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Abstract—Nonlinear power flow constraints render a variety of
power system optimization problems computationally intractable.
Emerging research shows, however, that the nonlinear AC power
flow equations can be successfully modeled using neural net-
works. These neural networks can be exactly transformed into
mixed integer linear programs and embedded inside challeng-
ing optimization problems, thus replacing nonlinearities that
are intractable for many applications with tractable piecewise
linear approximations. Such approaches, though, suffer from an
explosion of the number of binary variables needed to represent
the neural network. Accordingly, this paper develops a technique
for training an “optimally compact” neural network, i.e., one that
can represent the power flow equations with a sufficiently high
degree of accuracy while still maintaining a tractable number of
binary variables. We demonstrate the use of this neural network
as an approximator of the nonlinear power flow equations by
embedding it in the AC unit commitment problem, transforming
the problem from a mixed integer nonlinear program into a
more manageable mixed integer linear program. We use the 14-,
57-, and 89-bus networks as test cases and compare the AC-
feasibility of commitment decisions resulting from the neural
network, DC, and linearized power flow approximations. Our
results show that the neural network model outperforms both the
DC and linearized power flow approximations when embedded in
the unit commitment problem. The neural network formulation
most often selects a feasible unit commitment schedule, and
furthermore, it only selects an infeasible schedule if both the
linear and DC methods are infeasible as well.

Index Terms—AC power flow, AC unit commitment (AC-
UC), mixed-integer linear program (MILP), neural networks,
piecewise linear model

I. INTRODUCTION

The AC power flow equations are routinely used to model
network constraints in optimization problems related to the
control, operation, and planning of power systems. These
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constraints, however, are both nonlinear and non-convex, re-
sulting in optimization problems that can be NP-hard [1]. In
practice, many power systems operation problems, like unit
commitment (UC), optimal power flow (OPF), and optimal
transmission switching (OTS), are solved using linearized
approximations of the nonlinear AC power flow equations
for the sake of computational tractability. However, linear
approximations can result in suboptimal solutions or solutions
that are infeasible in the original, nonlinear problem [2].

Piecewise linear models offer a method of improving so-
lution accuracy by capturing some of the nonlinearity of
the AC power flow equations [3], [4]. Using a conventional
optimization solver to construct an optimal piecewise linear
model of a large system of nonlinear power flow equations,
however, is a challenging task: the associated program would
need to simultaneously choose (i) where to perform explicit
linearizations of the equations and (ii) how to define the
hyperplanes which optimally separate the piecewise linear
regions. Learning-based approaches offer a computationally
tractable alternative. One way to construct such a piecewise
linear approximation is through the use of neural networks
(NNs) with rectified linear unit (ReLU) activation functions.
Recent literature, e.g., [5], [6], has shown that NNs can be used
to model the AC power flow equations with a high degree of
accuracy. Furthermore, a NN using ReLU activation functions
can be exactly transformed into a mixed integer linear pro-
gram (MILP); this can be accomplished by representing the
activation of each ReLU function as a binary variable and then
using the big-M method to formulate activation constraints as
a function of the NN weights and biases [7].

Although the exact MILP reformulation of a NN is often
used for verification purposes [8], [9], it can also be embedded
within a larger optimization problem as a function approxima-
tion. This technique allows us to transform a problem that may
have originally been a challenging mixed integer nonlinear
program (MINLP) into a more tractable MILP. Researchers
have embedded NNs as MILPs within optimization problems
for a variety of applications [10]–[13]. Specifically in the field
of power systems, [14] and [15] encode frequency constraints
using the MILP reformulation in microgrid scheduling and UC
problems, respectively, and [8] encodes security constraints
into the OPF problem.

In this paper, we develop a NN-based piecewise linear
model of AC power flow equations that is both more accu-
rate than a standard linearization and more computationally
tractable than the original nonlinear equations. The resulting
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NN can be embedded into any optimization problem as a
surrogate power flow model via an exact MILP reformulation.
However, the number of binary variables in the MILP reformu-
lation scales linearly with the number of neurons. Therefore,
embedding a NN containing many neurons, which may be
necessary to represent high degrees of nonlinearity, can be
a computational bottleneck. Grimstad and Andersson in [13]
observe that “the feasibility of using the MILP formulation
quickly fades with increasing network sizes.”

This motivates the use of compression techniques to reduce
the number of neurons in a NN, and consequently, the number
of binary variables in the MILP reformulation. The machine
learning community has developed a variety of methods to
compress NNs with minimal accuracy compromise [16]–[18].
This paper specifically employs several methods in order to
achieve an “optimally compact” NN model: (1) low-rank
updates: we exploit the observation that, in most regions of
practical interest, the power flow equations exhibit a relatively
low degree of nonlinearity, and we therefore learn low-rank
updates of a physics-based linearization of the AC power
flow equations in these regions, (2) pruning: ReLU activation
functions that are found to be always active or inactive over
the input domain are fixed or removed, respectively, and (3)
sparsification: we set NN weights below some threshold to be
zero and re-train.

