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Abstract—Power grids are naturally represented as graphs,
with buses as nodes and power lines as edges. Graph theory
provides many ways to measure power grid graphs, allowing
researchers to characterize system structure and optimize algo-
rithms. We apply several topological graph metrics to 33 publicly-
available power grids. Results show that a straightforward,
computationally inexpensive set of checks can quickly identify
structural anomalies, especially when a broad set of test networks
is available to establish norms. Another application of graph
metrics is the characterization of computational behavior. We
conclude by illustrating one compelling example: the close con-
nection between clique analysis and semidefinite programming
solver performance. These two applications demonstrate the
power of purely topological graph metrics when utilized in the
right settings.

Index Terms—Complex networks, network theory (graphs),
power grids.

I. INTRODUCTION

The buses and transmission lines of a power grid translate
naturally to the nodes and edges of a graph. This connection
has been recognized for many years, and numerous graph
structural properties have been studied with various power
systems applications [1], [2]. Graph-theoretical methods have
been used to identify system vulnerabilities [3]–[5], detect
structural anomalies [6], generate and validate synthetic grids
[7]–[10], create meaningful visualizations [11], [12], and
perform partitioning [13], [14]. The graph analysis methods
employed may be divided into two categories: weighted, where
electrical information is embedded in the graph, and un-
weighted, where only topology is considered. Though there is
a fundamental difference between a power system’s topology
and its electrical structure [4], [8], [15], unweighted graph
analysis is ideal for quickly detecting unusual connectivity
patterns. The topological algorithms used in this paper are
computationally inexpensive, and interpretation of numerical
results is straightforward. Consequently, it is feasible to scan
large power grids to check for structural anomalies.

Efficient detection of structural anomalies calls for two
ingredients. The first is a large collection of test networks from
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which a notion of “normal” topology may be derived. NESTA
[16] is well-suited for this purpose. The second ingredient is a
combination of straightforward, computationally inexpensive
graph metrics capable of highlighting deviations from the
norm. One of the main contributions of this paper is selection
of several topological metrics (along with discussion of less
useful ones that were also considered), their application to
NESTA, and revelation of structural anomalies. Our methods
efficiently reveal highly-connected subnetworks in all four
PEGASE project [17] topologies, in addition to highlighting
the unusual density of the 162-bus IEEE dynamic test case.

The second portion of this paper expounds on the con-
nection between maximal cliques and a recently-developed
semidefinite programming (SDP) optimal power flow (OPF)
algorithm [18]. Because SDP solver time increases sharply
with semidefinite constraint matrix size, decomposition into a
set of constraints with smaller submatrices can significantly
improve solver performance [19]. According to a matrix
completion theorem, any valid decomposition must consist of
combinations of maximal cliques. We study the greedy clique
merge algorithm proposed in [18], which merges overlapping
cliques in search of a decomposition that minimizes SDP
solver time. Results show that solution time is not minimized
at the point one might expect, suggesting that topological
considerations merit further study in the SDP OPF context.

The paper proceeds as follows. Section II introduces graph
notation and defines various topological graph metrics. Sec-
tion III applies these metrics to NESTA networks, characteriz-
ing typical grid topology and highlighting unusual connectivity
patterns. Section IV discusses maximal cliques and SDP OPF
performance, and Section V presents conclusions.

II. METRIC DEFINITIONS AND INTUITION

A. Power grids as complex networks
A power grid consists of electrical generators and loads

joined by power lines and transformers. The structure of a
power grid may be represented as a graph, which consists of
a set of nodes N connected by a set of edges E. Connections
may be encoded in an adjacency matrix A, where each element
Aij is 1 if nodes i and j have an edge between them,
and 0 otherwise. The translation from power grid to graph
involves a few modeling choices. We consider only undirected,



unweighted graphs, where edges have no orientation or other
properties. In the test networks we consider, each substation
is one node. Though the data has this limitation, our ideas are
applicable to high-fidelity models of real grids, which often
have multiple buses within a substation [12]. We omit parallel
edges between vertices. Finally, because some public test
networks use transmission line objects to model transformers
(and vice versa in rare cases), we allow both power lines and
transformers to be edges in our graph representations.1

B. Topological graph metrics

1) Degree distribution: In a graph, each node’s degree is
the number of nodes to which it is connected. Mathematically,
the degree of node i in a graph with |N| nodes is given by

ki =

|N|∑
j=1

Aij . (1)

