despite the
reduced complexity, the total cost remains remarkably close to
optimal levels. Consequently, the proposed fault management
method holds promise for practical applicability in large-scale
real-world distribution networks.
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Figure 16. DGs’ impact on faster load restoration in 8500-bus test case

We note that fault management is susceptible to data uncer-
tainties in some parameters that we considered deterministi-
cally, such as the repair times provided by the damage asses-
sors and the crews’ travel times. Recognizing that mitigating
these uncertainties could yield an even more effective decision-
making process, our future work aims to formulate and solve
problems which explicitly consider these uncertainties to en-
hance the overall adaptability of our methodology.
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APPENDIX
PASSIVE AND ACTIVE LOADING

This appendix describes how the passive and active loading
conditions result in upper and lower bounds on the voltage
magnitudes as well as an upper bounds on the line flows, all
of which are valid in the context of the linearized power flow
model from [25].

Consider a solution to the passive condition (15) denoted
as p∗ =

(
U∗, φ∗, G∗). If, for all buses b, G∗

b ≥ Gmin
b , then p∗

can be deemed a feasible solution to (14) at the final time step,
with LB{U} = minb {U∗

b}. Conversely, if some buses b have
G∗

b ≤ Gmin
b , we can remedy this by increasing generation at

these buses until Gb = Gmin
b . This yields a new solution p∗ =

(U∗, φ∗, G∗), and hence U∗ ≥ U∗ due to to the increased
power generation. Since this new p∗ satisfies (14) at the final
time step, the aforementioned lower bound LB{U} is still
valid. Next, consider a solution to the active loading condition
(16) denoted as p∗ =

(
U

∗
, φ∗, G

∗)
. In this loading condition,

we have G ≥ G∗ due to (16c) and (16d), implying U
∗ ≥ U∗.

Accordingly, if U∗ ≥ Umin and U
∗ ≤ Umax, as enforced

in (15e) and (16f), then p∗ = (U∗, φ∗, G∗) is a solution that
satisfies (14) at the final time step, thus confirming that the
βline
ℓ values correspond to a valid configuration at this time

step.
Although the set of βline

ℓ values only explicitly describe
the final network configuration, the passive and active loading
constraints are instrumental in validating previous steps. As
we move backwards from step t to t − 1 by disconnecting
the last-connected zone, we find that U∗(t−1) ≥ U∗(t) and
U

∗(t−1) ≤ U
∗(t)

. Using similar reasoning, we can thus
confirm the existence of a solution that satisfies (14) for each
previous time step.

Furthermore, we can infer that either
∣∣φ∗

∣∣ or |φ∗| provides
an upper bound for line flows at each step. To see this, note
that, for each line at each step, if the state of the network
is characterized by p∗ = (U∗, φ∗, G∗) and the line flow
is directed downstream of the feeder, then |φ∗

ℓ | ≤
∣∣∣φ∗

ℓ

∣∣∣.
Since the network has a radial structure and there are no
losses modeled in the power flow linearization from [25], the
power flow on each line is determined by subtracting the total
downstream power generation from the power consumption,
i.e., φ∗

ℓ
=

∑
b∈DS(Db − G∗

b), where DS denotes the set of
downstream buses to line ℓ. Moreover, within the context of
passive loading, all power generation levels are lower than the
actual power generation, i.e., G∗ ≤ G∗. Similarly, if the line
flow is toward the upstream of the feeder, then |φ∗

ℓ | ≤ |φ∗
ℓ |

due to the conditions φ∗
ℓ =

∑
b∈DS(G

∗
b −Db) and G

∗ ≥ G∗.
Thus, feasibility of

∣∣φ∗
∣∣ or |φ∗|, as enforced in (15e) and (16f),

ensures that the line flow limits are satisfied for the final time
step. Using a similar argument as in the case of the voltage
limits, the current limits are also satisfied for all previous time
steps. Thus, enforcing feasibility for the passive and active
loading conditions in the final time step ensures that both the
voltage and current limits will be satisfied for all time steps,
in the context of the linearized power flow model from [25]
as in (14).
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