We demonstrate the use of the compact AC power flow
NN by embedding it as a MILP within the day-ahead UC
problem, which aims to determine the minimum cost generator
commitment and dispatch while meeting load demand and
abiding by physical laws and feasibility constraints. The AC
unit commitment (AC-UC) problem, which constrains power
injection and line flow quantities via the AC power flow equa-
tions, is a challenging nonconvex MINLP that is NP-hard [19].
In practice, utilities simplify the AC-UC problem to the DC
unit commitment (DC-UC) problem, thus neglecting reactive
power dispatch, line losses, and voltage magnitude constraints.
Hence, corrective actions are often needed to account for these
omissions [20]. Furthermore, as demonstrated in this paper, a
commitment schedule based on a DC-UC solution can result
in inoperable AC power dispatching solutions.

Researchers have proposed various methods to increase
the computational tractability of the AC-UC problem using,
for example, Lagrange relaxation [21], decomposition [20],
[22], and convexification methods [23]. However, this is an
ongoing research area without a singular superior solution
technique identified yet. Recently, in [4], Nanou et al. develop
a piecewise linear AC power flow model, which is embedded
within a UC problem as a MILP, but their work does not
use NNs or learning to generate the piecewise linear model.
Although there are some works that focus on using NNs to
solve the power flow equations [5], [6], [24], the authors are
not aware of existing literature that embeds NN models of the
AC power flow equations reformulated as MILPs within the
UC problem, nor any other other power systems optimization
problem. Accordingly, the contributions of this paper follow:

1) Using a sequence of feasible power flow solutions, we
learn a piecewise linear power flow mapping based on

low-rank updates of a physics-based linearization.
2) After transforming the learned model into an equivalent

set of MILP constraints, we use iterative bound tighten-
ing, ReLU pruning, and parameter matrix sparsification
in order to compress the effective size and complexity
of the learned power flow model.

3) We pose a novel formulation of the AC-UC problem,
where the AC power flow constraints are directly re-
placed by the piecewise linear power flow mapping.

4) Finally, we compare UC solutions using the NN-based
piecewise linear power flow approximation to solutions
using DC and linearized power flow approximations.
Feasibility of the resulting commitment schedules are
determined by solving a multi-time period AC-OPF
(MTP AC-OPF) problem.

This paper is structured as follows. In Section II, we develop a
NN-based piecewise linear power flow mapping based on low-
rank linearization updates. We subsequently cast the learned
model as a MILP and perform compression. In Section III,
we pose standard UC formulations, and we show how our
piecewise linear power flow mapping can be used to replace
the standard power flow constraints. Then, in Section IV, we
test the performance of the learned power flow mapping by
comparing UC and MTP AC-OPF solutions collected from
14-, 57-, and 89-bus test cases. Finally, conclusions are offered
in Section V.

II. LEARNING AN OPTIMALLY COMPACT
POWER FLOW MAPPING

In this section, we first define a standard power flow model.
Next, we develop a NN-based piecewise linear mapping of
the power flow equations. This mapping is generated by a
training procedure that learns optimal low-rank updates of
a physics-based linearization. The resulting model is then
reformulated as a MILP. Finally, we compress this model via
bound tightening, ReLU pruning, and matrix sparsification.

A. Statement of Network Model

Consider a power network with bus set N = {1, 2, ..., n},
line set L = {1, 2, ...,m}, and signed incidence matrix
E ∈ Rm×n. Let v, θ, pinj, qinj ∈ Rn, which are the voltage
magnitudes, voltage angles, real power injections, and reactive
power injections, respectively. The nodal admittance matrix
Yb ∈ Cn×n relates complex nodal voltages and power injec-
tions via

pinj + jqinj = vejθ �
(
Ybve

jθ
)∗
, (1)

where Hadamard product � performs component-wise multi-
plication. Complex line flows, in both directions, are related
through line matrices Yft,Ytf ∈ Cm×n:

pft + jqft = Eftve
jθ �

(
Yftve

jθ
)∗

(2)

ptf + jqtf = Etfve
jθ �

(
Ytfve

jθ
)∗
, (3)

where pft, qft, ptf , qtf ∈ Rm are the active (p) and reactive
(q) power line flows in the “from-to” (ft) and “to-from” (tf)
directions. Furthermore, Eft = 1

2 (|E|+E), Etf = 1
2 (|E|−E)
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are matrices which select the sending end and receiving end
voltages, respectively. Let sft, stf ∈ Rm be the apparent power
flows in the “from-to” and “to-from” directions, respectively.
Apparent power flows are related by (sft)2 = (pft)2 + (qft)2

and (stf)2 = (ptf)2 + (qtf)2.

B. A Low-Rank Piecewise Linear Power Flow Mapping Model
In order to mitigate the computational challenges associated

with nonlinear power flow constraints, we use a NN to learn
a piecewise linear power flow mapping. For notational con-
venience, we concatenate all of the active and reactive power
injection and bidirectional apparent power flow equations into
a function f : Rκ=2n → Rα=2n+2m, such that

f(v, θ)→ (pinj, qinj, sft, stf). (4)

By defining input vector x = [vT , θT ]T and power flow output
vector ypf = [(pinj)T , (qinj)T , (sft)T , (stf)T ]T , a linearization
of (4) yields ypf ≈ f(x0)+J(x0)∆x. This may be rearranged
to yield an affine transformation from x to ypf :

ypf ≈ J(x0)x+ f(x0)− J(x0)x0︸ ︷︷ ︸
r(x0)

, (5)

where r(x0) is a residual vector. In order to improve upon the
predictive accuracy of the affine mapping in (5), an associated
piecewise linear mapping from x to ypf may be defined via

ypf ≈


J(x0)x+ r(x0), x ∈ R0

J(x1)x+ r(x1), x ∈ R1

...
J(xq)x+ r(xq), x ∈ Rq,

(6)

where R0, R1, . . ., Rq represent the distinct regions of
the linearization. Additionally, J(xi) and r(xi), xi ∈ Ri
represent the Jacobian and constant terms, respectively, used
to model the linear power flow mapping inside of region
Ri. Constructing a high-fidelity model of the form (6) is
generally a challenging task, since selecting optimal points of
linearization and separating hyperplanes is a nontrivial task.

