TWO-STAGE ROBUST QUADRATIC OPTIMIZATION WITH EQUALITIES
AND ITS APPLICATION TO OPTIMAL POWER FLOW
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Abstract. In this work, we consider two-stage quadratic optimization problems under ellipsoidal uncertainty.
In the first stage, one needs to decide upon the values of a subset of optimization variables (control variables). In the
second stage, the uncertainty is revealed and the rest of the optimization variables (state variables) are set up as a
solution to a known system of possibly non-linear equations. This type of problem occurs, for instance, in optimization
for dynamical systems, such as electric power systems as well as gas and water networks. We propose a convergent
iterative algorithm to build a sequence of approximately robustly feasible solutions with an improving objective
value. At each iteration, the algorithm optimizes over a subset of the feasible set and uses affine approximations of
the second-stage equations while preserving the non-linearity of other constraints. We implement our approach and
demonstrate its performance on MATPOWER instances of AC Optimal Power Flow. This paper focuses on quadratic
problems, but the approach is suitable for more general setups.

Key words. non-convex quadratic optimization, two-stage robust optimization, AC optimal power flow, uncer-
tainty in energy systems.

1. Introduction. In many optimization problems, data is not completely known in advance.
One of the main approaches to deal with this lack of information is robust optimization (RO). It
assumes that the data lies in a predefined set of scenarios and the constraints have to be satisfied for
any realization of the data in that set. RO does not require any knowledge about the distribution
of the uncertain data and is useful when the distribution is hard to estimate and feasibility for a
certain set of parameters is important. In reality, some optimization variables represent decisions
that must be made before the actual realization of the uncertain data while other variables can be
adjusted after the uncertain data becomes known. To account for such situations in RO, two-stage
adjustable robust optimization (ARO) was introduced in [5]. Two-stage ARO problem includes two
types of variables: the first-stage variables that are fixed and the second-stage variables that may
change depending on the uncertainty realization. We refer to these variables as control and state
variables, respectively, since this setting is typical for optimal control problems. ARO gives rise to
more flexible decisions than robust optimization and thus could be less conservative.

Several approaches have been developed to solve ARO problems, most of them are approx-
imations since solving ARO to optimality can be NP-hard even if the original problem without
uncertainty is a linear program [5]. The hardness comes from defining the relations between the
first- and second-stage decision variables, called decision rules, which are usually not specified and
must be optimized. In certain problems occurring in practice, the exact functional form of the
second-stage rules is predetermined but unknown since it is defined implicitly via, for instance, a
system of non-linear equalities that are challenging, or even impossible, to eliminate. Implicitly
defined decision rules are rarely considered in the literature while they occur in many applications,
some of which are described below. This paper aims to partly close this gap and studies general
quadratic ARO with decision rules implicitly defined by a system of quadratic equalities.

With rapidly increasing uncertainties in both the demand and supply of resources, networked
infrastructure problems are important applications of ARO with implicitly defined decision rules.
Examples of relevant networked infrastructures include electricity (see [8]), natural gas (see [1, 30]),
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and water (see [42]). Operators must ensure that these systems remain in acceptable states despite
uncertainties while also considering performance criteria such as operating costs. ARO provides a
way to balance these potentially competing concerns, as discussed in [48] and [30]. As an illustrative
application of ARO, we have chosen the so-called robust AC optimal power flow (ACOPF) problem
that provides minimum cost operating points for electric power systems. ACOPF can be formulated
as a non-convex quadratic optimization problem, as discussed in [19]. Even in the absence of
uncertainties, ACOPF is NP-Hard (see [10]), and solving such problems under uncertainty for
instances of realistic size is still a challenge, which we explain in detail in Section 5.

1.1. Contribution. This paper presents two main contributions. First, we propose a conver-
gent iterative solution approach for two-stage non-convex quadratic problems under uncertainty.
The resulting solutions are feasible for the underlying problem without uncertainty (in other words,
the nominal problem) and approximately feasible for the ARO version of the problem. Second, we
implement the proposed approach for ACOPF, and it outperforms the benchmark methods.

Solution framework for quadratic ARO under ellipsoidal uncertainty with implicit de-
cision rules defined by quadratic equality constraints. The equalities increase the difficulty
of ARO. Therefore, we address equality and inequality constraints separately. We construct piece-
wise affine approximations of the implicit decision rules. In particular, we express the state variables
as functions of the control and uncertainty variables using the first-order Taylor approximations of
the original implicit rules on small subsets. To our knowledge, we present the first algorithm for
ARO which uses implicit second-stage rules.