The node degree distribution P(k) is a meaningful and concise
metric based on this property:

P(k) =
|Nk|
|N|

, (2)

where Nk is the set of nodes with degree k [8]. Degree
distribution has system reliability implications [4], [5], [9],
[10], [12] and reveals some useful information at a glance.
A long tail with high-degree nodes indicates one or more
strongly-connected hub nodes (typically at high voltage levels
[12]), which make the system more vulnerable to targeted
attack [3], [5]. A high relative density of degree-1 and degree-
2 nodes suggests a grid with long paths or radial components,
and low meshing [5]. We have found that maximum, mean, and
median values sufficiently highlight most interesting features
and anomalies of NESTA networks. Maximum and mean
degree values are defined, respectively, as:

kmax = max k : |Nk| > 0 (3a)

k̄ =
1

|N|

kmax∑
k=1

k · |Nk| (3b)

Median node degree kmed is defined in the usual way; it is the
middle value of the sorted set of node degrees (or mean of the
two middle values if the number of nodes is even).

Considerations of flexibility, reliability, and physical space
keep kmax from growing too large in real power grids. In the
North American power grid, the probability of a substation
having more than x transmission lines decreases exponentially
with x [5]. Thus, high kmax hints that network reduction or
perhaps even a modeling error has occurred. The mean distri-
bution value k̄ is related to how meshed the system is, and lies
between 2 and 3 for most grids. Median node degree is difficult
to find in the literature, and is less useful for characterizing
system structure. Though some small, dense networks have
median degree 3, the vast majority have kmed = 2.

1This can add a substantial number of “leaf nodes,” but we repeated all
analysis with generator step-up transformers excluded to verify that results
are not qualitatively affected.

2) Degree assortativity: The degree assortativity coefficient
r measures the extent to which nodes of like degree connect
to each other. It is equivalent to the Pearson correlation
coefficient of node degrees [20]. If K = {k : |Nk| > 0},
then r is given by

r =
1

σ2
k

 ∑
x,y∈K

xy

(
|Exy|
|E|

− |Ex|
|E|
|Ey|
|E|

) . (4)

In (4), x and y represent any two node degree values,
|Exy|/|E| is the fraction of all edges connecting a node with
degree x to a node with degree y, |Ex|/|E| is the fraction of
all edges that start or end at nodes with degree x, and σk is the
standard deviation of the node degree distribution P(k). Values
of r range from −1 to 1, indicating perfect disassortativity and
assortativity respectively [20]. Power system topologies tend
to be slightly disassortative, as mentioned by [8], [10] and
confirmed in Section III-B.

3) Rich-club coefficient: High degree assortativity suggests
a strongly-interconnected set of high-degree nodes. The rich-
club coefficient [21] detects this structure, sometimes referred
to as a “hubs of hubs” or “rich club,” directly. Let N>k be
the set of nodes with degree greater than k, and E>k the set
of edges between those nodes. Then the rich-club coefficient
is computed for each degree k as

φ(k) =
2|E>k|

|N>k| (|N>k| − 1)
, (5)

which is the fraction of all possible edges that exist among
nodes with degree greater than k. If there is some degree x :
φ(k) = 1 ∀ k > x, then φ is said to “saturate” [6], and the
graph is said to exhibit the “rich-club effect” [21]. Only two
nodes and one edge are required to make this happen: if the
two highest-degree nodes in a graph each have degree y and
are connected, with the next-highest node degree being x, then
φ(k) = 1 ∀ k ∈ [x, y−1]. It is therefore important to consider
the number of nodes involved in a rich club to ensure one is
not simply observing two highly-connected nodes.

4) Cliques: A fully-connected subgraph is called a clique.
In graph notation, a clique C satisfies

C ⊆ N : Aij = 1 ∀ i, j ∈ C . (6)

Although each subset of a clique is technically also a clique,
we restrict our focus to those maximal cliques which cannot
be expanded by adding other nodes. Determining the maximal
cliques of a general undirected graph is an NP-hard problem,
but a memory-efficient adaptation of the Bron-Kerbosch algo-
rithm [22] identifies the maximal cliques of our NESTA power
grid graphs in a reasonable time.

