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Abstract—Wildfires pose a growing risk to public safety in
regions like the western United States, and, historically, electric
power systems have ignited some of the most destructive wild-
fires. To reduce wildfire ignition risks, power system operators
preemptively de-energize high-risk power lines during extreme
wildfire conditions as part of “Public Safety Power Shutoff”
(PSPS) events. While capable of substantially reducing acute
wildfire risks, PSPS events can also result in significant amounts
of load shedding as the partially de-energized system may not
be able to supply all customer demands. In this work, we
investigate the extent to which infrastructure investments can
support system operations during PSPS events by enabling
reduced load shedding and wildfire ignition risk. We consider the
installation of grid-scale batteries, solar PV, and line hardening or
maintenance measures (e.g., undergrounding or increased vege-
tation management). Optimally selecting the locations, types, and
sizes of these infrastructure investments requires considering the
line de-energizations associated with PSPS events. Accordingly,
this paper proposes a multi-period optimization formulation that
locates and sizes infrastructure investments while simultaneously
choosing line de-energizations to minimize wildfire ignition risk
and load shedding. The proposed formulation is evaluated using
two geolocated test cases along with realistic infrastructure
investment parameters and actual wildfire risk data from the
United States Geological Survey. We evaluate the performance
of investment choices by simulating de-energization decisions for
the entire 2021 wildfire season with optimized infrastructure
placements. With investment decisions varying significantly for
different test cases, budgets, and operator priorities, the nu-
merical results demonstrate the proposed formulation’s value in
tailoring investment choices to different settings.

Index Terms—power system resiliency, infrastructure harden-
ing, wildfires, optimal transmission switching

I. INTRODUCTION

Climate change is increasing the prevalence of wildfire-
prone conditions, leading to more severe and frequent wild-
fires [1], [2]. While most wildfires are not started by electric
power infrastructure, wildfires ignited by power lines tend
to be more destructive than those from other sources [3].
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For instance, less than 10% of reported wildfire ignitions in
California are due to power lines, but these account for about
half of the most destructive fires [4], including the 2018 Camp
Fire that is classified as the “most destructive fire in California
history” with over 100,000 burnt acres, 85 deaths, and over ten
billion dollars in damage [5], [6]. Accordingly, engineers must
operate and design power systems in a manner that mitigates
the risk of wildfire ignitions [5], [7], [8].

To address imminent wildfire conditions, system operators
use so-called “Public Safety Power Shutoffs” (PSPS) that
temporarily de-energize power lines located in wildfire-prone
regions during severe wildfire conditions [4]. De-energized
lines cannot ignite wildfires, so PSPS strategies are effective
at quickly reducing acute wildfire ignition risks. However, risk
reduction from PSPS events comes at the cost of load shedding
if the partially de-energized system cannot supply all load de-
mands. A recent cost/benefit analysis in [9] regarding various
strategies for mitigating wildfire ignition risks indicates that
PSPS events are a cost-effective mechanism for reducing acute
wildfire risks. Since they are likely to continue being employed
during severe wildfire-prone conditions, PSPS events deserve
further research to achieve system operators’ goals of making
PSPS events “smaller in scope, shorter in duration, and smarter
in performance” [10].

To optimally balance reductions in wildfire ignition risks
and load shedding, Rhodes, Ntaimo, and Roald have recently
formulated and solved optimal transmission switching (OTS)
problems that determine which lines to de-energize [11]. Op-
timizing PSPS events via this OTS approach can significantly
reduce both wildfire ignition risks and load shedding when
compared to the alternative of de-energizing all lines above a
specified risk threshold.

The key difference between the OTS formulation in [11]
and previous OTS formulations (see, e.g., [12], [13]) is that
the lines are switched off solely for the sake of de-energizing
them to reduce wildfire ignition risk, not to achieve some
other objective like reducing operating costs [12], [14], [15]
or improving reliability [16], [17]. Prior OTS applications
achieved these other objectives by focusing on the ability of
transmission switching to ameliorate network congestion. In
contrast, the sets of lines de-energized to mitigate wildfire
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ignition risks are not strongly related to network congestion
effects. Moreover, in contrast to prior OTS applications, OTS
problems in a wildfire context must consider the possibility
of significant load shedding resulting from de-energization of
non-negligible portions of the system.

Over longer time scales, infrastructure investments can
reduce the amount of load shedding needed to achieve desired
risk reductions during PSPS events. For instance, utilities can:

• Add batteries that supply loads during PSPS events to
reduce the amount of load shedding,

• Install distributed energy resources such as solar photo-
voltaic generators to provide local supplies of power,

• Harden power lines via undergrounding, installing cov-
ered conductors, and performing intensive vegetation
management in order to reduce wildfire ignition risk
without the need for de-energization.

The severe impacts of wildfires justify substantial infrastruc-
ture investments. For instance, the Infrastructure Investment
and Jobs Act recently passed in the United States allocates $5
billion towards resiliency measures like undergrounding power
lines to prevent wildfire ignitions and installing microgrids to
reduce the impacts of PSPS events [18]. Likewise, in April
2021, the state of California funded $536 million for wildfire
resilience projects [19]. Moreover, the California utility PG&E
plans to underground 10,000 miles of power lines to prevent
wildfire ignitions, which will require a substantial increase in
the utility’s current rate of 70 miles of newly undergrounded
lines per year [20], [21].

The scale of these investments motivates the development of
algorithms for optimally siting and sizing new power system
infrastructure in a wildfire context. There is an extensive
literature on siting and sizing various power system compo-
nents with the aim of reducing generation costs and providing
ancillary services [22]–[28], improving reliability [23], defer-
ring capital investments [23], [28], etc. However, the wildfire
setting presents a key challenge that differs from this prior
literature, namely, that the infrastructure investments will be
operated to support future PSPS events. Thus, choices for the
locations and sizes of the infrastructure investments should be
cognizant of the underlying line de-energizations associated
with PSPS events.

To the best of our knowledge, none of the existing wildfire
risk mitigation literature (see [8] for a recent survey) proposes
infrastructure investment algorithms that consider OTS-based
line de-energization using a power flow model as in [11]. In
other words, none of the existing literature discusses how to
optimally plan infrastructure investments in order to support
system operations during PSPS events. A cost/benefit analysis
by Williamson indicates that solar PV generation could be
effective at reducing load shedding during PSPS events in
Australia [29], Haces-Fernandez studies the suitability of
wind generators to locally supply power during wildfire-
prone conditions [30], and Taylor and Roald consider line
undergrounding investments in the context of various wildfire
risk metrics [31]. While providing many valuable insights, the
formulations in these papers do not incorporate a power flow

model and may therefore miss important spatial interactions
and network constraints inherent to power systems. Other
papers focus on methods for operating power systems during
wildfire-prone conditions. For instance, both Nazemi et al. and
Tandon, Grijalva, and Molzahn study the impact of dynamic
line ratings to increase operational flexibility [32], [33], Hong
et al. propose data-driven techniques for minimizing load
shedding after switching off high-risk lines while considering
the possibility of cascading failures [34], Zhou et al. use
data-mining techniques to assess and mitigate wildfire ignition
risks [35], Haseltine and Roald analyze how recloser operation
affects both wildfire risks and system reliability [36], and
Kadir et al. describe a reinforcement learning approach to line
de-energization and other operational decisions [37]. However,
none of these papers incorporate an infrastructure investment
model. Many other papers propose methods for enhancing
power system resilience to extreme events such as wildfires,
but do not explicitly consider a line de-energization model
based on wildfire ignition risks; see [38]–[41] for recent
surveys of the power system resilience literature.

Accordingly, this paper proposes optimization formulations
that augment OTS problems which minimize wildfire ignition
risks with models for optimally siting and sizing various in-
frastructure investments. We specifically consider investments
in batteries, solar photovoltaic (PV) generators, and infrastruc-
ture hardening via undergrounded lines, covered conductors,
and intensive vegetation management. We first propose a
multi-period extension of the OTS problem presented in [11]
for mitigating the risk of wildfire ignitions. The time peri-
ods in this problem are coupled by both the selection of a
fixed network topology across all periods and the batteries’
state-of-charge dynamics. We then extend this multi-period
OTS problem to an infrastructure investment formulation that
incorporates models of batteries, solar PV generators, and
infrastructure hardening, using discrete variables to represent
the presence of these investments at each location. Finally,
we numerically demonstrate the proposed infrastructure invest-
ment formulation using realistic test cases with actual wildfire
risk and infrastructure investment data.