Using a NN to directly model (6) can also be challenging,
since transforming between Jacobian matrices in different re-
gions requires a full-rank correction, i.e., J(x1) = J(x0)+W ,
W ∈ Rα×κ, rank{W } = min(α, κ), and thus requires a
potentially massive number of nonlinear activation functions.
However, this correction can often be approximated by a
low-rank surrogate, WLR, rank{WLR} = ρ � min(α, κ).
Low-rank matrices can always by decomposed into the outer
product of two matrices, denoted here by w1 ∈ Rκ×ρ and
w2 ∈ Rα×ρ, such that WLR = w2w

T
1 .

In order to control how such low-rank updates are applied
to a Jacobian, ReLU activation functions can be used. For
example, consider the rank-1 (ρ = 1) update case; in this case,
w1, w1 reduce to vectors w1, w2. If we define the hyperplane
between two adjacent regions, e.g., R0 and R1, as −b = wT1 x,
then a piecewise linear prediction ypw can be captured using
a single ReLU activation function σ(·):

ypw = J0x+ r0 + w2σ(wT1 x+ b), (7)

where r0 , r(x0), J0 , J(x0), etc. When the ReLU is not
activated (wT1 x≤−b), the affine transformation of R0 in (6) is
exactly recovered by (7). However, when the ReLU is activated
(wT1 x > −b), a rank-1 update is naturally applied to J0:

ypw =


J0x+ r0, x ∈ R0

(J0 + w2w
T
1 )︸ ︷︷ ︸

rank-1 update

x+ r0 + w2b︸ ︷︷ ︸
residual update

, x ∈ R1. (8)

Generally, by choosing ρ > 1, higher-rank updates can be
applied across more piecewise linear regions. To capture these
updates, we approximate the full-order piecewise linear model
stated in (6) via the function

ypw = J?x+ r? + w2σ(wT
1 x+ b), (9)

where J? and r? are the Jacobian and residual terms asso-
ciated with a specified equilibrium point around which we
learn low-rank updates. The model (9) may be interpreted as
the application of low-rank updates to a full-rank, physics-
based Jacobian. J? is the derivative of the physical power
flow mapping in (4); therefore, it represents the concatena-
tion of power injection and apparent power flow Jacobians:
J? = [JTpq J

T
s,ft J

T
s,tf ]

T ; these are given in the Appendix.
The NN-based model of (9) consists of a physics-based

affine feedthrough term (J?x+r?) and a latent transformation
term w2σ(wT

1 x+b). While this latent term only has nonlinear
activation functions applied to a single layer, the model can
still provide a quantity of piecewise linearization regions
which grows exponentially with the number of ReLUs.

Lemma 1. If (9) contains ρ activation functions, then it can
provide up to q = 2ρ distinct piecewise linearization regions.

Proof. The activation of each ReLU generates a rank-1 update
of J? and thus corresponds to a distinct piecewise linear region
Ri. The ρ independently controlled binary activation functions
of (9) can therefore model 2ρ piecewise linear regions.

NNs that contain multiple layers of ReLU activation func-
tions can also provide piecewise linear mappings. In this
work, however, since we are targeting low-rank power flow
approximations, we employ activation functions only on a
single layer. For a given number of model parameters, shallow
NNs cannot always achieve the same level of modeling power
as a deeper NN. Results from [13], however, show that the
MILP reformulation of a shallow NN solves faster than the
MILP of a deeper NN (of equivalent complexity).

The model (9) is trained by first collecting input and
output training data sets X and Y , respectively. Next, an
unconstrained optimization algorithm trains the NN by solving

min
b,w1,w2

∥∥Y − (J?X + r? + w2σ(wT
1 X + b))

∥∥2

2
. (10)

C. Exact Neural Network Reformulation as MILP

Once trained, the NN-based model (9) can be reformu-
lated as an equivalent set of MILP constraints [25]. Defining

22nd Power Systems Computation Conference

PSCC 2022

Porto, Portugal — June 27 – July 1, 2022



4

intermediate variable ẑ = wT
1 x + b, the ReLU function

z = σ(ẑ) , max(ẑ, 0) is captured by the constraints

zi 6 ẑi −Mmin
i (1− βi), zi > ẑi

zi 6Mmax
i βi, zi > 0,

(11)

where Mmin
i and Mmax

i are the minimum and maximum
values that ẑik can take, respectively, and β is a vector of
binaries: βi ∈ {0, 1}. The tightness of these big-M bounds
influence the efficiency of the branch-and-bound algorithm
used to handle these constraints [13]. With this formulation,
the power flow mapping of (9) can be exactly captured via

ypw = J?x+ r? + w2z (12a)

ẑ = wT
1 x+ b (12b)

(11), ∀i ∈ {1, . . . , ρ}. (12c)

Neglecting the NN, (12) reduces to a linear power flow model:

ylin = J?x+ r?. (13)

D. Compression of the NN-Based Power Flow Mapping

Once (9) has been reformulated as a MILP, it can be
embedded as a constraint into a variety of optimization prob-
lems. To limit the computational complexity of the associated
mixed integer constraints, however, we iteratively (i) sparsify
the NN weighting matrices, (ii) tighten the big-M constraints
associated with reformulation (11), and (iii) prune the NN’s
ReLUs. Each of these steps is summarized below.