5) Chordal graph extensions: A graph is chordal if every
cycle of at least four nodes has a chord, which is an edge
between nodes that are non-adjacent in the cycle. While power
grid graphs are not chordal in general, it is straightforward to
obtain a chordal extension of a non-chordal graph via sparsity-
preserving Cholesky factorization of the graph adjacency ma-
trix [19]. This yields a chordal graph with a few new edges.
While identifying all maximal cliques of a general graph is



NP-hard, there is a linear-time algorithm that applies to chordal
graphs [23]. Chordal graph extensions and their cliques play
a key role in improving SDP OPF performance, as will be
shown in Section IV.

6) Adjacency spectral radius: Adjacency spectral radius
refers to the largest eigenvalue of the graph adjacency matrix
A. The eigenvalue spectrum of A is expensive to compute rela-
tive to aforementioned metrics, especially for larger networks.
While this metric yields interesting results, computation time
makes it less useful for quickly revealing structural anomalies.
In Section III-E we show that a combination of other metrics
reveals similar information more quickly.

III. STRUCTURAL ANOMALIES IN NESTA NETWORKS

Of the thirty power system graph analysis papers reviewed
in [2], nearly 85% use one of the IEEE Literature-Based Power
Flow Test Cases (e.g. the IEEE 14-Bus System). NESTA [16]
includes these networks, RTE and PEGASE systems [17], [24],
and many other publicly-available test networks. This makes
NESTA an ideal proving ground for graph metrics. Because
the archive includes multiple versions of some topologies
(e.g. several Polish grid operating conditions), we focus on
the subset of 33 representative NESTA networks shown in
Figure 1 to ensure no single topology is over-represented. In
the remainder of this section, we apply the metrics described
in Section II to this collection of networks. Any graph analysis
that was not hand-coded was performed by NetworkX [25].
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Figure 1. Semilog plot of node counts, illustrating size categories.

A. Degree distribution
A graph’s maximum node degree is the highest degree

observed among its nodes (3a). Figure 2 shows that this
property scales roughly linearly with the log of network size
for NESTA networks. Although the trend makes it appear
that maximum node degree can grow arbitrarily large, it
is important to note that real substations are limited by
the design constraints discussed in Section II-B1. The three
labeled outliers in Figure 2 are all PEGASE networks, and
the three points with maximum degree 9 in the 1,000-5,000-
node size range are the three Polish grid variants included
in our NESTA sample. The unusually high maximum degree

of the large PEGASE topology has been pointed out [6], but
to our knowledge no prior work has shown how unusual the
89-bus PEGASE system is for its size. This network’s highly-
connected hub component is apparent from visual inspection
of a 2D graph layout, but maximum node degree and other
metrics discussed later on can identify this abnormal structure
more quickly and efficiently.
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Figure 2. Semilog plot of maximum node degree vs. number of nodes. The
dashed least-squares fit line excludes the labeled outliers.

The average mean node degree for our NESTA sample is
2.70, with a standard deviation of 0.53. Table I contains the
data, along with a “rugplot” illustration of the distribution of
values. Note the tight groupings about 2.4 (RTE and Polish
networks) and 2.7 (PEGASE and IEEE networks, highlighted
pink and blue respectively). Highly-meshed transmission net-
works like the 162-bus IEEE dynamic test case may naturally
have high mean degree, but the PEGASE 89-bus network
is clearly unusual. On the other end of the distribution,
case189 edin appears to have long paths and low meshing.

Median node degree data are less interesting. Of our NESTA
sample networks, 76% have kmed = 2, while remaining
values are 3. Unlike mean degree, kmed is not sensitive to
whether generator step-up transformers are modeled, at least
for NESTA networks. Dense networks like case 162 ieee dtc
(which has been described as “quite robust” [26]) may have
a median node degree of 3, but this is unusual for networks
larger than a few hundred nodes. The largest NESTA network
with kmed = 3 is the IEEE 300-bus test case.

B. Degree assortativity
Figure 3 suggests that transmission systems tend to be

slightly disassortative. Over half of the NESTA sample net-
works have |r| < 0.2, and one standard deviation within the
mean corresponds to roughly (−0.3, 0.15). The two largest
PEGASE networks are highly assortative, as first shown in [6].
The case13659 pegase variant is less assortative due primarily
to the thousands of generator step-up transformers it includes,
which are omitted in case9241 pegase. On the other end
of the spectrum, case9 wscc is highly disassortative. This
tiny network consists of a ring of six nodes, three of which
have leaf nodes attached. The unusual disassortativity arises



TABLE I
MEAN NODE DEGREE VALUES FOR REPRESENTATIVE NESTA NETWORKS.