As in much of the other existing literature on mitigating
wildfire ignition risks (e.g., [11], [31], [33]–[35], [37]), we
focus on transmission systems. Transmission systems have ig-
nited major fires, such as the 2018 Camp Fire in California [5],
[6], and are thus deserving of significant research attention.
Additionally, we note that distribution systems can also ignite
wildfires [42]. Studying analogous formulations that aim to
further mitigate wildfire risks and load shedding during PSPS
events via infrastructure investments in distribution systems is
an important direction for future research.

We also note that this paper uses the DC power flow
approximation to formulate mixed-integer linear programming
(MILP) problems that can be solved with commercial tools.
Since the switching decisions from solutions to OTS problems
that use a DC power flow approximation may be suboptimal
or infeasible when evaluated using an accurate AC power flow
model [43]–[45], our future work aims to extend the results
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in this paper by leveraging the wide range of power flow
approximations and relaxations that have been developed in
the last decade [46].

This paper is organized as follows. Section II first intro-
duces notation and formulates a multi-period extension of the
wildfire-risk-minimizing OTS problem from [11]. Section III
then proposes our models for infrastructure investments in
batteries, solar PV generators, and infrastructure hardening.
Sections IV and V next describe the test cases and procedures,
respectively, that we use to evaluate our models, followed by
the numerical results in themselves in Section VI. Section VII
then discusses limitations of the proposed approach and needs
for further research. Finally, Section VIII concludes the paper.

II. MULTI-TIME-PERIOD
PUBLIC SAFETY POWER SHUTOFFS

In this section, we present a framework for optimized multi-
time-period PSPS events. Past work [11] formulates optimized
shutoffs for a single time period. Here, we extend this existing
work, and consider how varying demand throughout a day
may affect the set of lines selected for de-energization. In
Section III, we investigate the placement of batteries to support
line de-energization, which couples the time periods together.

Our framework models a single day of operation when the
risk of wildfire ignition via power systems infrastructure is
high. Hence, system operators no longer operate the network
to minimize generation cost, but rather to reduce the risk
of wildfire ignition while minimizing load shedding. As is
consistent with United States Geological Survey (USGS) wild-
fire forecasts [47], we assume that the risk associated with a
single energized line is static over a day. Therefore, given a
forecast for wildfire risk and multi-time-period demands, our
framework selects lines to de-energize for an entire 24-hour
period. Although switching lines multiple times per day would
provide more flexibility for reducing load shedding, utilities
must perform inspections of de-energized lines to ensure safe
re-energizations [48]. The time required for these inspections
precludes the use of intraday switching in our formulation.

We model power flow using the DC approximation, which
neglects reactive power, line losses, and voltage magni-
tudes [49]. Specifically, we use the BΘ representation of
the DC power flow approximation. Prior publications such
as [43]–[45] have highlighted discrepancies between OTS
problems that use the DC approximation versus the AC power
flow model. AC OTS problems are challenging mixed-integer
nonlinear programming (MINLP) problems, and formulating
scalable and computationally tractable solution methods are
the focus of on-going research [43]–[45], [50], [51], with
many approaches using power flow relaxations and approx-
imations [46]. Therefore, we use the DC approximation for
computational tractability in this investigative work, and will
consider the AC power flow model in future extensions.

A. Parameter and Variable Definitions

For a given network, let N be the set of buses, L be the
set of transmission lines, and G be the set of generators. Let

T = {1, . . . , T} be the considered set of time indices over the
period of a day, where T is the final time period. We define a
100 MVA per unit (p.u.) base power. The following network
parameters are provided for all lines ℓ ∈ L:

• bℓ, line susceptance in p.u.,
• f

ℓ
, the power flow limit in p.u.,

• rℓ, the wildfire risk incurred if line ℓ is energized as a
unitless non-negative number,

• nℓ,fr and nℓ,to, to and from buses, respectively, where
positive power flows from the from bus to the to bus,

• δ
ℓ

and δℓ, upper and lower voltage angle difference limits
in radians, respectively,

• lℓ, line length in miles.

For all generators i ∈ G, define the parameters:

• pig and pi
g
, upper and lower power generation limits,

respectively, in p.u.,
• ni, bus at which generator i is located.

For all buses n ∈ N , define the parameters:

• pnd,t, power demand at time period t ∈ T in p.u.,
• Gn, the set of generators located at bus n,
• Ln,to and Ln,fr, the subset of lines ℓ ∈ L with bus n as

the designated to bus, and bus n as the designated from
bus, respectively.

The operation of the network during a multi-time-period PSPS
event is characterized by the following set of variables using
the BΘ representation of the DC power flow model:

• pig,t, power generated at unit i ∈ G at time period t ∈ T
in p.u.,

• θnt , voltage angle at bus n ∈ N at time period t ∈ T in
radians,

• pnls,t, load shedding for buses n ∈ N at time period t ∈ T
in p.u.,

• f ℓ
t , power flowing from bus nℓ,fr to bus nℓ,to along line
ℓ ∈ L at time period t ∈ T in p.u.,

• zℓ ∈ {0, 1}, state of energization of line ℓ ∈ Lswitch,
where Lswitch ⊆ L is the subset of lines that can be de-
energized. If zℓ = 0, then line ℓ is de-energized, and
if zℓ = 1, then line ℓ is energized. Note that the line’s
energization state is constant for all t ∈ T .

B. Operational and Physical Constraints

We require that the generation at all units i ∈ G satisfy their
lower and upper limits at each considered time index:

pi
g
⩽ pig,t ⩽ pig, ∀i ∈ G, ∀t ∈ T . (1)

The load shed at all buses and for all time periods must be
positive1 and cannot exceed the power demand at the bus:

0 ⩽ pnls,t ⩽ pnd,t, ∀n ∈ N , ∀t ∈ T . (2)

1Some test cases model fixed generation as a negative load. We therefore
only allow our formulation to shed loads that are positive, i.e., dnt > 0.
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The power flow along line ℓ ∈ L must not exceed upper and
lower line flow limits; however, if de-energized, then the power
flow along line ℓ is zero:

−f
ℓ
zℓ ⩽ f ℓ

t ⩽ f
ℓ
zℓ, ∀ℓ ∈ Lswitch, ∀t ∈ T (3)

−f
ℓ
⩽ f ℓ

t ⩽ f
ℓ
, ∀ℓ ∈ L \ Lswitch, ∀t ∈ T . (4)

For all lines, we require the voltage angle differences to not
exceed their lower and upper limits, unless the line is de-
energized:

δℓzℓ +M(1− zℓ) ⩽ θn
ℓ,fr

t − θn
ℓ,to

t ⩽ δ
ℓ
zℓ +M(1− zℓ)

∀ℓ ∈ Lswitch, ∀t ∈ T , (5)

δℓ ⩽ θn
ℓ,fr

t − θn
ℓ,to

t ⩽ δ
ℓ
, ∀ℓ ∈ L \ Lswitch, ∀t ∈ T , (6)

where M and M are big-M constants. For the numerical
results in this paper, we compute these constants by simply
summing the angle difference bounds across all lines. We
note that more sophisticated approaches for computing these
constants (e.g., [52], [53]) could lead to faster solution times.

