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Abstract— Wildfires are a threat to public safety and have in-
creased in both frequency and severity due to climate change. To
mitigate wildfire ignition risks, electric power system operators
proactively de-energize high-risk power lines during “public
safety power shut-off” (PSPS) events. Line de-energizations
can cause communities to lose power, which may result in
negative economic, health, and safety impacts. Furthermore, the
same communities may repeatedly experience power shutoffs
over the course of a wildfire season, which compounds these
negative impacts. However, there may be many combinations of
power lines whose de-energization will result in about the same
reduction of system-wide wildfire risk, but the associated power
outages affect different communities. Therefore, one may raise
concerns regarding the fairness of de-energization decisions.
Accordingly, this paper proposes a framework to select lines
to de-energize in order to balance wildfire risk reduction,
total load shedding, and fairness considerations. The goal of
the framework is to prevent a small fraction of communities
from disproportionally being impacted by PSPS events, and
to instead more equally share the burden of power outages.
For a geolocated test case in the southwestern United States,
we use actual California demand data as well as real wildfire
risk forecasts to simulate PSPS events during the 2021 wildfire
season and compare the performance of various methods for
promoting fairness. Our results demonstrate that the proposed
formulation can provide significantly more fair outcomes with
limited impacts on system-wide performance.

I. INTRODUCTION

Electric power systems have ignited a number of severe
wildfires over the last five years [1], [2]. To reduce to the risk
of wildfire ignition, power system operators execute “Public
Safety Power Shutoff” (PSPS) events that temporarily de-
energize power lines that run through areas with high ignition
risk. Since de-energized lines cannot ignite wildfires, PSPS
strategies are effective at immediately reducing the ignition
risks posed by an electric power system. However, the
partially de-energized system may be incapable of supplying
all load demands, leading to power outages that have negative
economic, health, and safety impacts [3]–[5].

There may be many possible combinations of de-energized
power lines that result in about the same reduction of system-
wide wildfire risk, but the associated power loss affects dif-
ferent communities, thus raising fairness concerns with PSPS
events. If the same communities repeatedly experience power
shutoffs over the course of a wildfire season, repercussions
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may compound, especially for vulnerable groups [6]. To
address these fairness concerns, this paper proposes a rolling
optimization framework to compute PSPS de-energization
decisions that result in more fair power outages.

Typically, utilities de-energize all lines that exceed a pre-
determined risk threshold, which is based on local ambient
environmental conditions (e.g., foliage flammability, wind
speed, rainfall, and temperature) and infrastructure char-
acteristics (e.g., voltage level and line conditions, lengths,
and geometries) [7]–[9]. These are localized approaches to
determining PSPS events. To achieve operators’ goals of
making PSPS events “smaller in scope, shorter in duration,
and smarter in performance” [10], current research is consid-
ering PSPS events on the system level with local data input.
Notable recent research by Rhodes, Ntaimo, and Roald [9]
proposed optimized PSPS events. They formulate a mixed-
integer linear program (MILP) to select the set of power
lines to de-energize that jointly minimizes the total wildfire
ignition risk posed by the network and the system-wide load
shedding. Results from [9] suggest that the optimized PSPS
formulation allows operators to tradeoff wildfire risk and
system-wide load shedding, and potentially improve perfor-
mance relative to a threshold-based approach. Building on
this prior work, subsequent research has considered alternate
wildfire risk models [7] and infrastructure investment plans
to support optimized PSPS events [11].

Optimized PSPS formulations provide the groundwork
for explicitly considering fairness when making line de-
energization decisions. Fairness is an increasingly studied
topic in many fields, such as artificial intelligence [12]
and wireless spectrum allocation [13], as well as in other
power systems applications, e.g., energy storage [14], distri-
bution network reconfiguration [15], transmission loss allo-
cation [16], and tariff design [17]. However, incorporating
notions of fairness into PSPS decision-making introduces
modeling, algorithmic, and computational challenges.

From a modeling perspective, there are many possible
fairness metrics [18] and the temporal scale is also important
(e.g., should one consider power outages over an hour, the
course of a day, a wildfire season, or over many seasons?). In
this exploratory work, we focus on fairness in load shedding
per bus. While our proposed framework is more general,
our numerical studies focus on the most severe period of
a wildfire season. We should also avoid perverse incentives
that, e.g., promote unnecessary load shedding. To address
these modeling challenges, we focus on a selected subset of
methods for promoting more fair de-energization decisions.