For each piece of the piecewise affine approximation, we eliminate the equalities and second-stage
variables and obtain a standard non-linear quadratic problem in the first-stage variables under
ellipsoidal uncertainty. This problem is reformulated into a semidefinite program (SDP) with (pos-
sibly) quadratic constraints. We suggest using an alternating projections algorithm to find locally
optimal solutions for this SDP in the presence of quadratic constraints. Such a first-stage solution
is feasible for the nominal problem, and possible constraint violations under uncertainty are limited
by the parameters of our method.

Implementation for ACOPF and comparison with benchmarks. We apply the proposed
framework to ACOPF with uncertainty in power supply and demand. The ACOPF is formulated
as a non-convex quadratically constrained quadratic problem, and an ellipsoidal uncertainty set is
considered. As shown in Section 5, our numerical results for ACOPF demonstrate the effectiveness
of our approach in comparison to other approaches from the literature on small to moderate-size
instances ranging from 6 to 118 buses, with the potential to consider larger instances.

1.2. Existing ARO solution approaches. One of the most popular ways to solve general
ARO is an approximation where the second-stage decision variables can be written as affine functions
of the uncertain parameters. This approach is proposed by [5], and its current state-of-the art is
discussed in [17]. Besides affine decision rules, one could consider piecewise constant decision rules.
Such rules are constructed by partitioning the uncertainty set into subsets and implementing a fixed
second-stage decision for each subset. Naturally, the two types of decision rules could be combined
into piecewise affine decision rules, which is suggested in [35]. Fixing the form of decision rules
could restrict flexibility, so one could miss the optimal ARO solution. As an alternative, there exist
convergent relaxations which gradually add constraint violating uncertain scenarios to the problem
[9, 6, 49]. These approaches work best if the uncertainty set is polyhedral and the nominal problem
can be solved efficiently, which is different from the setup in our paper.
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Our approach has features of both described ARO frameworks. On the one hand, we use
piecewise affine decision rules. However, those cannot be arbitrary good rules, as they must reflect
an actual process represented via a system of equalities to prevent second-stage infeasibilities.
Moreover, the equalities are not solvable for some first-stage decisions and uncertainty values. Thus,
our method constructs piecewise rules that are close to the real ones when those exist and indicates
a lack of second-stage solutions otherwise. Using approximations might still lead to second-stage
infeasibilities, but one can control those by increasing the number of affine pieces. This behavior
resembles the approaches ensuring feasibility on a subset of the uncertainty realizations.

Finally, let us discuss the literature addressing non-linear ARO with implicitly defined decision
rules. Recently, some progress has been made in methods suitable for such ARO, and we outline the
differences between our approach and these methods. First, we do not consider any assumptions on
convexity and concavity, which makes our work different from all results in convex and linear ARO.
Another advantage is that our approach, while using SDP, is not based on SDP approximations of
the original problem, such as in [1, 23, 28, 43, 46]. We allow keeping some non-linearities from the
original problem as opposed to classical SDP approaches that linearize all constraints. Additionally,
independently of how much non-linearity one keeps, the resulting SDP constraints are of the size
of the number of uncertain parameters. On the contrary, other approaches use SDPs of at least
the size of the number of first- and second-stage variables. The number of uncertain parameters
is often substantially smaller than the number of variables. For example, in ACOPF the number
of variables depends on the number of buses in the system, uncertainty usually occurs in loads
or renewable generators, and not all buses have those. Hence, the size of SDP constraints in our
approach could be substantially smaller than in the above-mentioned papers.

Our approach differs from other robust optimization methods where non-linear constraints are
linearized, such as [29]. We linearize equalities only, linearize locally, and our approximations are
closely related to the original constraints via Taylor series. The results in this paper are also
distinct from [32] since in the latter work a robust solution is obtained by iteratively tightening
the inequality constraints. In [21], the authors tackle general non-linear optimization problems but
use an alternative ARO formulation and thus a distinct solution strategy. Our approach is close in
spirit to the approach in [38] which uses local Taylor expansions too. However, the authors of the
latter paper work with chance constraints, use full linearizations and address specifically ACOPF.
Similarly, the approach in [7] is tailored to linear complementarity problems.

This paper is organized as follows. In Section 2, we present the problem formulation and moti-
vate our solution approach. In Section 3, we describe the proposed algorithms in detail. In Section 5,
we evaluate our approach on ACOPF instances. Finally, in Section 6 we present conclusions and
discuss directions for future work.

2. Problem formulation and general framework. We begin this section with the notation.
We denote the range of matrix A by R(A). We denote the space of nxn symmetric matrices by S™
and for A, B € S™, the trace inner product of A and B is denoted by (A, B) := trace(AB). We use
the notation [n] for the set {1,...,n}. For a vector V of length n, we denote the i'" entry of V by
Vi. We say that two continuous maps f and g on a compact set A C R™ are e-close to each other
if sup,c4 || f(x) — g(2)|| < e for some given norm || - ||. We say that two vectors (or elements of a
vector space) a,b are e-close to each other if ||a — b|| < e for some properly defined norm.