From the DC power flow approximation, the power flow on
each line for each time period must abide by the following:

− bℓ(θn
ℓ,fr

− θn
ℓ,to

) + |bℓ|M(1− zℓ) ⩽ f ℓ
t

⩽ −bℓ(θn
ℓ,fr

− θn
ℓ,to

) + |bℓ|M(1− zℓ),

∀ℓ ∈ Lswitch, ∀t ∈ T , (7)

− bℓ(θn
ℓ,fr

− θn
ℓ,to

) ⩽ f ℓ
t ⩽ −bℓ(θn

ℓ,fr
− θn

ℓ,to
),

∀ℓ ∈ L \ Lswitch, ∀t ∈ T . (8)

Note that if a line is energized (i.e., zℓ = 1), then constraint
(7) reduces to (8). Last, we require power balance at all buses
for all time periods:∑

ℓ∈Ln,fr

f ℓ
t −

∑
ℓ∈Ln,to

f ℓ
t =

∑
i∈Gn

pig,t − pnd,t + pnls,t,

∀n ∈ N , ∀t ∈ T . (9)

C. Objective Function

Our goal is to simultaneously minimize wildfire risk and
load shedding, which are often competing objectives. Let D
be the total demand in the network over all time periods, i.e.:

D =
∑
t∈T

∑
n∈N

pnd,t,

and let R be the total wildfire risk the network poses if all
lines ℓ ∈ L are energized, i.e.:

R =
∑
ℓ∈L

rℓ.

Now, let α ∈ [0, 1] be a parameter that quantifies the priority
of the user between these two competing objectives. If α = 1,
then the user is solely interested in reducing load shedding. If
α = 0, then the user is solely interested in reducing wildfire

risk. For α ∈ (0, 1), the user seeks a weighted balance of
the two objectives. For a given value of α, let Cα(·) be the
objective that the user wishes to minimize, which is a function
of the load shedding and line de-energizing variables:

Cα(z, pls) =
α

D

(∑
t∈T

∑
n∈N

pnls,t

)
+

(1− α)

R

(∑
ℓ∈L

rℓzℓ

)
.

(10)

Observe that dividing the first and second terms in (10) by the
total demand D and the total risk R enables the interpretation
of these terms as the fractions of load shed and wildfire risk
remaining after the line switching operations.

D. Multi-Time-Period PSPS Forumulation

Now, we can formulate the multi-time-period PSPS opti-
mization problem as:

min
pg,θ,f,pls,z

(10) s.t. (1) − (9), (MTP-PSPS)

where our goal is to minimize a weighted combination of
the total load shedding and wildfire risk over the traditional
operational variables (pg , θ, and f ), load shedding (pls), and
the line switching decisions (z).

III. INFRASTRUCTURE INVESTMENTS

The (MTP-PSPS) problem presented in the preceding sec-
tion can help operators manage the trade-off between wildfire
risk reduction and load shedding. However, as the threat of
wildfire ignition becomes more severe and the length of the
wildfire season extends, it may be the case that no trade-off
(i.e., no value of α) provides acceptable system performance.
In this situation, communities may need to invest in new
infrastructure that can either reduce wildfire risk directly (e.g.,
undergrounding lines) or support de-energizing additional lines
via load shed reduction (e.g., installing grid-scale batteries).
California, for instance, is currently investing billions of
dollars in such wildfire resilience infrastructure through state
and federal funding [18]–[21].

In this section, we extend the (MTP-PSPS) problem for-
mulation to consider the placement and operation of new
infrastructure. Although infrastructure placement decisions
would ideally be made in a manner that accounts for many
possible realizations of wildfire risk, in this investigative
work, we make infrastructure placement decisions based on a
representative wildfire risk realization due to the modeling and
computational challenges that exist when jointly considering
optimal switching and an infrastructure investment model.
We present our development of a representative realization in
Section V-A, and discuss future research directions, including
uncertainty modeling, in Section VII.

We explore three types of investments: (1) grid-scale batter-
ies, (2) solar PV, and (3) line hardening or line maintenance
measures. We assume that a user of this investment framework
is provided a budget for infrastructure improvements, and
each investment has an associated cost. Therefore, investment
decisions are based on the load shedding versus wildfire
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risk trade-off parameter α, the total budget, the cost of the
individual investments, and the representative wildfire risk
realization. We first discuss the three considered types of
investments and then formulate the infrastructure investment
problem.

A. Grid-Scale Batteries

First, we consider the placement of grid-scale batteries. We
allow any number of batteries to be placed at a subset of the
buses N batt ⊆ N . We assume all batteries in the network have
the following characteristics:

• E and E, the maximum and minimum energy storage
limits of the battery, respectively, in p.u.,

• En
0 , the sum of the initial charges of the batteries at bus

n ∈ N batt in p.u.,
• e ∈ (0, 1] charge efficiency, and 1

e is the discharge
efficiency,

• pc and p
c
, the maximum and minimum charge rate limits

for a single battery, respectively, in p.u. per considered
time interval,

• pw and p
w

, are the maximum and minimum discharge
rate limits for a single battery, respectively, in p.u. per
considered time interval,

• ϕbatt, price of a single battery in millions of dollars.
For each bus n ∈ N batt, we introduce the following variables:

• xn ∈ Z, number of batteries placed at bus n,
• un

t ∈ {0, 1}, state of batteries located at bus n at time
t ∈ T , where un

t = 1 indicates that the batteries at bus
n are charging, and un

t = 0 indicates discharging,
• pnc,t, charging rate at bus n and at time t ∈ T in p.u. per

considered time interval,
• pnw,t, discharging rate at bus n and at time t ∈ T in p.u.

per considered time interval.
We note that generalizations to consider multiple types of bat-
teries with heterogeneous characteristics are straightforward.

Let En
t (·) be the total energy stored in all batteries placed

at bus n ∈ N batt at time t ∈ T . The stored energy varies as
the batteries charge and discharge:

En
t+1(x, pc, pw) = xnEn

0 +

t∑
τ=1

e · pnc,τ − 1

e
· pnw,τ

∀n ∈ N batt, ∀t ∈ T .

The energy stored in the set of batteries at bus n ∈ N batt must
satisfy lower and upper storage limits:

xnE ⩽ En
t+1(x, pc, pw) ⩽ xnE, ∀n ∈ N batt, ∀t ∈ T .

(11)

Recall that binary variable un
t identifies the state of the

set of batteries at bus n as either charging (un
t = 1) or

discharging (un
t = 0), which prevents a set of batteries from

simultaneously charging and discharging. This is enforced via
lower rate limits:

pnc,t ⩾ un
t pc, pnw,t ⩾ (1− un

t )pw, ∀n ∈ N batt, ∀t ∈ T
(12)

and upper rate limits:

pnc,t ⩽ pcM
battun

t , pnw,t ⩽ pwM
batt(1− un

t ),

pnc,t ⩽ pcx
n, pnw,t ⩽ pwx

n,

∀n ∈ N batt, ∀t ∈ T , (13)

where M batt is a big-M constant that is equal to the maximum
number of batteries possibly placed.

B. Solar PV

Second, we consider the placement of solar PV to support
line de-energization. We assume solar PV can be placed at a
subset of the buses N solar ⊆ N , and the user has access to the
following parameters:

• Sn
t , the maximum possible output of a unit of solar PV

at bus n ∈ N solar and time interval t ∈ T in p.u.,
• ϕsolar, price of 1 unit of solar PV in millions of dollars.

For all n ∈ N solar, we introduce the following variables:
• an ⩾ 0, the number of 1-unit installations of solar PV at

bus n,
• pns,t ⩾ 0, the solar PV output at bus n and time interval

t ∈ T .
We require that the solar PV output does not exceed its

upper bound on the possible power production, which is a
function of the amount of solar PV installed at that bus as
well as the location and time of day:

pns,t ⩽ Sn
t a

n, ∀n ∈ N solar, ∀t ∈ T . (14)

Observe that (14) permits solar production below the maxi-
mum possible power production, i.e., “spilling” solar.

C. Line Hardening and Maintenance

The final type of investment we consider is line hardening
or maintenance for wildfire risk reduction. Let the subset
Lharden ⊆ L be the set of lines that are candidates for
hardening/maintenance. We assume users have access to the
following parameters:

• β ∈ [0, 1], the reduction in wildfire risk due to line
hardening or maintenance measures,

• ϕharden, price of line hardening or maintenance in millions
of dollars per mile of line length.

For all ℓ ∈ Lharden, we introduce the following variable:
• yℓ ∈ {0, 1}, a state of the line indicating whether the line

has been hardened or maintained (yℓ = 1) or no measures
are enacted on the line (yℓ = 0).