From an algorithmic perspective, many plausible methods
for promoting fairness depend on both historical and future
de-energization decisions. These features introduce multiple



time dependencies and the need to address uncertainties from
fluctuations in future wildfire risks and load demands. We
propose a rolling optimization framework that produces daily
decisions for line de-energizations informed by the past load
shedding at each location along with forecasts for the next
day of wildfire risks and load demands. This framework
chooses line de-energizations to simultaneously improve
upon a fairness metric while minimizing wildfire ignition
risks and system-wide load shedding. After implementing
the de-energization decisions and observing the results, the
framework rolls forward to determine the decisions for the
next day. This framework thus addresses both time depen-
dencies and forecast uncertainties.

From a computational perspective, the MILP formulation
used to determine line de-energization decisions can be com-
putationally challenging. This wildfire switching formulation
is related to existing optimal transmission switching prob-
lems that permit de-energizing transmission lines to reduce
generation costs by managing network congestion during
normal operations [19], [20]. The computational difficulty of
optimal transmission switching problems has motivated the
development of many heuristic solution techniques [21], [22].
However, these heuristics are not well suited for our problem
since the wildfire formulation de-energizes lines solely to
reduce ignition risk rather than managing network congestion
to achieve some other objective. In this exploratory work, we
thus focus on short (one-day) time horizons and moderate-
size networks to demonstrate the capabilities of the proposed
framework. Our ongoing work aims to develop transmission
switching heuristics for the wildfire setting to scale the pro-
posed framework to large systems and longer time horizons.

To summarize, we propose and analyze a rolling optimiza-
tion framework that solves MILP problems daily to deter-
mine line de-energization decisions. The framework provides
the flexibility to consider both system-wide concerns like
the wildfire ignition risk and the total load shedding as well
as fairness considerations. We demonstrate this framework
using a standard test system (RTS-GMLC [23]) with actual
wildfire risk and load demand data for the 2021 wildfire
season. The results show that the proposed rolling optimiza-
tion framework can provide significantly more fair outcomes
with limited impacts on system-wide performance. We also
observe that different methods for promoting fairness can
greatly affect both the line de-energization decisions and the
load shedding at each bus. Finally, the results indicate that
some methods for promoting fairness may introduce perverse
incentives that can lead to unnecessary load shedding.

The remainder of this paper is organized as follows.
Section II formulates the optimized PSPS problem and
our proposed rolling optimization framework. Section III
modifies the rolling optimization framework to incorporate
fairness considerations. Section IV describes our test case
setup. Section V provides our numerical results. Section VI
concludes the paper and discusses future work.

II. PUBLIC SAFETY POWER SHUTOFFS VIA A ROLLING
OPTIMIZATION FRAMEWORK

After introducing notation, this section describes the opti-
mized PSPS problem formulation and our proposed rolling

optimization framework that repeatedly solves this problem.

A. Parameter and variable definitions

We first present the parameters and variables associated
with network operations during PSPS events. Let N , L, and
G be the sets of buses, lines, and generators, respectively. Let
the relevant period of the wildfire season contain J total days,
and let index j indicate the considered day in the wildfire
period. Let T = {1, . . . , T} be the considered set of time
intervals during each day, where T is the final time. We use
a per unit (p.u.) base power of 100 MVA.

We model the network with the BΘ representation of the
DC power flow approximation. This approximation neglects
reactive power dispatch, line losses, and voltage magnitude
variation. Specified parameters for each line ℓ ∈ L are:

• bℓ, line susceptance in p.u.,
• f

ℓ
, the power flow limit in p.u.,

• rℓ, the wildfire risk incurred if line ℓ is energized,
• nℓ,to and nℓ,fr, to and from buses, respectively, where

positive power flows from the from bus to the to bus,
• δ

ℓ
and δℓ, upper and lower voltage angle difference

limits, respectively, in radians.
For all generators i ∈ G:

• gi and gi, upper and lower power generation limits,
respectively, in p.u.,

• ni, the bus at which generator i is located.
For all buses n ∈ N :

• dnt ⩾ 0, predicted power demand at time interval t ∈ T
in p.u.,

• Gn, the set of generators located at bus n,
• Ln,to and Ln,fr, the subset of lines ℓ ∈ L with bus n as

the designated to bus, and bus n as the designated from
bus, respectively.