1) NN Sparsification: Following the general procedure out-
lined in [25], we sparsify the NN weighting matrices w1

and w2 by setting some targeted percentage of the weights
to 0. The weights selected are the ones which have the
smallest absolute magnitude. After sparsification, the network
is retrained; during retraining, sparsified entries are fixed to 0.

2) Big-M Bound Tightening: To tighten the big-M bounds,
we first define inequality constraints associated with the NN
inputs. That is, we define relevant nodal voltage and phase
angle inequality constraints (e.g., Vmin ≤ vi ≤ Vmax and
|θi − θj | ≤ ∆θmax), denoted by Cv and Cθ. Next, we define
inequality constraints associated with NN outputs, i.e., power
injections and line flow limits, denoted by Cp, Cq , and Cs. The
lower bound Mmin

i can be directly computed via the MILP

Mmin
i = min

x,ypw,β
ẑi (14a)

s.t. (12a)− (12c) (14b)
x ∈{v, θ | v, θ ∈ Cv, Cθ} (14c)

ypw ∈{pinj, qinj, sl | pinj, qinj, sl ∈ Cp, Cq, Cs} (14d)

where sl denotes the apparent power line flows in both
directions. The upper bound Mmax

i may be computed by
maximizing (14a), rather than minimizing it. We note that
the constraint sets Cv, Cθ, Cp, Cq, Cs can be naively defined
using the engineering constraints associated with whatever
optimization problem the NN is ultimately being used to solve
(e.g., UC, OPF, etc.). Alternatively, these constraint sets can
themselves be first tightened using, e.g., optimization-based
bound tightening [26] or analytic methods [27].

3) ReLU Pruning: Using the calculated big-M bounds,
individual ReLUs can be pruned (i.e., removed) from the NN.
Pruning procedure: if Mmax

i ≤ 0, then the associated ReLU
is never active, and βi is fixed to 0. However, if Mmin

i > 0,
then the ReLU is always active, and βi is fixed to 1.

III. UNIT COMMITMENT FORMULATIONS

In this section, we first present the three-binary formulation
of the AC-UC problem, which is introduced in [28], using the
indexing and notation schemes in [20]. We then present the
UC problem where we approximate the AC power flows using
the novel NN-based piecewise linear model, which has been
exactly reformulated as the set of MILP constraints given in
Section II-C. Next, we present two popular power flow approx-
imations for comparison and benchmarking purposes. First,
the AC-UC problem with linearized power flow equations and
second, the DC-UC problem, where we neglect reactive power,
line losses, and voltage magnitude deviations. Last, we present
the MTP AC-OPF formulation. The UC schedules found using
the three power flow approximation methods are tested for
AC feasibility through checking for the feasibility of their
corresponding MTP AC-OPF solutions.

A. Objective and Cost Constraints

Let T = {1, . . . , T} be the set of time indices, where
each time index represents an hour of simulation and T is
the total simulation time. Let G = {1, . . . , G} be the set of
generators. For each generator g ∈ G and each time period
t ∈ T , there is a binary variable yg,t ∈ {0, 1} indicating
whether the generator is ON (yg,t = 1) or OFF (yg,t = 0). Let
y = {yg,t | g ∈ G, t ∈ T } be the set of all generator statuses.
Let ug,t ∈ {0, 1} and wg,t ∈ {0, 1} be the start-up and shut-
down statuses, respectively, of generator g ∈ G at time t ∈ T .
If ug,t = 1, then generator g starts-up at the beginning of
hour t and is zero otherwise. If wg,t = 1, then generator g
shuts-down at the beginning of hour t and is zero otherwise.
Let u = {ug,t | g ∈ G, t ∈ T } and w = {wg,t | g ∈ G, t ∈ T }.

Let c(·) be the total cost of operating the network:

c(p∆, u, w) = cp(p∆) + csu(u,w), (15)

where cp(·) is the production cost and csu(·) is the start-up
cost. Let p∆

g,t > 0 be the real power production of generator
g ∈ G at time t ∈ T above Pmin

g > 0, the minimum real power
production limit for generator g. Let p∆ = {p∆

g,t | g ∈ G, t ∈
T }. The production cost cp(·) is:

cp(p∆) =
∑

g∈G

∑
t∈T

cpg,t(p
∆
g,t), (16)

where cpg,t(·) is a convex piecewise linear function for all g ∈
G and t ∈ T . The start-up cost csu(·) has the form:

csu(u,w) =
∑

g∈G

∑
t∈T

csug,t(u,w), (17)

where csug,t(·) is a monotonically increasing step function
representing the startup costs for generator g ∈ G, which
increase with the amount of time the generator has been shut-
down. See [20] for more details on this formulation.
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B. Generation Constraints
For generator g ∈ G, let the minimum uptime (the minimum

period of time that the generator must be online before chang-
ing status) be Tug . The minimum downtime (the minimum
period of time that the generator must be offline before
changing status) is T dg . These constraints are given by:∑t

t′=t−Tug +1
ug,t′ 6 yg,t ∀g ∈ G, t ∈ T (18)∑t

t′=t−Tdg +1
wg,t′ 6 1− yg,t ∀g ∈ G, t ∈ T . (19)

For values of t′ < 1 (i.e., before the start of the simulation),
we assume the values of ug,t′ and wg,t′ are known parameters.