In this paper, we deal with quadratically constrained quadratic problems (QCQP). Our approach
generalizes to problems of higher degree as we explain later, but we focus on QCQP for simplicity.
Now, let n¢, ny, ng, Meq, and m;y, be natural numbers and consider semialgebraic sets S, € R™v,
S, € R" defined by quadratic constraints. Consider quadratic mappings f : R™ — R, G :
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R7¢ x R™ x R™ — R™in L, : R" x R" — R™es and L, : R"¢ x R™ — R™e. Now, we can
introduce the two-stage nominal problem.

PrROBLEM 2.1 (Nominal two-stage quadratic optimization problem).
inf  f(y)
Y,x
s.t. yeSy
Li(y,x) =0 for all i € [meg)

Gi(y,z) > 0 for all i € [myy]
r €S,

Problem (2.1) occurs frequently in dynamic systems optimization, which inspired this paper. In
such problems, an operator sets up the values of control variables y, and the state variables = are
determined afterwards according to a system of equations defining the equilibrium. Some examples
of dynamic systems optimization are energy problems (ACOPF as described in Section 5, optimal
power dispatch presented by [11]), water problems (the valve placement problem by [18]) or gas
problems (passive gas network feasibility problem studied by [1]). Moreover, problem (2.1) describes
the more general class of bilevel optimization problems where after setting the values of y in the
first stage, the second stage variables are chosen from the set of optimal solutions of the second-
stage optimization problem. The KKT optimality conditions of the second-stage problem can be
written as a system of equalities, where the final set of second-stage variables x consists of the
original second-stage variables and Lagrange multipliers of the second-stage problem. As a result,
one obtains the so-called complementarity formulation of the initial bilevel optimization problem,
which has the form of problem (2.1) if the initial problem was linear. A typical example of a
bilevel optimization problem is the Stackelberg competition in economics. Some examples of bilevel
problems in engineering can be found in [37, 3]. More information about linear complementarity
problems and robust optimization approaches for them can be found in [7].

Remark 2.2. Problem (2.1) allows for binary variables and absolute values. One can write
binary constraints on a variable a as quadratic equality constraints a = a2. One can write the
constraint a = |b| as a? = b%,a > 0.

An example of problem (2.1) that is the main use case in this paper is the ACOPF problem. It can
be written as follows using the general notation above.

min y' Py+p'y+po

Y,z

s.t. Ay <b
' Qi +ri=vy; forallie [Meg]
2'Qix+1r; >0 forall j € [m),

where y are active powers and voltage magnitudes on PV buses, and = are voltages in rectangular
form, see Section 5 for the full problem formulation. Another example is the valve setting problem
in water distribution networks from [18] with the following formulation:

min d'y
s.t. Ay < by, Asx < by
2" Qix+ql x+ely+ri =0 foralli € [mey)

xTij + quac + yTC’jy + chy + xTRjy +7r; <0 forall j € [my,],
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where y are pressure heads and valve placement indicators, and x are flow rates and absolute values
of flow rates.

In practice, given the uncertain demand and supply that is encountered in such applications,
one often aims at solving problem (2.1) under uncertainty, which results in the next formulation.

PROBLEM 2.3 (Two-stage quadratic ARO problem).

(2.3a)
(2.3b)
(2.3c)

z=inf f(y)

s.t. yesy,
and for any ¢ € Q there exists x such that the following holds:
L;i(y,¢,z) =0 for all i € [meg]
Gi(y,C,x) >0 for all i € [myy]
T €S,

Problem (2.3) is a two-stage ARO problem with the uncertain parameter . The first stage
happens before the uncertainty realization. At this stage, one assigns values to the control variables
y € Sy. The second stage happens after the uncertainty realization. At this stage, one has to choose
the best feasible value of the state variables x for the given uncertainty realization. The goal is to
select a value for y € S, such that there would be a feasible solution z in the second stage for any
uncertainty realization ¢ € Q. Any solution to problem (2.3) is feasible for the underlying nominal
problem and robust against potential uncertainty. We obtain the nominal problem by setting ( = 0
in problem (2.3). Next, we summarize main assumptions used in this paper.

AssUMPTION 2.4 (The characteristics of the objective and the constraints).

(a)
(b)
(c)

(d)

Se, Sy are compact sets.

All functions in the equality constraints (2.3a) are continuously differentiable.