Mean node degree

case89 pegase 4.629
case6 ww 3.667
case162 ieee dtc 3.457
case29 edin 3.448

case9241 pegase 3.075
case118 ieee 3.034
case73 ieee rts 2.959
case240 wecc 2.900
case14 ieee 2.857
case24 ieee rts 2.833
case2869 pegase 2.766
case57 ieee 2.737
case30 ieee 2.733
case30 as 2.733
case30 fsr 2.733
case13659 pegase 2.727
case300 ieee 2.727

case1354 pegase 2.526
case2224 edin 2.522
case6515 rte 2.488
case1951 rte 2.435
case2383wp mp 2.422
case2868 rte 2.421
case5 pjm 2.400
case2736sp mp 2.385
case1397sp eir 2.368
case3120sp mp 2.362
case39 epri 2.359
case6 c 2.333

case189 edin 2.148
case4 gs 2.000
case9 wscc 2.000
case3 lmbd 2.000

2.0

2.5

3.0

3.5

4.0

4.5

from the fact that no edge joins nodes with matching degree.
Although highly disassortative networks tend to be tiny, and
highly assortative networks are typically in the “medium”
range, there is no evidence of a size-related trend overall.

C. Rich-club effect

Table II lists all groups of three or more nodes in NESTA
networks that are connected by at least 80% of their potential
edges (we omit “clubs” consisting of just two nodes; see
Section II-B3). The first row reads: “At least 80% of all
possible edges exist between the 28 nodes in case9241 with
degree greater than 25.” The first two rows describe rich clubs
first identified in [6], and the next two rows also concern
PEGASE networks. The brevity of Table II is perhaps more
significant than its contents. In every other case where φ(k)
reaches 0.8 for a NESTA network, the “rich club” consists of
just two nodes. For a dozen networks, there is no k for which
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Figure 3. Semilog plot of degree assortativity vs. network size.

φ(k) reaches 0.8. Mean node degree makes one PEGASE
network stand out, degree assortativity draws attention to two,
and three PEGASE networks have unusually high maximum
node degree. The rich-club coefficient is the first metric that
separates all four PEGASE networks from the rest of NESTA.2

TABLE II
ALL NESTA RICH CLUBS WITH MORE THAN 80% OF POTENTIAL EDGES

AND AT LEAST 3 NODES.

Nodes involved Degree

case9241 pegase 28 >25
case13659 pegase 19 >29
case89 pegase 11 >11
case2869 pegase 5 >13
case3 lmbd 3 >0

D. Cliques
The vast majority of power grid maximal cliques contain

just two nodes. Of the 124,211 maximal cliques in our repre-
sentative NESTA networks, the mean size is 2.085. This empir-
ical observation manifests in a linear relationship between the
number of maximal cliques in a power system and the number
of nodes. While the number of maximal cliques grows linearly
with the number of nodes, the size of the largest clique (or
“maximum clique”) does not. Figure 4 plots maximum clique
size against network size for our sample networks. As with
the rich-club coefficient, this metric makes the four PEGASE
networks stand out. Setting aside these networks, the least-
squares fit would effectively be a horizontal line. Although
PEGASE networks have unusually large cliques, roughly 99%
consist of just two or three nodes.

E. Adjacency matrix spectrum
Figure 5 illustrates adjacency spectral radius versus number

of nodes. As with the rich-club coefficient, this metric casts

2Table II also lists case3 lmbd, but this “rich club” contains the entire
network: three nodes in a ring.
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Figure 4. Maximum clique size versus network size.

the four PEGASE networks as outliers. All other networks lie
close to the trendline, which increases gradually with the log
of network size. While the isolation of all PEGASE networks
is compelling, previously-mentioned metrics provide similar
information with significantly less computation.
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Figure 5. Semilog plot of largest adjacency matrix eigenvalue versus number
of nodes. The dashed fit line excludes the labeled outliers.