The operation of the network during a PSPS event is char-
acterized by the following set of variables:

• git, power generated in p.u. at unit i ∈ G during time
interval t ∈ T ,

• θnt , voltage angle in radians at bus n ∈ N during time
interval t ∈ T ,

• snt , load shedding in p.u. for bus n ∈ N during time
interval t ∈ T ,

• f ℓ
t , power flowing in p.u. from bus nℓ,fr to bus nℓ,to

along line ℓ ∈ L during time interval t ∈ T ,
• zℓ ∈ {0, 1}, energization state of line ℓ ∈ L, where

zℓ = 0 indicates line ℓ is de-energized and zℓ = 1
indicates line ℓ is energized.

B. Operational and physical constraints

The outputs of all generators i ∈ G must be within their
lower and upper limits during each time period:

gi ⩽ git ⩽ gi, ∀i ∈ G, ∀t ∈ T . (1)

The load shed at all buses and for all time instances must be
positive and cannot exceed the power demand at the bus:

0 ⩽ snt ⩽ dnt , ∀n ∈ N , ∀t ∈ T . (2)



The power flow along line ℓ ∈ L must not exceed upper
and lower line flow limits; however, if de-energized, then
the power flow along line ℓ is zero:

−f ℓ
zℓ ⩽ f ℓ

t ⩽ f
ℓ
zℓ, ∀ℓ ∈ L, ∀t ∈ T . (3)

We require that the voltage angle differences for all energized
lines satisfy lower and upper limits:

δ
ℓ
zℓ +M(1− zℓ) ⩽ θn

ℓ,fr

t − θn
ℓ,to

t ⩽ δℓzℓ +M(1− zℓ)

∀ℓ ∈ L, ∀t ∈ T , (4)

where M and M are big-M constants. We compute these
constants by summing the angle difference bounds across all
lines, but note that more sophisticated approaches (e.g., [24])
could lead to faster solution times. The powers flows on all
lines during all time periods are governed by:

− bℓ(θn
ℓ,fr
− θn

ℓ,to
) + |bℓ|M(1− zℓ) ⩽ f ℓ

t

⩽ −bℓ(θn
ℓ,fr
− θn

ℓ,to
) + |bℓ|M(1− zℓ),

∀ℓ ∈ L, ∀t ∈ T . (5)

Last, we require power balance at all buses:∑
ℓ∈Ln,fr

f ℓ
t −

∑
ℓ∈Ln,to

f ℓ
t = snt − dnt +

∑
i∈Gn

git,

∀n ∈ N , ∀t ∈ T . (6)

C. Load shedding and wildfire risk reduction objective
Our objective is to minimize both load shedding and wild-

fire risk reduction. These objectives often conflict since de-
energizing lines reduces wildfire risk but typically increases
the difficulty of meeting the load demands. Let α ∈ [0, 1] be
a parameter that quantifies the operator’s priority between
minimizing load shed and minimizing wildfire risk, with
large values of α prioritizing load shedding and small values
of α prioritizing wildfire ignition risk.

Let D be the total predicted demand in the network, i.e.,
D =

∑
t∈T

∑
n∈N dnt , and let R be the total predicted

wildfire risk of the network if all lines ℓ ∈ L are energized,
i.e., R =

∑
ℓ∈L rℓ. Let C(·) be the objective function that

the user wishes to minimize, which is a function of all load
shedding values (s) and de-energization decisions (z):

C(s, z) =
α

D

(∑
t∈T

∑
n∈N

snt

)
+
(1− α)

R

(∑
ℓ∈L

rℓzℓ

)
. (7)

D. Rolling optimization framework
Given parameters α and T , we formulate the PSPS prob-

lem for wildfire day j as:

min
g,θ,f,s,z

(7) s.t. (1)− (6). (8)

We simulate the specified period of de-energization deci-
sions using rolling optimization by executing the following:

1) Initialize j = 1 as the first day in the wildfire period.
2) For the jth day of the wildfire period, retrieve:

• Wildfire risk predictions rℓ for all lines ℓ ∈ L,
• Demand predictions dnt for all buses n ∈ N and

time intervals t ∈ T ,

• Tradeoff parameter α.
3) Solve optimization problem (8).
4) During the jth day in the wildfire period, de-energize

all lines for which zℓ = 0.
5) Update day index: j ← j + 1
6) If j > J , end simulation, else repeat from step (2).