All functions besides the equality constraints (2.3a) are polynomials of degree at most two.
This assumption is for simplicity. In fact, the problem only has to be quadratic in (,

the requirements for other variables are milder. Our approach would be still applicable if

the problem were polynomial of higher degree in y; see Section 4 for more details. The

inequality constraints could be general polynomials in x as well. If the inequalities have

higher degree in x, we can obtain degree-two polynomials using variable substitution and

increasing the number of state variables and equality constraints. We emphasize that this

procedure does not influence the final size of the problems we solve since this size only

depends on the number of control and uncertainty variables, i.e., y and (.

Q is an ellipsoidal uncertainty set of the form:

(2.1) Q={CeR™: ('S +0o'¢+r>0, j€[m]},

where X is negative semidefinite. Q has a non-empty interior.

We need assumptions on the degree of ( and the shape of Q to efficiently eliminate ¢
from the problem using the S-lemma [47]; see Section 4.1. We have chosen an ellipsoidal
uncertainty set as the base case since it is convenient for our approach; frequently appears
in the literature as being less conservative than, for instance, box uncertainty; and has
interpretations from both robust and chance-constrained perspectives; see, e.g., [20, 13].

ASSUMPTION 2.5 (Assumptions without loss of generality).

(a)

S, is defined by inequalities.
The assumption is w.l.o.g. since if the definition of S, contains equalities, they could be
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moved to (2.3a) as a preprocessing step. If S, becomes unbounded afterwards, a large ball
constraint for x can be added to the problem.

(b) ngy = meq and there are no redundant equality constraints in (2.3a).
The assumption is w.l.o.g. If n; < meq and there are redundant constraints, they could be
detected and eliminated as a preprocessing step. If n, > m.q4, then some state variables
are free and could be added to the pool of control variables.

(¢) Objective f is amenable for optimization (e.g., convex quadratic or linear).
The assumption is w.l.o.g. since if f is not convex, we introduce the epigraph control
variable and add the epigraph constraint to S,.

Our goal is to approximate the original problem by a problem in control variables y only, since
they represent the actual decisions to implement. The following idea motivates our approach: if we
could analytically solve equalities (2.3a) for the second-stage variables x, we would express x as a
function of y and ¢ obtaining the second-stage decision rule p : R™*"¢ — R"=. Then problem (2.3)
would be equivalent to the following problem:

PROBLEM 2.6.

z=inf f(y)
y
s.t. yes,

Gi(y,¢,p(y,€)) >0 for all ¢ € Q, i € [myy]
p(y,¢) € Sy for all ¢ € Q.

That is, if a known second-stage decision rule exists, then we could substitute it in the problem
and eliminate the equalities and state variables to obtain a classical (not adjustable) robust opti-
mization problem. Clearly, if the second-stage variables are determined from a system of non-linear
equalities, there might be no unique analytical expression for the decision rule in the problem.
However, such expressions exist on small subsets of S, x S under known conditions according
to the implicit function theorem (see, e.g., [41]). In essence, the approach we suggest restricts the
optimization problem to such subsets and replaces the implicit decision rule by its first-order Taylor
approximation on each subset. We present the approach in detail in the next sections.

3. Piecewise affine approximations of equality constraints. Our approach looks at
piecewise affine approximations of the second-stage decision rules z = p(y,() in problem (2.6),
which are given implicitly via the system of equalities (2.3a), using Taylor series. In addition to its
simplicity, the main advantages of the Taylor approximation are its good fit for the original function
around the approximation point and the possibility to construct it for an implicit function. For
the construction, we need some Jacobians of the system of equalities (2.3a). Denote L(y, (,x) :=

Ly (ya C’ JZ)

Lmeq (ya Ca I’) R
with respect to y, ¢, and x, respectively, evaluated at (g, ¢, #). By Assumption 2.4(b), the Jacobian

. For an (g, 6755) € Sy x xSy, let J.}]’é’j, Jg’i’i and Jg’f’i be the Jacobians of L

ngf@ is a square matrix of the size neq X 7Mcq.

THEOREM 3.1 (The implicit function theorem: [41] Theorem 2-12). Let L(y,(,z) : R™ x
R™ x R" — R™ be a continuously differentiable function. Let (§,(, &) € R™ x R™ x R™ be such
that L(g, ¢, %) = 0 and the Jacobian J9 %% of L with respect to x at (7, ¢, &) is non-singular. Then
there exists an open set U C R™ x R™ with (§,¢) € U, an open set S, C R™ with & € S,, and
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a unique function p(y,¢) : U — Sy such that & = p({, CA) and L(y, ¢, p(y,¢)) =0 for all (y,{) € U
Moreover, p is differentiable, and its Jacobian at (y,(, &) equals

N I
(3.1) - (Jm,’ : ) Jia |

From here on we call the main condition mentioned in Theorem 3.1 the Implicit Decision Rules
(IDR) condition for brevity:

DEFINITION 3.2 (The Implicit Decision Rules (IDR) condition) We say that the IDR cqndi-
tion holds for g€ Sy, CG Q if there exists & € R™ such that L(y, C, #)=0 and the Jacobian JJ<% i
non-singular. We say that the IDR condition holds on sets Sy, Q if it holds for each yESy, CEQ

We assume that it is possible to check quickly if the IDR condition holds for given g, C since one
can solve equalities (2.3a) rather efficiently in practice. This paper was inspired by engineering
problems, such as ACOPF. For these problems, Newton’s methods [50] are usually well-developed,
fast, and precise enough to work for realistic problem instances. Theorem 3.1 implies that, if the
IDR condition holds for some (g, ¢ ), a unique local second-stage decision rule = p(y, ) as in (2.6)
exists on some open set around (g, é ), and the first-order Taylor approximation of this rule is

(32 =i (29) (25— )+ T - 0)) . where & = p(3,0).

The above result applies to § € S, for which the Jacobian with respect to x is non-singular. This
condition is in general desirable in applications to dynamical systems, which are the main target
of this paper. For such applications, solutions with singular Jacobians may be physically unstable,
see, for example, [45].

The idea is to work on small subsets of Sy and 2 and use piecewise affine decision rules based
on the above Taylor approximations within subsets. Fix some subset of S, and 3 € Sy For M¢ > 0,
partition Q into Q!,...,QM¢ and pick some (' € Q',..., (M € QM. If S, is small enough and
the IDR condition holds for ¢ and CA Lo, CA Mc " the implicit decision rules from Theorem 3.1 exist
on S’y and some open subset of Q. Now, in problem (2.6), we impose the inequalities for each QF
substituting the implicit rules with the corresponding approximation (3.2). The procedure results
in an almost standard ARO approximation with piecewise affine decision rules (see problem (3.3)
in Algorithm 1). The differences are that (i) y is restricted to a subset, and (ii) the decision rules
are known, we do not need to optimize over them. We can solve the approximation and obtain
some solution y*. As the last step, we could check that y* is feasible for some selected values of the
uncertainty that are desirable in practice, for instance, that it is nominally feasible. Then we can
repeat the procedure considering other subsets of S, and choose y* with the best objective value.

Intuitively, if the subsets of S;, and 2 are small enough, the above approach should be able to
discard solutions § € S, for which no decision rules from Theorem 3.1 exist and select solutions for
which these rules exist. We develop this idea in the next corollary.

COROLLARY 3.3. Consider an €Sy, a finite cover Q:Uf:[:cl OF and él ent,..., fMC e QM.
(a) Let the IDR condition hold for § on CL .. (M and assume that equalities (2.3a) have no
solution for § on some Q C Q. If each QF k=1, .. ., M¢ is contained in a ball of radius

€> 0, then Q cannot contain a ball of radius larger than 2e.
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(b) Let the IDR condition hold for § on ). Then there exist a closed ball Sy CR"™ withy € S'y
and a cover ) = U,iicl OF by finitely many compact subsets such that the unique decision
rules from Theorem 3.1 exist on products of Sy and each QY, ... QM.

Proof. We begin by proving part (a). In each QF, k = 1,..., M, there is at least one ¢ for
which the IDR condition holds and therefore equalities (2.3a) have solutions. Hence Q does not
contain fully one of QF. To cover a ball of radius up to r with balls of radius € in such a way that
none of the smaller balls is fully inside the larger ball, we need to have r < 2¢. Thus we cannot
have a violating subset that contains a ball of radius larger than 2¢. Next we prove part (b). By
Theorem 3.1, for every ¢ € € there is an open ball B € R™ x R™¢ with radius e such that (g,() € B
and decision rules & = p(7, {) exist on B. Now, consider an open ball B, around y with radius /2
and an open ball B: around ¢ with the same radius. Notice that B, x B C B. We can cover {2
by the balls B¢ for every ¢ € 2, and by compactness of €} there will be a finite subcover. Taking
a closure of each ball in this subcover and intersecting it with {2, we obtain a finite compact cover
Q= UkM:C1 QF. Now, each of QF corresponds to an open subset of R™ that contains ¢ for which the
decision rules exist by construction. Since there are finitely many such subsets, their intersection
results in an open subset of R™v that contains ¢ and the required closed ball Sy around it. ]

3.1. Approximation algorithm for general problems. We formalize the ideas from the
previous section in Algorithm 1, and the approximation guarantee is presented in Theorem 3.4.