IV. CLIQUES AND SEMIDEFINITE PROGRAMMING

A. Background

Advances in semidefinite programming have drawn the
attention of the power systems community, specifically in
connection with optimal power flow (OPF). Though not exact
for all OPF problems [27], [28], the semidefinite relaxation
finds global optima for many test cases [29], [30]. While
extensive discussion of SDP OPF properties is beyond the
scope of this paper, we will consider one key performance
aspect: SDP solvers work best with semidefinite constraint
matrices no larger than a few dozen elements to a side. This
makes the decomposition technique outlined in [18] essential
for solving larger SDP OPF problems [31]. The positive
semidefinite matrix completion theorem in [32] governs valid

decompositions [19]: suppose we have an undirected chordal
graph and an associated incomplete matrix G. Then G can
be completed to a positive semidefinite matrix if and only if
all submatrices associated with the graph’s maximal cliques
are positive semidefinite.3 Thus, decomposition involves 1)
forming a chordal extension of the power grid graph (see
Section II-B5), 2) identifying chordal extension maximal
cliques (see Section II-B4), and 3) replacing the semidefinite
constraint matrix with a set of constraints corresponding to
maximal clique submatrices.

A single node may belong to many maximal cliques. Each
of these cliques has its own copy of that node’s two variables
(real and imaginary complex voltage phasor components in the
OPF setting), but each physical parameter must ultimately have
one value. Thus, maximal clique decomposition introduces a
number of linking constraints that varies with the amount of
overlap between cliques. Since SDP solvers like Mosek apply
primal-dual methods, a primal linking constraint corresponds
to a dual variable, and changes in the number of constraints
and variables have similar impacts on solver performance [18].
For this reason, we will use “approximate SDP OPF problem
size” to denote the sum of all scalar variables and linking
constraints. If merging two cliques eliminates enough linking
constraints to offset the resulting increase in submatrix size,
the sum of variables and linking constraints is reduced over-
all, suggesting an improvement in SDP solver performance
according to the approximate problem size heuristic. For this
reason, [18] proposed a greedy clique merging algorithm that
repeatedly combines the pair of cliques whose merger yields
the greatest reduction in the sum of variables and linking
constraints. Suppose the algorithm stops when a specified
number of submatrices, designated L, is reached. As shown in
[18], SDP solver time gradually decreases as L shrinks (i.e. as
more cliques are merged). If L becomes too small, however,
the submatrices grow large enough to outweigh the benefits of
linking constraint elimination. This trade-off is closely related
to chordal extension maximal cliques, which are relatively in-
expensive to obtain. The remainder of this section expounds on
the relationship between clique characteristics, clique merge
algorithm behavior, and SDP OPF performance.

B. Clique merge implementation
The first step towards implementing clique merge is to

obtain a chordal extension of the power grid graph (which is
not already chordal in general) using the procedure described
in Section II-B5. Next, the maximal cliques of the chordal
extension are found, and a clique graph is formed. Each node
in the clique graph represents a maximal clique. Each edge
lies between a pair of cliques that share nodes, and has weight
equal to the number of nodes shared. At each step, the greedy
clique merge algorithm eliminates an edge of the clique graph,
merging its endpoints into a single group of nodes. Since
the algorithm looks for the greatest overlaps between pairs of
clique graph nodes, it will only eliminate edges belonging to

3In the SDP setting, completing G refers to the process of assigning values
to otherwise unconstrained elements such that the resulting matrix is positive
semidefinite. The SDP relaxation is feasible if such a completion exists.



the maximum-weight spanning tree of the clique graph, which
can be obtained with Prim’s algorithm [33]. The approximate
problem size may be obtained from this spanning tree, which
we denote T = {NT ,ET }. If a node ni ∈ NT represents
a chordal extension maximal clique with |ni| buses (each of
which has real and imaginary voltage phasor components),
then the corresponding OPF semidefinite constraint matrix is
square with 2|ni|×2|ni| elements, and |ni|(2|ni|+ 1) unique
optimization variables in the upper triangle. Similarly, an edge
ei ∈ ET with weight wei represents a clique overlap of wei

buses, which introduces wei(2wei + 1) linking constraints by
duplicating their variables. Thus, the approximate SDP OPF
problem size corresponding to T may be computed as the sum
of all scalar variables and linking constraints:

v(T ) =
∑

ni∈NT

|ni|(2|ni|+ 1) +
∑

ei∈ET

wei(2wei + 1). (7)

From here, implementation of the greedy clique merge
algorithm is straightforward: at each step, compare v(T ) with
v(T−ei) for each edge ei ∈ ET , where T−ei is obtained by
merging the endpoint cliques of ei. The merge corresponding
to the greatest reduction in effective number of SDP OPF
variables is implemented, and T is updated. The algorithm
may stop once |NT | reaches a predefined threshold, once
subsequent merges begin increasing v(T ), or according to
some other termination criterion.