Generators cannot start-up and shut-down in the same time
period. This is enforced via (18) and (19) in conjunction with:

yg,t − yg,t−1 = ug,t − wg,t ∀g ∈ G, t ∈ T . (20)

Let rg,t > 0 be the real power reserve available to generator
g ∈ G at time t ∈ T , and let r = {rg,t | g ∈ G, t ∈ T }.
Parameter PRt is the total spinning reserve needed for the
network at t ∈ T , and we require that:

PRt 6
∑

g∈G
rg,t t ∈ T . (21)

Let parameter Pmax
g > 0, be the maximum real power pro-

duction limit for generator g ∈ G. Parameters SUg and SDg

are the maximum real power a generator g ∈ G can produce
immediately after starting up and immediately before shut-
ting down, respectively. Then, assuming SUg, SDg 6 Pmax

g ,
the start-up generation limits are enforced via the following
constraints:

p∆
g,t + rg,t 6 (Pmax

g − Pmin
g )yg,t − (Pmax

g − SUg)ug,t
−(Pmax

g −SDg)wg,t+1,∀g ∈ {i ∈ G | Tui > 2}, t ∈ T (22)

p∆
g,t + rg,t 6 (Pmax

g − Pmin
g )yg,t − (Pmax

g − SUg)ug,t
∀g ∈ {i ∈ G | Tui = 1}, t ∈ T (23)

p∆
g,t 6 (Pmax

g − Pmin
g )yg,t − (Pmax

g − SDg)wg,t+1

∀g ∈ {i ∈ G | Tui = 1}, t ∈ T . (24)

We also require a constraint to ensure the shut-down genera-
tion limits are enforced during the first time period t = 1:

wg,1 6 0 ∀g ∈ { i ∈ G | P init
i > SDi}, (25)

where P init
i is the real power produced by generator g ∈ G

the time period before the simulation begins. Parameters RUg
and RDg are the real power ramp-up and ramp-down limits,
respectively, for generator g ∈ G. Generators must abide by
ramping limits, which restrict the change in real power:

p∆
g,t + rg,t − p∆

g,t−1 6 RUg ∀g ∈ G, t ∈ T (26)

−p∆
g,t + p∆

g,t−1 6 RDg ∀g ∈ G, t ∈ T . (27)

Generator g ∈ G has lower and upper reactive power limits,
Qmin
g and Qmax

g , respectively. Let qg,t be the reactive power
production of generator g ∈ G at time t ∈ T . The reactive
power output of each generator is constrained to be within its
limits when active:

Qmin
g yg,t 6 qg,t 6 Qmax

g yg,t ∀g ∈ G, t ∈ T . (28)

C. AC-OPF Constraints
Recall that N is the set of buses in the network. Now, let

Gb be the set of generators at bus b ∈ N . Parameters PDb,t
and QDb,t are the real and reactive power demand at b ∈ N
and t ∈ T . Let pinj

b,t and qinj
b,t be the real and reactive power,

respectively, injected into the network from bus b ∈ N at time
t ∈ T . Then, the real power balance constraints are:

pinj
b,t =

∑
g∈Gb

(
p∆
g,t + Pmin

g yg,t
)
− PDb,t ∀b ∈ N , t ∈ T , (29)

and the reactive power balance constraints are:

qinj
b,t =

∑
g∈Gb

qGg,t +
∑
g∈SCb

qSCg,t −QDb,t ∀b ∈ N , t ∈ T . (30)

Recall that L is the set of transmission lines in the network.
Each line ` ∈ L has a designated “from” bus and “to” bus,
which can be arbitrarily chosen. sft

`,t is the apparent power flow
on line ` ∈ L at time t ∈ T with flow from the “from” bus
and to the “to” bus; stf

`,t is defined oppositely. The apparent
power flows on each line ` ∈ L cannot exceed their maximum
allowable limit Smax

l :

sft
`,t 6 Smax

l , stf
`,t 6 Smax

l ∀l ∈ L, t ∈ T . (31)

Let vb,t be the voltage magnitude at bus b ∈ N and time t ∈
T . Parameters V max

b and V min
b are the maximum and minimum

voltage magnitude limits, respectively, for bus b ∈ N . Then,
the constraints on the voltage magnitudes are as follows:

V min
b 6 vb,t 6 V max

b ∀b ∈ N , t ∈ T . (32)

We designate the “from” and “to” bus voltage angles of line
` ∈ L as θ`f and θ`t , respectively. Parameters Θmin

` and Θmax
`

are the minimum and maximum voltage angle differences for
line ` ∈ L. We constrain the voltage angle differences as:

Θmin
` 6 θ`f − θ`t 6 Θmax

` ∀` ∈ L, t ∈ T . (33)

Last, we set the voltage angle of the reference bus to zero for
all t ∈ T . Let bref ∈ N designate the reference bus. Then:

θbref,t = 0 ∀t ∈ T . (34)