Algorithm 1: Piecewise affine approximations of problem (2.3) using Taylor series

Input: Problem (2.3), §* € S}, € Sy,i =1,..., M, for some M,, Feqkca

kE=1,..., M, for some M., where Q:UkM:1 QF. All sets are compact.

fori=1,...,M, do
Check that the IDR condition holds for §¢ and all ¢!,...,(M¢, denote the
corresponding solutions by &%, k=1,..., M.
if The IDR condition fails for §° and some of él, . ,éMC then
set z; := o0, ,y"' :=1(

N o=

else
Solve PROBLEM 3.3: (Piecewise affine approximation of problem (2.3) on S})

z; =inf  f(y)
S.Z{G. y € S;
(3.3a) 7y ) € 8, for all ¢ € QF, ke [M]
(3.3b) G (y,g,p@"vfw”“(y, g)) >0 for all ¢ € QF, m € [min], k € [M]
where pi’¢" @ (y,¢) is defined in (3.2). Let y** be the optimal solution to (3.3).
7 | Save z;, y*? setting z; := oo, y**:= () if problem (3.3) is infeasible.

[= L B N

8 Choose i* := argminfviyl Ziy 2% = zie, Y= yol .
9 For ¢k, k=1,..., M, check if y* is feasible for problem (2.3) restricting £ to ck.
10 Return z*, y* if the check in step 9 is positive, return z = oo, y* = () otherwise.

The next theorem shows that Algorithm 1 provides approximation guarantees and is able to find
solutions robust in a “strong” sense (such that the inequality constraints hold with a margin).
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THEOREM 3.4 (Approximation guarantees of Algorithm 1 for problem (2.3)). Consider a
§ >0, and let y* # () be a solution returned by Algorithm 1.
Guarantees limiting infeasibility
(a) There exists € > 0 such that, if S and each subset in the partition Q:U;i/[:(1 QF fit in balls
of radius €, then the following conditions hold on 2, except for possibly a subset where no
ball of size larger than 2¢ fits: (i) equality constraints (2.3a) hold, and (i) each inequality
constraint (2.3b), (2.3¢) is violated by at most 4.
(b) Let y* be not feasible for problem (2.3) on Q C Q whose Lebesgue measure constitutes at
least B <1 of that of Q. If M¢> % and fl, N éMC are sampled uniformly i.i.d. on
Q, the probability that y* passes the check in step 9 of Algorithm 1 is not larger than 6.
Guarantees for feasible solutions
(¢) Consider the set Sg C Sy of all solutions y to problem (2.3) which (i) satisfy the IDR
condition on Q and (i) are such that for any ¢ € Q constraints (2.3b), (2.3¢) hold strictly
with a margin § (i.e., the inequalities “ > 6” hold). Then there is a subset of S, and a
finite cover of Q0 for which Algorithm 1 will return an optimal y* € Sg.

Proof. First, consider statement (a). We know that step 2 in the algorithm did not fail for y*
and the corresponding partition Q = Ufyﬂ QF. If ¢ is small enough, then by Corollary 3.3 (a) there

are decision rules x = p(g}i* ,¢) on Q, except for possibly a subset where no ball of size larger than
2¢ fits. A small enough € ensures also that Sfj is such that the decision rules are valid for both §*"
and y*. Thus part (i) of statement (a) follows. Now, consider inequality constraints (2.3b) (2.3c).
By assumption (2.4) (c), these constraints are continuous, and there are finitely many of them.
Since we work on compact sets, Taylor approximation of each decision rule [)@i* ’ék’ii*’k(y*, ¢) (3.2)
is close enough to p(y*, () on S;* and QF so that the approximated inequality constraints (3.3b)
in problem (3.3) are d-close to the original inequality constraints (2.3b), (2.3¢) in problem (2.3).
Thus the original constraints cannot be violated (within the subsets of (@ where the rules exist) by
more than §, so y* possesses property (ii). To prove statement (b), notice that with i.i.d. uniform
sampling, the probability that all constraints of problem (2.3) are satisfied for one sample ¢ is at
most 1 — 3. Hence the probability that they are satisfied for M, samples is at most (1 — B)M¢ | and
if M¢ > %, then the latter probability is not larger than 6. Finally, consider statement (c).
By Corollary 3.3, there exist a compact subset of S, that contains y* and a compact finite cover of
Q where the implicit decision rules used by Algorithm 1 are valid. By the above argument for part
(ii) of statement (a), if we make the subset of S, and each subset in the cover of €2 small enough,
the Taylor approximations are so close to the actual decision rules that the inequality constraints
cannot differ from their approximations by more than ¢, and thus Algorithm 1 will choose y* if we
restrict the search to subsets from 53 . a0

To our knowledge, Algorithm 1 is the first ARO algorithm which uses the second-stage policies
defined by implicit functions, represented by equalities (2.3a). Theorem 3.4(b) speaks about uniform
sampling from 2, which is a numerically efficient procedure since €2 is an ellipsoid [14].