We assume that the entire length of line ℓ is hardened
or has increased maintenance. Hardening or performing in-
creased maintenance on partial segments of lines may provide
better outcomes by targeting improvements in specific areas;
however, this does not change the fundamental characteristics
of the problem and our formulation could be extended ac-
cordingly. We note that reference [31] studies line upgrades
on partial segments for wildfire risk mitigation, but does not
include a power flow model.
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Note that there is no benefit to simultaneously hardening
and de-energizing a line since de-energizing a line reduces its
risk to zero while hardening a line reduces the risk by β at a
cost of ϕharden per mile. We impose the following constraint so
that the solver does not consider simultaneously de-energizing
and hardening a line:

(1− zℓ) + yℓ ⩽ 1, ∀ℓ ∈ Lharden ∩ Lswitch. (15)

D. Infrastructure Investment Formulation

Now we can formulate the infrastructure investment prob-
lem. We require power balance at all buses:∑

ℓ∈Ln,fr

f ℓ
t −

∑
ℓ∈Ln,to

f ℓ
t = −pnd,t + pnls,t − pnc,t + pnw,t

+ pns,t +
∑
i∈Gn

pig,t, ∀n ∈ N , ∀t ∈ T , (16)

where, for notational simplicity, we assume that pnc,t = 0 and
pnw,t = 0, ∀t ∈ T if n ̸∈ N batt. Similarly, we assume pns,t = 0,
∀t ∈ T if n ̸∈ N solar.

Let B be the infrastructure investment budget in millions
of dollars. We require the total investment to be within this
budget, i.e.:∑

ℓ∈Lharden

ϕhardenlℓyℓ +
∑

n∈N batt

ϕbattxn +
∑

n∈N solar

ϕsolaran ⩽ B.

(17)

We modify the objective function in (10) to include the
reduction in wildfire risk via line hardening or maintenance.
Let Cα

invest(·) be the modified objective function, which we
define as:

Cα
invest(pls, z, y) = Cα(pls, z)−

(1− α)

R

∑
j∈Lharden

βrjyj . (18)

We can now formulate the multi-time-period PSPS infras-
tructure investment problem as:

min
pg,θ,f,pls,z,x,u,pc,pw,a,ps,y

(18)

s.t. (1) − (9), (11) − (17),
(Invest-Opt)

where our goal is now to minimize a weighted combination of
the total load shedding and wildfire risk taking into account
the reduction of risk via line hardening or maintenance. We
optimize over the traditional operational variables (pg , θ, and
f ), load shedding (pls), line switching decisions (z), battery
variables (x, u, pc, and pw), solar PV variables (a and ps),
and line hardening/maintenance variables (y).

IV. TEST NETWORKS AND PARAMETER VALUES

In this section, we present the two networks that we use
for numerical tests. We also assign values to the parameters
described in Sections II and III for the (Invest-Opt) problem.

Fig. 1: Locations of the RTS network (left) and the WECC
network (right).

TABLE I: Network Sizes

RTS WECC

Number of buses |N | 73 240
Number of generators |G| 99 143
Number of lines |L| 120 448

A. Networks

We demonstrate our algorithm using two synthetic trans-
mission networks geolocated in parts of the western United
States that intersect with historically high wildfire risk areas:

1) RTS: 73-bus RTS-GMLC test case, Active Power In-
crease (API) version,

2) WECC: 240-bus test case representing the Western In-
terconnect.

The network topologies and electrical information associated
with these test cases are adopted from [54] based on data
originating from [55] and [56]. Figure 1 shows the locations
of these networks within the continental United States. Geo-
graphic locations of buses for the RTS network are available
within the test case data; however, geographic data for the
WECC network is not readily available. To geolocate most of
the buses, we obtained partial geographic information from the
WECC test case considered in [57]. For the remaining buses,
we used the bus name and zone information provided in [58]
to infer their locations.

Table I shows the number of buses, generators, and lines for
the RTS and WECC networks. For both considered networks,
the lower limits of all generators are set to zero to guarantee
solution feasibility, i.e., pi

g
= 0, ∀i ∈ G. The WECC network

has two DC lines located in southern California, which are
modeled as pairs of negative and positive demands at the lines’
terminals. To ensure solution feasibility, we assume these DC
lines are not energized and thus remove the corresponding
power injections. Therefore, all demands in the network are
non-negative. We also assume a linear routing of transmission
lines between the locations of their terminal buses.

B. Wildfire Risk Values

The wildfire ignition risk posed by an energized power line
depends on a number of factors involving the environmental
conditions around the line and the line’s physical character-
istics. Translating these factors into numeric risk values is
challenging (see, e.g., [59]) and requires detailed data that are
not available for our test cases.
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As a proxy for more sophisticated calculations of the risk
values, we use the daily forecasts of the Wind-enhanced Fire
Potential Index (WFPI) produced by the USGS. WFPI is a
unitless metric ranging from 0 to 150 that measures vegetation
flammability while also accounting for wind speed, rain,
temperature, etc. USGS reports that large fires are associated
with the highest WFPI values [60].

Historically, wildfire season in the western United States
typically spans from late summer to early fall; however, recent
wildfire seasons have been lengthening [61]. Therefore, our
analyses use data from June 1 to October 31, which we will
refer to as the wildfire season.

For each day in wildfire season over the last three years
(2019, 2020, and 2021), we assign a unitless wildfire risk value
rℓ for each line ℓ ∈ L in the considered networks. We calculate
the risk value rℓ by integrating the WFPI forecast values along
each line. This method inherently results in long lines having
higher risk values, which is also a characteristic that utilities
have correlated with high ignition risk [59].

C. Hourly Loads

We consider time indices representing one-hour periods and
select T = 24 to model one day. However, the RTS and WECC
test cases in [54] provide a single snapshot of nominal load
demands. The multi-period optimization problem considered
in this paper requires extending these test cases with time-
varying load profiles. For this purpose, we modify the nominal
loads according to the hourly, daily, and weekly scaling values
reported in [62] to create hourly load profiles for each day
during the wildfire season.

D. Solar Parameters

To model solar installations, each network is divided into
various solar zones that group nearby buses in similar geo-
graphic regions. A single bus near the center of each zone
is selected to create a representative solar curve. A total of
3 zones are used for the RTS network and 14 zones for the
WECC network. Using PVWatts from the National Renewable
Energy Laboratory [63], solar output from a fixed-tilt 1 kW
solar panel is generated for each hour of each day in the
wildfire season to determine the maximum solar output per
unit of solar capacity installed at bus n, Sn

t . Assuming linear
scaling for output power, the total solar output for a node is
then given by Sn

t a
n, where an denotes the number of 1 kW

solar panels installed at bus n.

E. Battery Parameters

Table II summarizes the battery parameters used in our
numerical tests. Batteries are modeled to have a capacity of 1.0
p.u. (100 MWh) in our problem formulation [64]. This is con-
sistent with utility-scale lithium-ion battery installations [65].
The charging efficiency, e, is 95% for each battery installa-
tion [66]. Each battery is allowed to discharge completely and
charge to 90% in one time period with maximum charge and
discharge rates of 0.95 p.u./hour [66].

TABLE II: Battery Parameters

Parameter Value

minimum storage limit E 0 p.u.
maximum storage limit E 1.0 p.u.

charge efficiency e 0.95
minimum charge rate p

c
0 p.u./hour

maximum charge rate pc 0.95 p.u./hour
minimum discharge rate p

w
0 p.u./hour

maximum discharge rate pw 0.95 p.u./hour

F. Risk Reduction Due to Line Hardening or Maintenance

As discussed in Section I, we consider three types of line
hardening and maintenance investments: (1) undergrounding
lines, (2) installing covered conductors, and (3) performing
increased vegetation management. Recall from Section III-C
that β ∈ [0, 1] is a parameter that captures the reduction
in wildfire risk due to the implementing one of the these
three investments. As shown by the β values in Table III,
we assume that undergrounding a transmission line eliminates
all wildfire ignition risk associated with that line, installing
covered conductors reduces the risk by half, and performing
increased vegetation management reduces the risk by a quarter
based on estimates from the references provided in this table.