D. AC-UC Formulation
Let pft

`,t, p
tf
`,t, q

ft
`,t, and qtf

`,t be the the real and reactive power
flows on lines ` ∈ L at time t ∈ T . Now, let Lft

b ⊆ L
and Ltf

b ⊆ L be the subsets of lines that are originating and
terminating, respectively, at bus b ∈ N . Parameters Gsh

b and
Bsh
b are the shunt conductance and susceptance, respectively,

at bus b ∈ N . Then, the power injected into the network from
bus b ∈ N is equivalent to:

pinj
b,t = Gsh

b v
2
b,t +

∑
`∈Lft

b

pft
`,t +

∑
`∈Ltf

b

ptf
`,t (35)

qinj
b,t = −Bsh

b v
2
b,t +

∑
`∈Lft

b

qft
`,t +

∑
`∈Ltf

b

qtf
`,t. (36)

The apparent power flows are equal to:

sft
`,t =

√
(pft
`,t)

2 + (qft
`,t)

2 ∀` ∈ L, t ∈ T (37)

stf
`,t =

√
(ptf
`,t)

2 + (qtf
`,t)

2 ∀` ∈ L, t ∈ T . (38)
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Then, the MINLP formulation of the AC-UC problem is:

min
X cont,X bin,θ,v,pft,ptf,qft,qtf

(15) s.t. (18)− (38), (AC-UC)

where we collect all the continuous generation variables in
the set X cont = {rg,t, p∆

g,t, qg,t, q
SC
g,t | g ∈ G, t ∈ T },

and all the binary commitment decision variables in the set
X bin = {yg,t, ug,t, wg,t | g ∈ G, t ∈ T }. Note that each
variable corresponding to the individual elements of vectors
pft, ptf, qft, qtf, v, and θ are optimization variables as well.

E. UC using Power Flow Approximations
We model power flow using the piecewise linear NN model

described in Section II-B. The corresponding MILP model is
presented in (12). Then, the NN-based AC-UC problem is:

min
X cont,X bin,θ,v

(15) s.t. (12), (18)− (33). (NN AC-UC)

A linearized power flow model is presented in (13). Then,
the following MILP is the version of the AC-UC problem
using this linearized power flow model:

min
X cont,X bin,v,θ

(15) s.t. (13), (18)− (33). (L AC-UC)

In the DC-UC problem, we neglect reactive power and line
losses, and voltage magnitudes deviations. It then follows that
the real and apparent power flows are:

pft
`,t = −ptf

`,t ∀` ∈ L, t ∈ T (39)

pft
`,t = −B`(θ`f − θ`t) ∀` ∈ L, t ∈ T (40)

sft
`,t = pft

`,t, s
tf
`,t = −pft

`,t ∀` ∈ L, t ∈ T . (41)

Now, we define the DC-UC problem as:

min
X cont,X bin,θ,pft,ptf

(15)

s.t. (18)− (27), (29), (31), (33), (34), (39)− (41).
(DC-UC)

F. Multi-Time Period AC-OPF Formulation
When formulating the MTP AC-OPF problem, we assume

all elements in X bin are known parameters, i.e., the commit-
ment schedule is set, and we optimize over continuous gener-
ation variables X cont. The MTP AC-OPF problem follows:

min
X cont,θ,v,pft,ptf,qft,qtf

(15) s.t. (18)− (38). (MTP AC-OPF)

The MTP AC-OPF problem is used to test the feasibility
of the commitment schedules resulting from solving the NN
AC-UC, L AC-UC, and DC-UC problems. We classify a UC
solution that results in an infeasible MTP AC-OPF problem as
a infeasible commitment schedule, i.e., the selection of binary
variables in set X bin cannot be realized.

IV. TEST RESULTS

In this section, we present results collected on the 14-, 57-,
and 89-bus PGLib-OPF test cases [29] over a 24-hour period.
In Section IV-A, we first compare the expressive power of the
compact NN model (9) to a direct power flow mapping, which
is exclusively used in the literature. In Section IV-B, we use
the compact NN models to solve the NN AC-UC problems;
then, we compare the obtained solutions to those generated by
the linear benchmarks.

Figure 1. The left panel shows the loss function of the compact the direct
NN mappings during training. The right panel shows linear, direct NN,
and compact NN per-unitized error (

∥∥ypf − ylin
∥∥
1

,
∥∥ypf − ynn

∥∥
1

, and∥∥ypf − ypw
∥∥
1

, respectively) associated with the the 89-bus system.

A. Expressive Power of the Compact NN

In order to test the expressive power of the compact NN,
we collected 972 feasible power flow solutions from the 89-
bus system; loads were chosen by looping over UC load
curves (see the following subsection for more details regrading
data collection). We then trained a compact NN power flow
mapping of the form (9) with ρ = 25 ReLUs using ADAM in
Flux. Data were shuffled and mini-batched into sets of 75, and
a learning rate of η = 2.5×10−4 was used. A second NN was
also trained, but this model mapped power flow inputs (v and
θ) directly to power flow outputs via ynn = w2σ(wT

1 x + b),
which we refer to as a “direct” NN mapping; this model
was also trained with 25 ReLUs. Both NNs were allowed to
train for 7.5 × 104 steps, where loss function minimization
showed signs of saturation. Results are shown in Figure 1,
where the left panel shows loss function saturation, and the
right panel depicts the predictive accuracy of the models. For
reference, we also plot the prediction of linear power flow
model ylin = J?x+ r? from (13). NN power flow predictions
are generally an order of magnitude better than linear model
predictions, and the compact NN predictions are generally over
a factor of two better than the direct NN.