III. CONSIDERATION OF FAIRNESS

There are many possible notions of fairness [18], [25].
To maintain computational tractability in this exploratory
work, we focus on methods for which (8) remains a MILP
when modified to consider fairness. We intend to analyze
more general alternatives in future work. This section first
formulates the PSPS rolling optimization framework using
a generic fairness consideration method and then describes
three different methods for incorporating fairness.

A. Considering fairness in PSPS optimization problems

We consider three methods for promoting fairness of load
shedding within the rolling optimization framework. Each
method requires a different function to measure fairness
and different optimization constraints. Therefore, in this
subsection, we first introduce a generic fairness function that
we will later explicitly define for each considered fairness
method. Let Fj(·) be a function valued between 0 and 1
(inclusive) that maps from optimization variable inputs to
a measure of load shedding fairness for the jth day in
the wildfire period. We define Fj(·) = 1 as the least fair
outcome, and Fj(·) = 0 as the most fair outcome. Note that
the fairness mapping Fj(·) changes depending on the day j
in the wildfire period to account for prior load shedding. Via
mild abuses of notation, the generic fairness function Fj(·)
will be replaced in the subsequent subsections.

Enforcing fair load shedding decisions may increase wild-
fire ignition risk relative to solutions that do not consider
fairness. To ensure that wildfire ignition risk does not sig-
nificantly increase, we restrict the total wildfire risk of the
fairness-consideration version of the de-energization problem
to be no greater than a small percentage above the solution
obtained without considering fairness. Let ẑℓ, ∀ℓ ∈ L be
the de-energization decisions found from solving problem
(8) for the jth day of the wildfire period. Let ζ > 0 be the
allowable fraction of wildfire risk over the version without
fairness consideration. We constrain the wildfire risk as:∑

ℓ∈L

rℓzℓ ⩽ (1 + ζ)
∑
ℓ∈L

rℓẑℓ. (9)

Since we have restricted the total amount of risk the
network can pose, our objective is now to simultaneously
minimize overall load shedding and the fairness function
Fj(·). However, these are often competing objectives. For
example, a completely “fair” outcome could be that all
buses have none of their demand met, i.e., all load in the
network is shed. Obviously, this is not a desirable result.
Another completely “fair” outcome is that all buses have all
their demands met fully, but given that we require a certain
reduction in wildfire risk via line de-energization, it is likely
that load shedding will sometimes be necessary.



Let β ∈ [0, 1] be a parameter that quantifies the operator’s
priority between minimizing total load shed and minimizing
the fairness function, with large values of β prioritizing
total load shed and small values of β prioritizing fairness.
Let C fair

j (·) be the objective function that mathematically
formulates this tradeoff for the jth day in the wildfire period:

C fair
j (s, Smax, Smin) =

β

D

(∑
t∈T

∑
n∈N

snt

)
+ (1− β)Fj(s, Smax, Smin), (10)

where the fairness function Fj(·) is analogous to a regulariz-
ing term and, as defined below, Smax and Smin are optimiza-
tion variables that designate the maximum and minimum
discounted load shed over the wildfire period experienced at
any bus n ∈ N . In (10), we let the general fairness mapping
Fj(·) be a function of s, Smax and Smin; however, some of
these inputs will be extraneous when we replace Fj(·) with
specific notions of fairness in Sections III-B, III-C, and III-D.