C. Clique merge behavior for NESTA networks

We applied greedy clique merge to chordal extensions of
our representative NESTA networks. Throughout algorithm
execution, we tracked the number of variables and linking
constraints, the size of the largest and smallest groups of
nodes, and Mosek SDP solver times. These results are shown
for the IEEE 300-bus test case in Figure 6. The size of
the largest group (top solid greed line) is initially equal to
the maximum clique size. This value rises sharply at first,
then remains flat until the last few merges.4 The size of
the smallest group (bottom green line) remains 2 until the
last remaining clique is merged with another group during
merge 212. Approximate problem size decreases initially as
the greedy algorithm eliminates linking constraints. It reaches
a minimum (indicated by the “X” on the Variables curve) after
roughly half of all merges have occurred. Although subsequent
merges increase approximate problem size (by creating larger
submatrices), Mosek solver times continue to drop until around
merge 200. Interestingly, solution time tends to be minimized
closer to when the last clique is merged into another group.

Other NESTA networks behave similarly to the IEEE 300-
bus case. There are a few quantities of interest for all networks:
fraction of merges until v(T ) is minimized, fraction of merges
until the last clique is merged into another group, and fraction
of merges until solution time is minimized. We estimated
this last value by performing 50–250 Mosek trials5 to obtain

4Many cliques must be merged into medium-sized groups of nodes before
it makes sense to merge these larger clusters together.

5Smaller networks required more trials due to increased variance relative
to mean solver time.

a spread of solver time data for each merge index, then
discarding points in each spread more than two standard
deviations from the mean, and averaging remaining trials. This
computationally intensive process was impractical for larger
networks. Figure 7 illustrates results for many networks in
our NESTA sample. It typically takes around 50% of merges
to minimize the number of variables, and roughly 75% of
merges before the last unmerged clique is combined with
another group. The gap between these points is wider for larger
systems, and solver time tends to be minimized closer to where
the last maximal clique is merged into a different group.
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Figure 6. Semilog plot illustrating clique merge behavior for the IEEE 300-
bus test case. Solver time is plotted against the right axis. Minimum variable
count and minimum solution time are each indicated with an “X”.
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Figure 7. Merges required to reach important points of clique merge algorithm
execution.

V. CONCLUSIONS

A number of topological graph metrics were applied to 33
networks in NESTA, and several structural anomalies were
identified. Our metrics drew attention to PEGASE networks:
each metric highlighted at least one of these networks, but
three metrics (rich-club coefficient, maximum clique size, and
adjacency matrix spectral radius) separated all four from the
rest of NESTA. Our results indicate that each PEGASE net-
work contains a relatively small but highly dense subnetwork,



which appears to be the result of Kron network reduction or
some similar technique. A combination of degree distribution,
degree assortativity, and rich-club coefficient metrics is highly
effective at identifying this structure within a large graph,
while remaining computationally inexpensive. These metrics
may be used to quickly scan new grid models for potential
modeling or data issues.

The paper also focused on the connection between cliques
and SDP OPF performance. Though electrical characteristics
govern numerical behavior of algorithms, topological metrics
can prove useful when partitioning or decomposition are
involved. The semidefinite constraint that forms a bottleneck
for SDP solvers may be decomposed into smaller constraints,
according to maximal cliques of a chordal extension of the
power grid graph. The authors of [18] showed that the maximal
clique decomposition of a chordal extension obtained via
Cholesky factorization introduces too many linking constraints
due to overlap; merging cliques can significantly reduce solver
time. While the heuristic employed in [18] achieves most of
the benefit of clique merge, Mosek solver times typically
continue to diminish after further merges take place, even
though the effective number of variables increases. Our results
supplement those of [18], as several additional test networks
were studied, and Mosek was used in place of SeDuMi.
Further study may lead to an improved clique merge algorithm
that enables an SDP OPF routine to take full advantage of the
positive semidefinite matrix completion theorem.
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