TABLE III: Risk Reduction via Line Hardening/Maintenance

β References
undergrounding 1.0 [67]

covered conductors 0.5 [67], [68]
vegetation management 0.25 [69]

G. Investment Budget

We consider total budgets ranging from $100 million to
$1 billion in increments of $100 million. The magnitude of
these budgets are based on typical investment estimates being
discussed by policymakers [18]–[21].

H. Costs of Considered Infrastructure

Table IV lists the costs of the considered investments as
well as the references used to identify these cost values. Note
that the cost per mile to underground existing transmission
lines widely varies. The Edison Electric Institute reports that
converting overhead transmission lines to underground ranges
between $1.3 and $14.7 million per mile in 2022 dollars [70].
We have chosen to use a cost of $3 million/mile taking
into account that [67] reports the cost of undergrounding
is approximately seven times the cost of installing covered
conductors per mile along with the cost values reported in
other sources [71].

We have reported the cost of vegetation management for a
20-year period so that the cost is comparable to the lifetime
of grid-scale lithium-ion batteries, roughly 15 years, and solar
panels, roughly 25-30 years [64], [77].
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TABLE IV: Cost of Infrastructure Investments

Cost References
battery1 $20 million per battery [72]

solar PV2 $940 per 1-kW-DC array [73]
undergrounding $3 million per mile [67], [71]

covered conductors $0.5 million per mile [67], [74], [75]
vegetation management3 $0.01 million per mile [76]
1 100 MWh lithium-ion grid-scale battery.
2 Fixed-tilt, utility-scale PV system.
3 Over a 20 year period.

V. EVALUATION AND BENCHMARKING METHODOLOGIES

In this section, we describe our methodologies for selecting
and evaluating the performance of infrastructure investment
decisions. We first determine the optimal types, quantities, and
locations of new infrastructure based on a representative wild-
fire risk realization derived from 2019 and 2020 risk values
and the optimization formulation described in Section III-D.
Next, we evaluate these infrastructure investment decisions
by simulating PSPS events during the 2021 wildfire season
and analyze the resulting wildfire risk reductions and load
shedding. In the following subsections, we describe the details
of these methodologies.

A. Infrastructure Investment Decisions

We examine eight infrastructure investment scenarios, each
considering different combinations of infrastructure types, as
outlined in Table V. For each scenario, we find the optimal
placement via the (Invest-Opt) formulation for the ten budgets
described in Section IV-G. For each budget, we evaluate α
values ranging from 0.05 to 0.95 in increments of 0.05. We
do not present results for α = 0 or α = 1.0 because these
values give unrealistic solutions (e.g., de-energize all lines).
Thus, for each investment scenario, we assess 190 total cases.

Ideally, we would select infrastructure investments by
jointly considering daily risks and load shedding for a full
wildfire season or calendar year. However, solving such an
optimization problem that simultaneously considers T = 24 ·
365 = 8760 hourly time periods is computationally intractable.
Therefore, we aggregate the wildfire risk and load demand
into a single representative worst-case date. As future work,
we intend to use stochastic optimization methods to better
capture temporal variations and uncertainties in the wildfire
risk, load demands, and solar power availability.

Since we are interested in placing infrastructure in a manner
that minimizes wildfire risk and load shedding over a season,
we develop a profile of wildfire risks to capture the historically
riskiest values. Recall that rℓ is the risk value associated
with line ℓ ∈ L. To assign a risk value to rℓ for the
infrastructure investment problem, we average the top 10% of
all risks experienced by line ℓ over the 2019 and 2020 wildfire
seasons. Since the infrastructure investment problem does not
correspond to a particular day but rather a representative 24-
hour period, the demands are assigned to be the nominal loads
modulated by the hourly load profile of the peak demand day.

Moreover, all batteries selected for placement in the network
are initially fully charged in anticipation of a PSPS event.

B. Performance Evaluation: 2021 Wildfire Season Simulation

After making infrastructure investment decisions for the
scenarios outlined in the previous subsection based on risk
data for the 2019 and 2020 wildfire seasons, we aim to analyze
the success of these decisions through a sequential simulation
of the 2021 wildfire season. Denote the infrastructure invest-
ment decisions resulting from solving problem (Invest-Opt) as
x = x̂ (battery location and quantity), a = â (solar PV array
location and quantity), and y = ŷ (line hardening locations).

For each day in the 2021 wildfire season, we first deter-
mine if the wildfire threat is high enough to necessitate de-
energizing lines via a threshold on the total risk during that
day. Recall from Section II-C that R is the total wildfire
risk of the network if all lines remain energized. In our
assessment methodology, operators are required to reduce
the total risk of the network by making line de-energization
decisions during any day for which R ⩾ RPSPS, where RPSPS is
a specified system-wide de-energization threshold. Conversely,
if R < RPSPS, then the risk the network poses is not great
enough to require de-energizing lines.

We set RPSPS to represent the 75th percentile of the daily
R values from the 2019 and 2020 wildfire seasons. Using this
threshold to analyze the 2021 wildfire season, there are 14 and
28 days when the total wildfire risk exceeds this threshold for
the RTS and WECC test cases, respectively. This threshold
was chosen because the resulting number of days when PSPS
events occurred is similar to the number of events that have
actually been enacted annually [78], [79].

For each day that meets or exceeds the RPSPS threshold,
we use the wildfire risk values and demands associated with
that particular date to make de-energization decisions. We also
assume that any batteries in the network are able to fully
charge before a PSPS event. However, if PSPS events occur
on back-to-back days, we assume that the batteries may not
have enough time to fully recharge after the first PSPS day.
Thus, the initial states-of-charge for the batteries in such cases
are set to the final states-of-charge from the proceeding day.

Line de-energization decisions are made to minimize the
weighted sum of network load shedding and wildfire risk with
investment decisions fixed. This method represents the behav-
ior of a system operator who follows an optimal transmission
switching strategy to balance wildfire risk and load shedding
as in Section II, analogous to the proposal in [11].

Note that we modify the objective function in (18) to include
a term that incentivizes increased final states-of-charge for
batteries to improve the battery flexibility on back-to-back
days with PSPS events. Let the total available battery storage
be:

Etotal =
∑

n∈N batt

x̂nE. (19)
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TABLE V: Investment Scenarios

Scenario Considered infrastructure types Nonempty sets Empty sets
1 batteries N batt N solar,Lharden

2 solar PV N solar N batt,Lharden

3 undergrounding Lharden N batt,N solar

4 covered conductors Lharden N batt,N solar

5 vegetation management Lharden N batt,N solar

6 batteries, solar PV, undergrounding N batt,N solar,Lharden –
7 batteries, solar PV, covered conductors N batt,N solar,Lharden –
8 batteries, solar PV, vegetation management N batt,N solar,Lharden –

We also account for the reduction in wildfire risk due to
line hardening investments. Now, let the modified objective
function be Cα

seq(·), which we define as:

Cα
seq(pls, z, pc, pw) =

γ

Etotal

∑
n∈N batt

En
T+1(x̂, pc, pw)

+
α

D

(∑
t∈T

∑
n∈N

pnls,t

)
+

(1− α)

R

(∑
ℓ∈L

rℓzℓ
(
1− βŷℓ

))
,

(20)

where γ ⩾ 0 is a scaling term that we set to γ = 0.01. A
small value of γ incentivizes operation which stores energy
for the next day to the extent that doing so does not overly
restrict wildfire risk and load shedding performance for the
current day. For notation simplicity, we assume ŷ = 0 for
all y ̸∈ Lharden. With this modification, we formulate the de-
energization problem with fixed infrastructure investments as:

min
pg,θ,f,pls,z,x,u,pc,pw,a,ps,y

(20)

s.t. (1) − (9), (11) − (17),
x = x̂, a = â, y = ŷ.

(Seq-Opt)

VI. NUMERICAL RESULTS

This section presents the results of the evaluation and
benchmarking methodologies discussed in Section V applied
to the two test cases described in Section IV. Optimization
problems were solved using Gurobi 9.1.0 to a 1% MIP gap
(except for a few instances that were unable to converge to
this accuracy within a reasonable time period and which we
identify accordingly). To implement the optimization formu-
lations, we used Julia 1.6.1 with JuMP 0.22.2 along with the
data input functionality of PowerModels.jl 0.19.1 [80].