Let šn(m,t) be the actual load shed during real-time opera-
tion at bus n ∈ N and time t ∈ T for day m of the wildfire
period. Define Sn

j to be the running tally of the actual load
shed at bus n ∈ N from day 1 to j−1 of the wildfire period:

Sn
j =


0, j = 1
j−1∑
m=1

η(j−1−m)
∑
t∈T

šn(m,t), j > 1,
(11)

where η ∈ [0, 1] is a forgetting factor. Then:

Smax ⩾ Sn
j +

∑
t∈T

snt , ∀n ∈ N (12)

Smin ⩽ Sn
j +

∑
t∈T

snt , ∀n ∈ N . (13)

Given parameters ẑ, β, ζ, and T , we can formulate the
PSPS problem with fairness considerations for the jth day
of the wildfire period as:

min
g,θ,f,s,z,Smax,Smin

(10) s.t. (1)− (6), (9), (12), (13). (14)

Depending on which fairness method is implemented (see
Sections III-B through III-D), variables Smax and Smin and
constraints (12) and (13) may not be necessary, but we
have included them here to formulate a generic optimization
problem applicable to all considered notions of fairness.

After determining de-energization decisions, the selected
lines are de-energized and the network is operated in real
time. Figure 1 shows the PSPS rolling optimization scheme
with fairness considerations, consisting of these steps:

1) Initialize j = 1 as the first date in the wildfire period
and initialize the fairness function Fj(·).

2) For the jth date in the wildfire period, retrieve:
• Wildfire risk predictions rℓ for all lines ℓ ∈ L,
• Demand predictions dnt for all buses n ∈ N and

time intervals t ∈ T ,
• Tradeoff parameter α.

3) Solve the optimization problem (8) and retrieve de-
energization decisions ẑ.

PSPS optimization 

with fairness 

considerations

De-energization 
decisions with 
fairness

Wildfire risk 
forecasts

Demand 
forecasts PSPS optimization 

without fairness 

considerations

De-energization 
decisions

Real-time system 

operation

Load 
shedding

Fig. 1. PSPS rolling optimization framework with fairness considerations.

4) Solve the optimization problem with fairness consid-
eration (14), using ẑ to constrain the total allowable
wildfire ignition risk.

5) During the jth day of the wildfire period, de-energize
all lines for which zℓ = 0. Operate the network in real
time, and retrieve the actual load shedding experienced
in the network š.

6) Update the day index j ← j + 1 and the fairness
function Fj(·) based on load shedding from real-time
operation.

7) If j > J , end simulation, else repeat from step (2).

B. Minimize maximum load shed

The first fairness method we consider is minimizing the
maximum load shed per bus over the course of the wildfire
period. Let Fmax

j (·) be defined as:

Fmax
j (Smax) =

Smax −max
n∈N
{Sn

j }

max
n∈N

{
Sn
j +

∑
t∈T

dnt

}
−max

n∈N
{Sn

j }
, (15)

where the terms with maximums are used to scale the func-
tion such that feasible outputs are in the range [0, 1]. Note
that these terms are functions of parameters, not variables,
and thus Fmax

j (·), as defined above, is linear in the variable
Smax. The denominator is non-zero since there will always be
some demand d > 0. When considering this fairness method,
we solve optimization problem (14) with Fj(·) ← Fmax

j (·)
in objective function (10). Note that the variable Smin and
the constraint (13) are unnecessary in this formulation.

C. Weighted load shedding penalties

The second fairness method penalizes load shed at bus n
by the past cumulative weighted load shed at that bus, Sn

j ,
as defined in (11). For this method, the relevant variable for
measuring fairness is the load shed per bus. We measure
fairness via the function Fweight

j (·), which we define as:

Fweight
j (s) =


0, j = 1∑
n∈N

∑
t∈T

Sn
j snt∑

n∈N

∑
t∈T

Sn
j dn

t
, j > 1,

(16)



where the denominator for the j > 1 case is a normalization
term. For j = 1, the first day of the wildfire period, there
has not been any past load shed in the network. Therefore,
we define Fweight

1 (s) = 0. We solve optimization problem
(14) with Fj(·)← Fweight

j (·) in objective function (10). The
variables Smax and Smin and the constraints (12) and (13) are
unnecessary in this formulation.

D. Minimize load shed range

In the third considered fairness method, we aim to min-
imize the range of load shed, i.e., the difference between
Smax and Smin. We first calculate the maximum and minimum
possible values of the range (Smax − Smin). The maximum
possible range, wmax, is:

wmax = max
n∈N

{
Sn
j +

∑
t∈T

dnt

}
− min

n∈Nd
{Sn

j },

where N d ∈ N denotes buses that have non-zero demand:
N d = {n ∈ N | dnt > 0, ∀t ∈ T }. Let wmin be the minimum
possible range:

wmin = max
{
0,
(
max
n∈N
{Sn

j }− min
n∈Nd

{
Sn
j +

∑
t∈T

dnt

})}
.