The main limitation of the algorithm in practice is the need to choose the subsets of .S, and
). This is not trivial since inefficient partitioning may lead to long running times and numerically
unstable problems. Constructing good subsets is a topic for separate research. For instance, to
split Q, one can use the results from [35]. In this paper, we are especially interested in testing
Algorithm 1 as a proof-of-concept for robust ACOPF. This problem has an additional structure:
control variables y appear linearly and separately in L. In the next subsection, we introduce a
version of Algorithm 1 that uses this property and allows working on larger subsets of S,,.
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3.2. Approximation algorithm for problems where L is linear in the control vari-
ables. In this subsection, we assume that the control variables y appear linearly and separately in
the equality constraints L(y,(,z) = 0 . That is, we can write

(3.4) L(y, ¢, z) = Li(z,¢) + Jyy,

where L, is a polynomial function and J,, is a constant matrix. As a result, the Jacobian of L(y, ¢, z)
with respect to y is Jy, and other Jacobians do not depend on y. Denote the Jacobians with respect

to ¢ and z for any y and some (é , &) by ng and J£ @ respectively. Then the first-order Taylor
approximation (3.2) in (g, f,i) where L(y, é,i’) = 0 simplifies to

P (y, Q) :

(3.5) i (27) T (Gt IO+ LC®)
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Observe that the Jacobian J$* and the above Taylor approximation are independent of §. That
is, the same approximation could be valid for various subsets of S, as long as the decision rules for
these subsets and some QF C Q lead to the same subset ST C R™=. Hence it could be beneficial to
use subsets of S, instead of subsets of S, reconsidering Algorithm 1 as presented in Algorithm 2.

Algorithm 2: Piecewise affine approximations of problem (2.3) where L is linear in y

Input: Problem (2.3), v >0, 4/ € S,,j =1,..., M, for some M,, ke CQ
kE=1,..., M, for some M., where Q:Ukal QF. All sets are compact.

1 Solve PROBLEM 3.6 (Approximation of problem (2.3) where L is linear in )

*

2" =1inf  f(y)
s.%. y €Sy
Fork=1,...,M.:
At least one of conditions (j) for j =1,..., M, holds:
The IDR condition holds for some g € S, in é k¥ with solution &7,
Gony ()T @< (=)
P> (y,¢) € S, forall ¢ € Q
Gon (3,65 % (4,0)) = 0 for all m € [min], ¢ € QF,
where ﬁék’y (y, () is defined in (3.5). Let y* be the optimal solution to problem (3.6).
2 For ék, k=1,..., M, check if y* is feasible for problem (2.3) restricting 2 to k.
3 Return z*, y* if the check in step 2 is positive, return z = co, y* = () otherwise.

The next Corollary 3.5 shows that the performance of Algorithm 2 is similar to the one of
Algorithm 1.

COROLLARY 3.5 (Approximation guarantees of Algorithm 2). Let y* # () be a solution returned
by Algorithm 2, and let v be the input into Algorithm 2 used in (3.6a) (**).
(a) The result of Theorem 3.4 (b) holds for y*, and there is € > 0 such that if v < € and
QL ., QM fit in balls of radius at most €, the result of Theorem 3.4 (a) holds for y*.
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(b) Define T = maxe, ¢c,eq ||t — Gl If T and v are small enough and M =1 (no need to
partition Q), then conditions (i) and (i) of Theorem 3.4 (a) are satisfied on €.

Proof. We begin by proving statement (a). The result of Theorem 3.4 (b) holds by step 2 of
Algorithm 2, which coincides with step 9 of Algorithm 1. Now, move to the result of Theorem 3.4 (a).
Denote the set of all solutions y € S, to (2.3a) for some Ckok=1,..., M¢and #7,j=1,..., M, by
53k In each condition (j) in problem (3.6), we verify that the IDR condition holds for some y € S

and CA * resulting in the second-stage solution #7. Thus the IDR condition holds for all 3 € S{,k in CA k

since the Jacobian JE &’ does not depend on y. If the verification is successful, a second-stage rule
exists for an open ball around any y € S#** and ¢*. Since Sj* is compact, it has a finite cover by
those balls. Consider the union of the balls in this cover, which is an open set containing S?Z’k, and
look at the complement of this union. The distance between this complement and Sg*k is positive
since they are disjoint, S{;k is compact and the complement is closed. Hence, there is some € > 0
such that if v < ¢, then the restriction on the Taylor approximation in (3.6a) (**) pushes y* to
be in the earlier constructed open cover of Sg’k, so there exist second-stage rules for y* around C*.
Moreover, we can adjust v and and the size of QF to make sure that the Taylor approximations
of the inequality constraints are d-close to the original constraints, for any § > 0. These are the
conditions we used to prove Theorem 3.4 (a), thus the corresponding result holds for y*. Finally,
statement (b) follows from the proof of statement (a) under the following consideration. If M, =1,
then statement (a) applies to the whole 2 = Q. Thus, if 7 and 7 are small enough and we obtain
y* # 0, the conditions (i) and (ii) of Theorem 3.4 (a) are satisfied on the whole 2. |

Algorithm 2 could be more efficient than Algorithm 1 since it could capture more values of
y € Sy, even if it looks around only one solution . However, we cannot guarantee that a strictly
feasible solution y* as defined in Theorem 3.4 (c¢) will be found under some conditions as we cannot
control y as precisely as in Algorithm 1. Also, to say that at least one of the conditions (j) in (3.6a)
holds for each QF, one may have to introduce additional binary control variables.