B. Data Collection and NN Training

We used the UC nodal load curves and generation cost
curves developed in the UnitCommitment.jl package [30] for
these systems. Reactive power load curves were generated for
each system by assuming constant power factors at each load.
For increased complexity, we assumed the active power limits
for each generator in the 14 and 57 bus systems matched
those of the associated MATPOWER test cases (i.e., contrary
to PGLib-OPF, MATPOWER assumes that no generating unit
acts only as a synchronous condenser; instead, every generator
can produce active power and, therefore, a larger number
of generators can participate in UC). We also decreased the
apparent power thermal limits in these systems by 30%.

The power flow mapping (9) can potentially be trained on
any set of feasible power flow solutions. To collect training
data in a targeted way, we first gathered the hourly load
profiles associated with the UC problems. For each hour,
we used PowerModels.jl [26] to generate a feasible power
flow solution (i.e., a power flow solution which satisfied all
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Figure 2. These three plots show the unit status decisions for the 14-
bus network resulting from solving the NN AC-UC, L AC-UC and DC-UC
problems. The top labels (1− 5) refer to the unit numbers, and the left axis
marks a 24-hour period. Blue sections represent time periods where the status
of the corresponding unit is ON, while red sections represent OFF periods.

thermal, voltage, and generation limit constraints). For each
hour, we also generated feasible power flow solutions with
each generator turned off, and with random combinations
of up to three other generators also turned off; infeasible
samples were rejected. In order to sample over a larger feasible
space, we also perturbed the generator voltage limits at each
power flow solve. That is, we randomly “pushed” the V min

and V max generator constraints up and down, respectively, to
nonstandard values which were still within the feasible space.

Once training and testing data sets were collected, compact
NN-based power flow mapping models were trained and com-
pressed. NN models of the 14-, 57-, and 89-bus power systems
were trained on 219, 532, and 972 power flow samples,
respectively. Notably, each training sample contained 2n − 1
inputs (reference bus phase angle was never included as an
input) and 2n + 2m outputs, according to mapping (4). The
NNs associated with these systems contained 20, 25, and 30
ReLUS, respectively. Models were trained using ADAM in
Flux, learning rates were set between (1− 3)× 10−4, and all
data were shuffled and mini-batched.

C. Unit Commitment Experiment Results

We solved the three versions of the UC problem discussed
in Section III (NN AC-UC, L AC-UC, and DC-UC) for the
three considered networks (14-, 57-, and 89-bus). For each
system, the linearization terms (J?, r?) were generated from
a power flow solution of the UC hour-1 (mean value) base load
level with all generators turned ON and producing. Figure 2
shows the resulting unit commitment decisions for the 14-
bus network. Blue and red lines mark time periods when the
corresponding unit is ON and OFF, respectively. Here, we
clearly see different unit commitment schedules are chosen.
Note that the NN-based solution turns on more generators
than the other power flow approximations. Across the three
tested networks, the commitment schedules resulting from the
NN-based and linear formulations are MTP AC-OPF feasible
(see Section III-F) in the base-loading case. However, the
committment schedules found via DC-UC only resulted in a
feasible MTP AC-OPF for the 57-bus network.

Next, we tested the performance of the UC formulations
using three different load alteration schemes with the goal
of capturing various multi-time loading possibilities. In the

first scheme, we uniformly scaled all real and reactive loads
in the network over all time periods using the same scaling
value. In the second scheme, we scaled the loads at each bus
over all time periods using a randomly sampled value. The
last load alteration scheme aimed to increase the peak loads
and decrease the lowest loads, thus forcing more time-varying
commitment decisions. We accomplished this by scaling each
load at each hour t according to: 1 + a sin( 2π

24t ), where a
is the amplitude of the sine. We tested 10 cases for each
loading scheme, for a total of 30 varied loading scenarios,
and constrained our scaling range to ±15% of the original
loads. For the first and last loading schemes, we tested samples
evenly distributed within this scaling range.

Table I summarizes the MTP AC-OPF feasibility results,
which use the binary variables from the UC solutions shown
in the left-most column. Each UC formulation has a tallied
number of total feasible and infeasible solutions, as well as
the number of scenarios that did not produce a solution (either
due to an infeasible UC problem or the inability of the MTP
AC-OPF problem to converge within a reasonable time limit).
The UC problems were run until a relative MIP gap of 1%
was achieved; otherwise, the best feasible solution found after
one hour of solving was used. If a MTP AC-OPF feasible
solution was found for the unit commitment decisions resulting
from the NN AC-UC problem and for either the L AC-UC
or DC-UC problems, the resulting total operation costs from
these simulations were similar. That is, across all considered
networks and all loading scenarios, the maximum difference
between two feasible solutions for a given network and loading
profile was 0.02%. Therefore, we focus our discussion on
feasibility rather than optimality.

Overall, the NN-based method outperforms the linear and
DC approximations. There are multiple cases where the NN-
based approximation is the only formulation that selects a
feasible unit commitment schedule. For the 14-bus network,
this is true for 15 out the the total 30 test cases, and for
the 89-bus network, 5 out of the 30 test cases. Furthermore,
the NN-based commitment schedules are only MTP AC-OPF
infeasible (or unable to find a solution) when both the linear
and DC methods are infeasible as well. Also, note that the
feasibility of the test cases were not verified.