We define the associated fairness function F range
j (·) as:

F range
j (Smin, Smax) =

(Smax − Smin)− F range
min

F range
max − F range

min
, (17)

where the denominator is nonzero assuming that there is
always some demand in the network. We solve problem (14)
with Fj(·)← F range

j (·) in the objective function (10).

IV. TEST CASE DESCRIPTION

To demonstrate our proposed framework, we consider the
ten-day period from June 13, 2021 to June 22, 2021. This
period had sustained high wildfire risk in California. We
note that the framework is applicable to longer periods,
possibly spanning multiple wildfire seasons. We compare the
outcomes of the PSPS de-energization framework without
fairness consideration (Section II) to our proposed framework
with fairness consideration (Section III). We next present the
network and parameters for this test case.

A. Test network

We demonstrate the PSPS rolling optimization formulation
with fairness considerations using a synthetic transmission
network: the 73-bus RTS-GMLC test case, Active Power In-
crease (API) version. This network is geolocated in southern
California and parts of Arizona and Nevada. The network
properties and topology are adopted from [26] based on data
originating from [23]. This test network has 73 buses, 99
generators, and 120 transmission lines. The lower limits of
all generators are set to zero to guarantee solution feasibility,
i.e., gi = 0, ∀i ∈ G. We assume a linear routing of lines
between their terminal buses.

B. Wildfire risk predictions

Determining the wildfire ignition risk posed by an en-
ergized power line is a challenging task since the risk is
dependent on various environmental conditions and the line’s
physical characteristics [7]. Precise calculations of ignition
risk values requires detailed data that are not available for
our test case and this is not the focus of this work. Interested
readers can see [7] as well as wildfire mitigation plans
published by the California utilities (e.g., [10], [27]) for more
detailed information on calculating wildfire risk.

In this work, we use forecasts of the Wind-enhanced
Fire Potential Index (WFPI) produced by the United States
Geological Survey as a surrogate for more complex risk-
assignment methods [28]. WFPI values, which range from
0 to 150, are based on conditions such as wind speed, rain,
temperature, etc. Large fires are associated with the highest
WFPI values [28]. To assign a wildfire ignition risk, rℓ, to
each line ℓ ∈ L, we integrate the WFPI index along the
line’s path. As a result, longer lines have higher risks, which
is consistent the risk models used by utility companies [7].

C. Demand prediction and actual values

For our test case, we consider one day of hourly time
periods such that T = 24. To determine the load demands,
we use real hourly load profiles from the California Indepen-
dent System Operator (CAISO) during the selected wildfire
period (June 13 to June 22, 2021) [29]. Assuming that the
peak day’s highest hourly load during the 2021 wildfire
season is equivalent to the nominal demands provided in
the test network, we scale the nominal loads in the test
case to reflect the real load profiles reported by CAISO. We
incorporate uncertainty in demand forecasts by perturbing the
load at each bus for each hour by between ±2%, randomly
sampled from a uniform distribution. These errors are similar
in magnitude to those in the load forecasting literature [30].

D. Framework parameter values

The rolling optimization framework includes a number
of parameters that we must specify for our test case. We
select α, the tradeoff parameter used to indicate the system
operator’s prioritization for reducing the wildfire risk versus
reducing the total load shed, based on the forecasted total
wildfire risk. We scale α between 0.3 and 0.6, values which
were chosen such that a moderate amount of load shedding
results for this system. We adjust the α values used for
each day according to the total daily wildfire risk prior to
any line de-energizations. If the total wildfire risk is greater
than or equal to that of the highest overall risk seen by the
network during the 2019 and 2020 wildfire seasons, then
we set α = 0.3. If the total risk is less than or equal to the
lowest risk seen by the network during these prior years, then
α = 0.6. Otherwise, we scale α between these two extremes
based on the total wildfire risk.

Recall that we also impose constraint (9) to prevent the
solution to (14) from significantly increasing the wildfire
risk relative to (8) where we do not consider fairness. The
permitted increase in wildfire risk in this constraint is limited
to 5%, i.e., ζ = 0.05. We note that there is a substantial



uncertainty inherent to assigning energization risk values, so
allowing a 5% increase in overall wildfire risk may be well
within estimates of risk uncertainty.