A. RTS Results

For the RTS network, we allow all lines to be de-energized
or to be hardened/maintained, i.e., Lswitch = Lharden = L, and
we allow solar PV and batteries to be placed at any bus, i.e.,
N solar = N batt = N . We first illustrate the performance of the
(Invest-Opt) formulation for the RTS system. Figure 2 shows
the optimal budget allocation between grid-scale batteries (red
bars), solar PV (blue bars), and hardened/maintained lines
(green bars). The plots in each column correspond to three
different budget values: B = $100M, B = $500M, and
B = $1000M. Each row in this figure corresponds to a
different investment scenario in Table V, which includes the

possible installation of batteries, solar PV, and one of the
three line hardening/maintenance options: increased vegetation
management (Scenario 8, top row), covered conductors (Sce-
nario 7, middle row), and undergrounding (Scenario 6, bottom
row). The horizontal axis of each plot is the considered α value
and the vertical axis is the percent of the budget. This figure
shows that the optimal solution to (Invest-Opt) often decides
to spend all or nearly all of the budget on undergrounding lines
when given that option, showing that the benefits of completely
eliminating wildfire ignition risk by undergrounding lines
outweighs its high cost. A much smaller fraction of the budget
is spent on intensive vegetation management; however, the cost
per mile for vegetation management is much cheaper (0.333%)
than the cost per mile to underground lines, which likely
explains why this accounts for a smaller fraction of the budget.
For the RTS network, batteries are almost exclusively installed
for high values of α (prioritizing reduced load shedding). This
may be because this case has more energized lines which
enables more effective use of the batteries’ charging and
discharging capabilities.

Figure 3 displays the results of the (Invest-Opt) formu-
lation on the network diagram with investment options for
installing batteries, solar PV, and covered conductors with
budgets B = $100M and B = $1000M and α values of
0.05 (prioritize reductions in wildfire ignition risk), 0.5 (equal
weighting of priorities), and 0.95 (prioritize reductions in
load shedding). Lines are colored based on their risk value,
where green corresponds to low risk and red corresponds to
high risk. Lines that are chosen to be hardened via covered
conductor installation are thick, while unhardened lines are
thin. Lines that are de-energized are dotted. Red circles mark
the load shedding at each bus, where larger circles indicate
larger amounts of load shedding in absolute quantities (MW)
as opposed to a percentage of the demand at the bus. Blue
diamonds mark solar PV installations and grey hexagons
mark battery installations, where larger shapes indicate more
installations at that bus. Low values of α prioritize wildfire
risk reduction, and therefore, we see much more load shed,
regardless of budget, for α = 0.05. Conversely, high values
of α prioritize load shedding reduction, and we see small or
no load shedding for α = 0.95. With many generators and a
robust transmission network, we note that a large number of
lines can be turned off in the RTS system to reduce wildfire
risks with relatively limited load shedding.

Figure 4 illustrates trade-off curves of wildfire risk versus
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Fig. 2: Percent of budget spent on different investment types for the RTS network. Results are shown for three budgets ($100M,
$500M and $1000M) and three difference investment scenarios as described in Table V (Scenarios 6, 7, and 8). The plots
show the budget breakdown for various values of trade-off parameter α when the formulation is allowed to install batteries
(red bars), solar PV (blue bars), and one of the three line hardening/maintenance options (green bars): increased vegetation
management (top row), covered conductors (middle row), and undergrounding (bottom row).
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Fig. 3: Location of infrastructure investments for the RTS network if allowed to install batteries, solar PV, and covered
conductors. The plots show results for two different budgets: B = $100M (left column) and B = $1000M (right column), as
well as three different values of the trade-off parameter: α = 0.05 (top row), α = 0.5 (middle row), α = 0.95 (bottom row).
Red circles show the amount of load shedding at the associated bus. Larger circles indicate more load shedding. Grey hexagons
and blue diamonds mark battery and solar PV installations, respectively. Again, larger symbols indicate more installations at
that bus. The color of a transmission line illustrates the wildfire risk incurred if that line is energized. Dark red lines have the
most risk, dark green lines have the least risk, and orange lines pose a medium risk. Lines that are dotted are selected to be
de-energized, and thickened lines are selected to hardened via covered conductors.
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Fig. 4: Trade-off curves for single-investment strategies (left) and multi-investment strategies (right) for B = $500M for the RTS
network. Dotted lines mark trade-off curves predicted from the placement optimization (Invest-Opt). Load shedding and wildfire
risk values are normalized by the total load and the total wildfire risk posed by the network in the worst-case manufactured risk
and load profiles discussed in Section V-A. Solid curves result from the 2021 season-long simulation discussed in Section V-B.
Load shedding and wildfire risk values are normalized by the total load and the total wildfire risk posed by the network over
the entire 2021 season of PSPS days.

load shedding for the different investment scenarios in Table V
over values of α ∈ [0.05, 0.95] with B = $500M. Lower
values of α prioritize mitigation of wildfire risk at the top
left of the plots. The curves slope down to the right as α
increases to prioritize load shed reductions. As can be seen by
comparing the right plot to the left plot, the trade-off curves for
multi-investment strategies are largely dictated by the type of
line hardening or maintenance selected, with the inclusion of
solar PV and battery installations being relatively ineffective
at shifting the curves. Dotted lines mark the predicted trade-
off curves resulting from the optimized placements (i.e., the
solutions to (Invest-Opt)) using the representative wildfire risk
profile (see Section V-A), and solid lines mark the perfor-
mance resulting from the 2021 season-long simulation (see
Section V-B). Observe that the dotted curves are conservative
estimates of the investments’ performance in the 2021 wildfire
season. This suggests that the wildfire risk profile used in
the placement problem (Invest-Opt) overestimates the wildfire
risks encountered during typical PSPS events throughout the
season. This is expected given the intended bias in construction
of these risk profiles towards high-risk days. We also note
that relative performance of the investments are qualitatively
similar for both the solid and dotted sets of curves.

Figure 5 shows the trade-off curves across all considered
budgets, with higher budgets corresponding to darker lines on
the plot. As the budget increases, the curves shift towards
the origin which represents operations without load shed or
wildfire risk. The largest improvement between budget values
is seen in the case that includes undergrounding, which follows
from the high expense and large wildfire risk reduction for this
type of investment. Note that, at some values of α with a low
budget, the case that includes undergrounding performs worse

than the other cases. This may be because low budgets do not
allow for many lines, or only short lines, to be undergrounded.

Figure 6 shows the wildfire risk and load shedding for the
RTS network across the entire 2021 season with B = $500M
and α = 0.5 under different investment strategies. The
horizontal, dotted, orange line marks the threshold used to
determine if a given day is a PSPS event. The PSPS events
are determined based on the network wildfire risks before any
investments are made, i.e., if investments lower the wildfire
risk below the threshold on a given day, we still de-energize
lines to have a consistent comparison. For the considered bud-
get and α, we note that while investments with undergrounding
achieve the lowest wildfire ignition risks, investments with
covered conductors result in the lowest amount of load shed
during PSPS days. Recall that undergrounding eliminates a
line’s wildfire risk completely while covered conductors cut
the risk in half at a fraction of the price.