For the 57-bus network, we found that the linear power-
flow approximation performed equally as well as the NN-based
approximation in all cases. Most unit commitment schedules
for this test case required all generators to be ON at all times,
which, we hypothesize, did not require the additional accuracy
afforded by the NN-based UC formation.

Lastly, we compared the apparent power flows predicted in
the NN-based and linear UC problems to those of the actual
apparent power flows calculated via their associated MTP
AC-OPFs. Figure 3 compares the 1-norm error between the
predicted and actual apparent power flows for the NN-based
(red dots) and linear (blue dots) methods for the 30 considered
loading cases in Table I. The NN-based approximation outper-
forms the linear approximation in all but one case. Apparent
power flows in the opposite direction (stf) has similar results
to those shown in Figure 3.
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TABLE I
MTP AC-OPF RESULTS FOR LOAD VARIATIONS

14-bus 57-bus 89-bus

NN AC-UC
Feasible 28 30 28
Infeasible 2 0 1
No solution 0 0 1

L AC-UC
Feasible 13 30 22
Infeasible 15 0 8
No solution 2 0 0

DC-UC
Feasible 0 23 19
Infeasible 30 7 10
No solution 0 0 1

V. CONCLUSIONS

This paper has demonstrated proof-of-concept for modeling
AC power flow constraints with a compact NN-based piece-
wise linear power flow mapping; this mapping was learned
directly from feasible power flow solutions. Once trained,
we replaced the power flow constraints inside of the AC-
UC problem with the NN-based model. Hence, the AC-UC
MINLP is transformed into a more tractable MILP. Our results
show that the NN-based formulation often generates feasible
commitment schedules when the benchmark models (DC-
UC and L AC-UC) could not. Furthermore, the NN-based
formulation only produced infeasible schedules when both
benchmark models did as well. These results confirm that low-
rank updates of a linear power flow model can successfully ap-
proximate the nonlinear power flow equations across expansive
operational regions, and they show that NN-based modeling
of power flow can help alleviate the computational burden of
the AC-UC problem in way that increases the feasibility of
scheduling decisions relative to linear models.

While embedding the learned power flow mapping into
the UC problem generally resulted in a greater number of
feasible commitment decisions, the computational cost of the
associated UC problem also increased. A NN with ρ ReLU
activation functions applied to a UC problem spanning T
hours will result in the addition of ρ×T new binary decision

Figure 3. These three plots show the 1-norm error between the predicted
apparent power flows (s̃ft, calculated via the NN AC-UC and L AC-UC)
and the actual apparent flows (sft, calculated via the MTP AC-OPF) in per-
unit for the 30 test cases with varied loads. Red dots mark the 1-norm
error associated with the NN-based power flow approximation, and blue dots
mark the linear approximation. Missing data points correspond to infeasible
solutions or problems that did not find a solution within a reasonable time.

variables. In this paper, we took steps to both limit ρ and
increase the sparsity of the generally dense NN weighting ma-
trices. Future work, however, will investigate other methods for
limiting computational expense, e.g., by parameterizing which
ReLU activation function can be active as a function of the
time varying load profile: ρ(T ). On top of the computational
expense challenge, we also found that the performance of the
NN depended strongly on the power flow samples used to
train the model. Choosing power flow training data samples
which were not representative of the UC problem negatively
impacted the feasibility of commitment decisions in testing. In
this paper, we utilized a simplistic rejection sampling approach
for collecting feasible power flow training data. Future work
will utilize more advanced, optimization-based methods for
collecting representative training data across more targeted
regions of power flow space.

Finally, in this paper, the performance of the NN model was
evaluated both statistically (i.e., by computing model perfor-
mance on sampled testing data) and through UC commitment
decisions (i.e., schedule feasibility). In order to engender
stronger trust in the learned model across larger operational
regions, future work will focus on using optimization-based
methods to rigorously verify the performance of the NN
model.

APPENDIX

The power injection Jacobian Jpq ∈ R2n×2n relates polar
voltage (v, θ) and nodal power injection (pinj, qinj) perturba-
tions via

Jpq = (〈d(Ybve
jθ)∗〉+ 〈d(vejθ)〉N〈Yb〉)R(vejθ), (42)

where d(·) is the diagonalization operator, and R(·), N , and
〈·〉 are given in [31]. The apparent power line flow Jacobians,
Js,ft,Js,tf ,∈ Rm×2n, can be constructed by first partitioning
the Jacobians relating active and reactive power flows in the
lines:

Jγ = (〈d(Yγve
jθ)∗Eγ〉+〈d(Eγve

jθ)〉N〈Yγ〉)Rv (43a)

=

[
∂pγ

∂v
∂pγ

∂θ
∂qγ

∂v
∂qγ

∂θ

]
, γ ∈ {ft, tf} (43b)

where Rv , R(vejθ). Since apparent power is related to active
and reactive power via (37)-(38), the chain rule yields the
Jacobian of s, where xd , d(x):

Js,γ = (sγd )−1

[
pγd
∂pγ

∂v
+ qγd

∂qγ

∂v
pγd
∂pγ

∂θ
+ qγd

∂qγ

∂θ

]
.

(44)
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