Recall also that we use a forgetting factor η to discount
the amount of load shed during earlier days of the wildfire
period. We select η = 0.9. Finally, we evaluate the impact of
changing the fairness versus load shedding prioritization by
sweeping β values from 0.05 to 0.95 in increments of 0.05.

V. NUMERICAL RESULTS

As described in Section IV, we demonstrate our proposed
framework by simulating PSPS events over a ten-day period
of sustained high wildfire risk in June 2021. We solved the
MILPs outlined in Sections II and III using Gurobi 9.1.1 to a
1% MIP gap. Optimization formulations were implemented
using Julia 1.5.3 with JuMP 0.22.3. We used the data input
functionality of PowerModels.jl 0.19.2 [31].

We illustrate the results with three figures. We first
describe these figures and then discuss their implications.
Figure 2 shows three representative cases of the cumulative
load shed per bus over the simulation period: (top) no fairness
consideration (Section II), (middle) using the weighted load
shedding penalties method (Section III-C) with β = 0.75,
and (bottom) using the minimize load shed range method
(Section III-D) with β = 0.25. Red circles mark the amount
of load shedding at each bus, with larger circles indicating
that more load is shed. Dotted lines are de-energized every
day of the simulation period, while black lines remain ener-
gized every day. Blue lines are sometimes de-energized, with
lighter blue colors indicating more frequent de-energization.

Figure 3 demonstrates the tradeoff between the cumulative
network-wide load shed and fairness while varying the prior-
itization parameter β. The top plot measures fairness via the
mean absolute deviation of the cumulative load shed at each
buses normalized by the mean cumulative load shed over the
buses. The bottom plot measures fairness via the maximum
cumulative load shed over the buses as a percentage of the
total demand in the network. The star marks the performance
if fairness is not considered (i.e., Section II). The triangle
marks the minimum possible cumulative load shed that can
be achieved if the wildfire risk is fixed to be no greater than
5% of the risk that results from the no fairness method. Thus,
the triangle lower bounds the cumulative load shed that could
potentially be achieved by any of the fairness methods.

Figure 4 shows the number of lines with different de-
energization decisions in the solutions to (14) versus the
solution to (8) (i.e., the Hamming distance between the
variables z for these solutions), averaged over the days in
the wildfire period for varying values of β.

Comparing the top and middle plots in Figure 2 shows
that considering fairness leads to a more even distribution of
load shed among the buses in the network. This more even
distribution comes at a limited cost (an additional 1% cumu-
lative load shed and a 0.3% increase in wildfire risk relative
to the problem that does not consider fairness). Figure 3
reinforces this observation with the results for large values
of β (prioritizing reductions in total load shedding) showing
that substantial fairness improvements can be achieved with

Fig. 2. Visualizations of selected optimized PSPS results for a ten-day
period of high wildfire risk in June 2021. Each plot shows the RTS-GMLC
network. Dots represent buses with the size of the corresponding red circles
denoting the amount of load shedding at that bus. Dotted lines are de-
energized for every day of this period and solid lines are energized for
every day of this period. Blue lines are de-energized during some days, with
lighter blue colors denoting lines that are de-energized more frequently.



Fig. 3. Tradeoff between the cumulative load shed as a percentage of the
total demand over the ten-day simulation period and (top plot) the mean
absolute deviation of the cumulative load shed per bus normalized by the
average cumulative load shed over all buses, or (bottom plot) the maximum
load shed over all buses normalized by the total demand in the network
over the ten-day simulation. Each line shows the performance of a different
fairness method with β values ranging from 0.05 to 0.95 in increments of
0.05. The star marks the outcome if fairness if not considered. The triangle
marks the outcome if we permit wildfire risk to be up to 5% greater than the
no fairness version. Note that some β values for the blue line, which marks
the minimize load shed range method, lead to outliers with large values of
total load shedding (> 40%) that are not shown in the figure.

limited tradeoffs in the total load shedding. (See the lower
portions of the curves in Figure 3 with β = 0.95 relative to
the triangle denoting no fairness considerations.)