B. WECC Results

The increased size of the WECC network results in compu-
tational challenges when solving the (Invest-Opt) problem. To
obtain results within reasonable computation times, we limit
the sets of switchable lines, Lswitch, and buses where batteries
could be placed, N batt. The 100 lines with the highest wildfire
risk are allowed to be de-energized, and therefore, comprise
the set Lswitch. As mentioned before, the problem formulation
assigns higher risks to longer lines due to the integration
method used in the risk assignment. Accordingly, the set
of switchable lines is largely composed of the longest lines
in the system. Based on observations of battery placements
from solutions for the RTS system, we set N batt to consist
of the buses directly connected to a switchable line or any
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Fig. 5: Trade-off curves from season-long simulations of the
RTS network for budgets ranging from B = $100M to
B = $1000M in increments of $100M. Results are shown
when the formulation is allowed to install batteries, solar
PV, and one of the three line hardening/maintenance options:
increased vegetation management (green), covered conductors
(red), and undergrounding (blue). Darker colored lines corre-
spond to larger investment budgets, and lighter colored lines
mark smaller budgets. For the undergrounding case (blue), the
B = $100M and B = $1000M curves are annotated. Load
shedding and wildfire risk values are normalized by the total
load and the total wildfire risk posed by the network over the
entire 2021 season of PSPS days.

bus connected by a single line to those buses (i.e., all “one-
hop neighbors” from the terminals of switchable lines). This
results in 174 possible battery locations. We do not limit
the placement of solar PV or line hardening/maintaining,
i.e., N solar = N and Lharden = L. The WECC network is
otherwise evaluated using the same methodologies as the RTS
network. Note that four cases failed to achieve a 1% MIP
gap within a reasonable time period. All four cases are invest-
ment scenario 8 (battery, solar PV, and intensive vegetation
management) with budgets B = ${600, 700, 800, 1000}M and
α = {0.90, 0.90, 0.85, 0.95} with MIP gaps of {1.51%, 1.70%,
1.23%, 1.48%}, respectively.

Figure 7 shows the optimal budget allocation between
grid-scale batteries, solar PV, and hardened/maintained lines
across three combinations of investments and three budget
values. Figure 8 shows the placements considering investments
in batteries, solar PV, and covered conductors with budgets
B = $100M and B = $1000M, and α values of 0.05, 0.5,
and 0.95. Note that lower values of α have fewer hardened
lines and more de-energized lines. Since lower α values
prioritize mitigating wildfire risk, this implies a preference to
shut off a line entirely rather than spend money to partially
reduce the risk. This highlights the importance of considering

optimal switching when working on investment problems as
the investment outcomes are predicated on the possibility
of line de-energization. We also note that many scenarios
result in a significant number of de-energized lines due to
the simplified nature of this representative system. While very
large numbers of de-energized lines would not be realistic in
a practical setting, this test case is still useful for illustrating
the performance of the proposed (Invest-Opt) formulation.
Furthermore, the results suggest regions to target for line
de-energizations and infrastructure investments when using a
more realistic and detailed dataset.

Figure 9 illustrates the trade-off curves for different in-
frastructure options, again with solid lines indicating the
performance over the entire wildfire season and dashed lines
indicating expected performance from the optimal investments
with B = $500M and α ∈ [0.05, 0.95]. Once again, we
note that the method of line hardening or maintenance largely
determines the solution’s performance when multiple invest-
ments are considered. However, unlike the RTS network,
here undergrounding performs worse than both vegetation
management and covered conductors. This is likely caused by
the large size of the WECC network, containing over 27,500
miles of modeled transmission lines, and the limited budget
available. With a budget of $500 million and costs of $3
million per mile for undergrounding and $0.01 million per mile
for vegetation management, at most 166.7 miles of lines can
be undergrounded, while 50,000 miles can undergo increased
vegetation management. This accounts for 0.6% and 181.4%
of the total miles of lines in the WECC network, respectively.
Being able to invest in vegetation management for large
portions of this network could account for the increase seen
in the performance of this line maintenance option. Similar
trends are seen across all budgets as shown in Figure 10.

Finally, Figure 11 shows the performance of the WECC
network across the 2021 wildfire season considering invest-
ment strategies including batteries and solar PV with either
undergrounding, covered conductors, or vegetation manage-
ment. Again, PSPS events are marked with vertical dotted
lines when the network risk, without considering reductions
from investments, is above the threshold RPSPS marked as a
dashed, horizontal, orange line. As seen previously, invest-
ment strategies with vegetation management perform best by
consistently having the lowest wildfire risk compared to other
strategies and an average or lower amount of load shedding.

C. Computational Complexity

Similar to expansion planning problems in many settings,
solving our infrastructure investment problem (Invest-Opt) is
computationally challenging. Table VI shows the number of
variables and constraints associated with (Invest-Opt). While
the number of variables and constraints scale linearly with the
size of the system, the problem is still difficult to solve for
large cases, thus necessitating restrictions to the set of switch-
able lines and candidate locations for batteries as described
above for the WECC test case.



ACCEPTED FOR PRESENTATION IN 11TH BULK POWER SYSTEMS DYNAMICS AND CONTROL SYMPOSIUM, JULY 25-30, 2022, BANFF, CANADA 14

Fig. 6: Simulation of 2021 wildfire season for the RTS network given budget B = $500M and trade-off parameter α = 0.5.
The top plot shows the wildfire risk for the 2021 wildfire season for various investment strategies. The horizontal dashed
orange line marks the wildfire risk threshold, RPSPS, which triggers a PSPS event. Vertical dotted orange lines mark days
when the total wildfire risk R is above the risk threshold RPSPS. The black line marks the total risk posed by the network
without any interventions (i.e., no de-energization or investments). Colored lines represent other possible strategies, including
de-energization only (teal). All wildfire risk values are normalized by RPSPS. The bottom plot shows the corresponding load
shed as a percentage of the total load in the network on the associated day.

Solver times are difficult to interpret precisely because our
computations were conducted using a cluster with shared
resources; however, in general, we found that scenarios with
small to moderate values of α, between 0.05 and 0.75, were
completed in approximately one hour. Larger values of α,
between 0.8 and 0.95, took much longer, usually tens of hours,
and many outlier cases took several days. As will next be
discussed in Section VII, these timing results indicate that
future work is needed to improve computational tractability.

VII. LIMITATIONS AND RESEARCH NEEDS

The approach to infrastructure investment that we present
in this paper has advantages in terms of modeling flexibility
and data availability. The numerical results give significant
insights and show that accounting for line de-energization is
crucial for appropriately choosing infrastructure investments.
However, the investigatory work in this paper employs a

number of simplifications that motivate the following future
research directions:

• AC power flow models: The DC power flow model
yields a tractable MILP formulation for the infrastructure
investment problem. However, DC power flow inaccura-
cies may lead to unacceptable errors or even infeasibility
when evaluated using an AC power flow model [43]–[45].
Since directly using an AC power flow approximation
results in a computationally challenging MINLP formu-
lation, future work should study the trade-offs in solution
quality and computational speed associated with various
power flow approximations and relaxations [46].

• Uncertainty models: This paper formulates a determin-
istic problem with known values for load demands, solar
generation, and wildfire risks. However, these aspects of
the problem are all actually uncertain, motivating the use
of stochastic optimization techniques. For instance, an
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Fig. 7: Percent of budget spent on different investment types for the WECC network. Results are shown for three budgets
($100M, $500M and $1000M) and three difference investment scenarios as described in Table V (Scenarios 6, 7, and 8). The
plots show the budget breakdown for various values of trade-off parameter α when the formulation is allowed to install batteries
(red bars), solar PV (blue bars), and one of the three line hardening/maintenance options (green bars): increased vegetation
management (top row), covered conductors (middle row), and undergrounding (bottom row).
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Fig. 8: Location of infrastructure investments for the WECC network if allowed to install batteries, solar PV, and covered
conductors. The plots show results for two different budgets: B = $100M (left column) and B = $1000M (right column), as
well as three different values of the trade-off parameter: α = 0.05 (top row), α = 0.5 (middle row), α = 0.95 (bottom row).
Red circles show the amount of load shedding at the associated bus. Larger circles indicate more load shedding. Grey hexagons
and blue diamonds mark battery and solar PV installations, respectively. Again, larger symbols indicate more installations at
that bus. The color of a transmission line illustrates the wildfire risk incurred if that line is energized. Dark red lines have the
most risk, dark green lines have the least risk, and orange lines pose a medium risk. Lines that are dotted are selected to be
de-energized, and thickened lines are selected to hardened via covered conductors.
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TABLE VI: Number of variables and constraints in placement optimization

Parameter expression RTS WECC WECC limited2

Number of
variables

Continuous |G||T |+ 2|N ||T |+ |L||T |+ 2|N batt||T |+ |N solar|(1 + |T |) 14089 42168 39000

Integer |Lswitch|+ |N batt|(1 + |T |) + |Lharden| 2056 6896 4898

Number of
constraints

Bound1 2|G||T |+ 2|N ||T |+ 2|L \ Lswitch||T | 8256 16272 32976

Inequality 4|Lswitch||T |+ 4|L \ Lswitch||T |+ 8|N batt||T |+ |N solar||T |+ |Lharden ∩ Lswitch| 27408 95296 82276

Equality |N ||T | 1752 5760 5760
1 Lower and upper bounds on individual variables.
2 Assuming |Lswitch| = 100, |N batt| = 174, |Lharden| = 448, and |N solar| = 240 (see discussion in Section VI-B).

Fig. 9: Trade-off curves for single-investment strategies (left) and multi-investment strategies (right) for the WECC network
with B = $500M. Dotted lines mark trade-off curves predicted from the placement optimization (Invest-Opt). Load shedding
and wildfire risk values are normalized by the total load and the total wildfire risk posed by the network in the worst-case
manufactured risk and load profiles discussed in Section V-A. Solid curves result from the 2021 season-long simulation
discussed in Section V-B. Load shedding and wildfire risk values are normalized by the total load and the total wildfire risk
posed by the network over the entire 2021 season of PSPS days.

extension to this work could jointly consider multiple
scenarios for wildfire risks rather than a single aggregated
scenario. Chance constrained and robust optimization
techniques could also be used to account for uncertainty
in load demands and solar generation.

• Longer time horizons: The 24-hour horizon for the
multi-period problem in this paper is based on both
computational considerations and the fact that the wildfire
risk values are constant for each day. However, this
limited horizon necessitates the use of heuristics to model
realistic battery behavior at the end of the horizon (see
Section V-B) and precludes modeling future periods using
short-term wildfire risk forecasts. Extensions to longer
time horizons would thus improve modeling realism.

• More realistic generator models: The conventional
generator models in this paper are only constrained
by bounds on their outputs at each time period. With
more realistic modeling, future work could study how
the constraints on ramp rates, minimum up and down
times, reserve requirements, etc. that are found in unit

commitment problems affect the load shedding versus
wildfire risk trade-offs and investment decisions.

• Controlled islanding: The line de-energization model in
this paper does not prevent the network from separating
into multiple islands. Islanding can bring a range of
operational challenges (e.g., stability considerations) that
are not modeled in our formulation. Ongoing work is
investigating the use of anti-islanding constraints that
enable more flexible control of islanding behavior.

• Contingencies: The optimization formulation studied in
this paper does not consider the impacts from failures
of generators or lines. Future work could extend the
formulation to model N − 1 security constraints corre-
sponding to the failure of any one individual component.
Such extensions would raise questions such as how to
appropriately penalize post-contingency load shedding.

• Generalization to multiple planning periods: The in-
frastructure investment problem considered here installs
components and hardens infrastructure once and then
evaluates the system’s performance. Future work could
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Fig. 10: Trade-off curves from season-long simulations for the
WECC network with budgets ranging from B = $100M to
B = $1000M in increments of $100M. Results are shown
when the formulation is allowed to install batteries, solar
PV, and one of the three line hardening/maintenance options:
increased vegetation management (green), covered conduc-
tors (red), and undergrounding (blue). Darker colored lines
correspond to larger investment budgets, and lighter colored
lines mark smaller budgets. For the vegetation management
case (green), the B = $100M and B = $1000M curves
are annotated. Load shedding and wildfire risk values are
normalized by the total load and the total wildfire risk posed
by the network over the entire 2021 season of PSPS days.

study the impacts of allowing multiple rounds of in-
vestments along with progressively worsening wildfire
conditions, changing infrastructure costs, and varying
budgets over multiple years.

• Multiple uses for infrastructure: Investments in bat-
teries, solar PV, and infrastructure hardening provide
benefits during both wildfire conditions and normal con-
ditions. This raises questions regarding valuations of
these investments in problems that mitigate wildfire igni-
tion risks. For more realistic results, future work should
explore these questions by assessing the value of these in-
vestments during various operating conditions. Moreover,
future work should study how well investments intended
for other objectives (e.g., generation cost minimization)
perform in a wildfire setting (and vice-versa).

• Distribution system extensions: Along with transmis-
sion systems, distribution systems also pose wildfire
ignition risks. Analogs of the work in this paper could be
developed for distribution systems via network reconfigu-
ration [81], the installation of microgrids with customer-
scale battery storage and solar PV generation [82], and
the deployment of mobile distributed generators [83].

• Fairness considerations: The problem formulation in

this paper focuses on the system-wide performance met-
rics of total wildfire risk reduction and total load shed-
ding. However, the impacts of wildfires and load shedding
are often localized to particular parts of the system,
which raises concerns related to the fairness of line
de-energization outcomes and infrastructure investment
decisions. Our ongoing work is studying how different
operational and investment decisions affect individual
loads with a particular focus on trade-offs among various
metrics of system-wide performance and fairness.

Computational tractability is a key challenge associated with
all of these research directions. Even without considering the
extensions above, the large-scale MILP formulation in this pa-
per can be challenging to solve, as discussed in Section VI-C.
Each extension could impose further computational burdens.
This motivates the development of more effective heuristics for
reducing the number of candidate locations for infrastructure
improvements and possible line de-energization. To prioritize
lines for de-energization, it may be possible to adapt heuristics
from the optimal transmission switching literature (e.g., [14],
[84], [85]). However, since prior heuristics focus on network
congestion effects that are less important in the wildfire risk
setting, it is not clear whether they would be useful. Thus,
further computational improvements are needed.

VIII. CONCLUSIONS

With climate change amplifying the frequency and severity
of wildfire conditions, power system operators de-energize
transmission lines to mitigate acute wildfire ignition risks
during PSPS events. There is a widely recognized need for
new infrastructure investments to reduce the load shedding
associated with these events. Local supplies of power from
grid-scale batteries and solar PV installations can decrease the
severity of outages when lines are de-energized. Hardening and
maintaining transmission lines via undergrounding, installing
covered conductors, and intensely managing vegetation re-
duces the wildfire ignition risks associated with the lines that
remain energized.

To consider spatially and temporally varying wildfire risks,
load demands, and solar PV outputs, engineers require new
computational tools to optimally locate and size infrastructure
investments. Accordingly, this paper proposed a MILP for-
mulation that models a multi-time-period representation of a
power system during severe wildfire conditions. Our formula-
tion locates batteries, solar PV, and line hardening/maintenance
to reduce both wildfire ignition risks and load shedding.

Evaluations using two test cases with actual wildfire risk
data from 2021 demonstrate the capabilities of the proposed
formulation. Our results show the formulation’s ability to
choose among the investment options to obtain effective solu-
tions tailored to the available budget, wildfire risks, and priori-
tization of load shedding versus wildfire ignition risk. Another
key observation regards the high value of line hardening and
maintenance activities, as these often account for significant
fractions of the available budget. The results also illustrate the
importance of jointly considering line de-energization and line
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Fig. 11: Simulation of 2021 wildfire season for the WECC network given a budget B = $500M and trade-off parameter
α = 0.5. The top plot shows the wildfire risk for the 2021 wildfire season with various investment strategies. The horizontal
dashed orange line marks the wildfire risk threshold, RPSPS, which triggers a PSPS event. Vertical dotted orange lines mark
days when the total wildfire risk R is above the risk threshold RPSPS. The black line marks the total risk posed by the network
without any interventions (i.e., no de-energization or investments). Colored lines represent other possible strategies, including
de-energization only (teal). All wildfire risk values are normalized by RPSPS. The bottom plot shows the corresponding load
shed as a percentage of the total load in the network on the associated day.

hardening investments, as the solver de-energizes certain high-
risk lines to completely eliminate their associated risks while
allocating more of the budget to hardening moderate-risk lines.

Finally, the paper describes several directions for extending
this investigatory work to increase its accuracy and practical
applicability. Many of these extensions would require im-
proved computational tractability, which we emphasize as a
key challenge for future research.
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