However, more strongly prioritizing fairness can lead to
erratic behavior as shown by larger values of β in Figure 3.
Some of this behavior may be attributed to the inherent
discontinuous nature of discrete de-energization choices and
the maximization functions in the first and third fairness
methods, and the load uncertainty also contributes. How-
ever, we hypothesize that much of this behavior is due to
the sequential de-energization decisions made daily in our
framework. Extending (14) to consider wildfire risk forecasts
over a multi-day horizon may both improve the quality of
the solution and smooth this erratic behavior. Such extensions
are the focus of our ongoing work.

Since the RTS-GMLC system has numerous generators
and a very robust network, many lines can be de-energized
while still supplying most loads. While fewer lines would
likely be de-energized for actual systems in practical settings,
this test case still gives useful insights. Our ongoing work
includes scaling the framework to larger, more realistic cases.

Fig. 4. Number of lines with different de-energization decisions from the
solutions to (14) for each of the fairness methods, relative to the solution
to (8) that does not consider fairness (i.e., the Hamming distance between
the variables z for these solutions). The values for each day are averaged
over the ten-day wildfire period and shown in terms of β.

We also observe from the top and middle plots in Figure 2
that line switching decisions are different when incorporating
fairness, meaning that there is a benefit to jointly considering
de-energization and fairness as opposed to first selecting
lines to de-energize and then re-dispatching generation to
maximize fairness. The large number of different line de-
energization decisions shown in Figure 4 emphasizes this
observation and further illustrates that the fairness methods
can produce significantly different results, especially when
prioritizing fairness via small values of β.

Finally, we note that the bottom plot in Figure 2 shows
an example of a perverse outcome if fairness considerations
are not carefully designed. Here, we see that the red load
shedding circles are uniformly sized, meaning that load
shed is more evenly distributed among the buses; however,
the cumulative load shed is 30% greater than is obtained
without considering fairness. We hypothesize that the solver
increases the load shedding at certain buses beyond what
is necessary to reduce the maximum load shed (i.e., to
reduce the range of load shedding in the network, the solver
chooses to increase load shedding at all buses). This is
clearly an undesirable outcome since, all else being equal, we
would always prefer to supply more load if it were possible
to do so without increasing the amount of load shed for
another customer. Although this load shed range method
provides more reasonable outcomes for higher values of β,
this scenario demonstrates that undesirable outcomes may
occur if a fairness method is not appropriately designed.

VI. CONCLUSIONS

Increasingly frequent and severe wildfire conditions driven
by climate change motivate the development of new compu-
tational tools for efficiently and fairly executing PSPS events
to mitigate acute wildfire ignition risks. The rolling optimiza-
tion framework proposed in this paper determines line de-
energization choices that optimize system-wide performance
with respect to wildfire ignition risks and total load shedding
as well as fairness considerations for the load shedding at
each bus. We analyzed three different methods for promoting
fairness in the load shedding: minimizing the maximum



load shed at any bus, minimizing weighted load shedding
penalties, and minimizing the range of load shedding across
buses. Based on numerical demonstrations of this framework
using the RTS-GMLC test case with actual wildfire risk and
load profile data, we emphasize three key observations. First,
with appropriate selection of the tradeoff parameter β, the
framework can achieve significantly more fair outcomes with
limited increases in both the wildfire risk and the total load
shedding. Second, the method chosen to promote fairness
matters since the framework gives significantly different
outputs with respect to both the load shedding at each bus
and the line de-energization decisions. Third, certain methods
for promoting fairness may produce perverse incentives, as
minimizing the range of load shedding across buses led the
solver to unnecessarily increase the load shed at some buses.

These observations motivate our ongoing work in for-
mulating and analyzing alternative methods for promoting
fairness in optimization problems related to wildfire risk
mitigation. We particularly intend to study the computational
characteristics of different methods for considering fair-
ness. Using stochastic optimization techniques, we also aim
to generalize the proposed rolling optimization framework
to consider multi-day horizons in order to obtain higher-
quality solutions while addressing forecast errors for the
wildfire risks, renewable generation, and load demands. We
additionally plan to study the impacts of more realistic
formulations that consider contingencies, anti-islanding, and
re-energization [32]. Finally, we intend to extend this paper’s
work on fairness to consider equity by investigating the
impacts of PSPS events on different populations.
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