By Corollary 3.5 (b), if € is small enough for the chosen approximation error, it suffices to find
one good small subset of S, and there is no need to partition . The nominal problem (2.1) for
which we want to find a robust solution is usually feasible and, moreover, its optimal solution is
usually “stable” in the sense that the Jacobian in (3.6a) is non-singular. Thus, for small uncertainty
sets, one could start from some nominal feasible control solution ¢! at hand (e.g., the original optimal
solution), find the corresponding state variables solution &' such that L(§',0,2') = 0 and restrict
Algorithm 2 to work around #! as in (**) in (3.6a). If the algorithm finds a solution §? # !, one
could set 22 such that L(§2,0,2?) = 0 and repeat the procedure trying to find a better solution.
Notice that a similar procedure would be valid for Algorithm 1 too, by Theorem 3.4 (a), but we
would construct subsets around y', 32 in Sy instead of subsets around !, 2% in S,.

Now, we have constructed two algorithms, one is suitable for general problems (2.3) (Algo-
rithm 1), and one is tailored to problems (2.3) linear in control variables (Algorithm 2). To solve
the optimization problems (3.3) and (3.6) in the algorithms, we need to deal with quadratic in-
equality constraints under ellipsoidal uncertainty, which is the topic of the next section.

4. Quadratic inequality constraints under uncertainty. In this section, we solve prob-
lem (3.3) in Algorithm 1 or problem (3.6) in Algorithm 2, depending on which algorithm is used.
Our first step is to eliminate ¢ from (3.3b), (3.3a) and (3.6a). The constraints in question have the
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following general form:

(4.1) h(y,¢) > 0 for all ¢ € Q.

For instance, we can have h(y, () := G; (y, C,ﬁg’é’i(y, C)) for some i € [m;,]. Since (4.1) concerns

the non-negativity of a polynomial on the set €2, whose description does not involve y, in the next
subsection 4.1 we treat y as a parameter and answer the question of when a polynomial of degree
at most two in ¢ is non-negative on 2. The answer leads to a reformulation of (4.1) that contains
no ¢. In this way, we eliminate the uncertainty ¢ from the problems in question. After that, we
stop treating y as a parameter, and y becomes the only variable left in the reformulated problems
(3.3) and (3.6), which we solve in subsection 4.2.

The rest of this section is needed if the initial problem (2.3) contains inequalities that are non-
linear in y or ¢. If it turns out that problem (3.3) in Algorithm 1 or problem (3.6) in Algorithm 2
is linear in y and (, then classical robust optimization techniques apply to the corresponding
problem. In this case one can use a standard reformulation of a linear constraint under the ellipsoidal
uncertainty (see,e.g., [5]) and rewrite the problem as a second-order cone program. Finally, from
here on, we focus on problem (3.6) for brevity, but the method is valid for problem (3.3) as well.

4.1. Eliminating the uncertainty from the problem. Under Assumption 2.4, all inequal-
ities in problem (2.3) are of degree at most two in « and ¢, hence so is h in (4.1):

(4.2) Wy, ) ==C"AC+ (y ' B+b")(+c y+d+gly) >0,

for some given parameters A, B, b, ¢, d, and a function g which contains all monomials that are
non-linear in y. The precise values of the parameters and the form of g depend on the functions
in (3.6a) and can be obtained directly from those functions. Recall that 2 has the form (2.1). Such
a combination of h and Q allows reformulating (4.1) and eliminating the uncertainty from it due
to the S-lemma.

PROPOSITION 4.1 ([47]). Let h,g € Ra[C] and suppose there is ( € R™ such that g(¢) < 0.
Then the following two statements are equivalent:
1. h(¢) = 0 for all ¢ € R™¢ such that g(¢) > 0.
2. There is A € Ry such that h(¢) — Ag({) > 0 for all ¢ € R™¢.

S-lemma is well known in robust optimization (see [4]) but is usually applied to convex problems
in y, ¢ while we use it for a general quadratic constraint (4.1).

PROPOSITION 4.2. Constraint (4.1) with h as in (4.2) and the uncertainty set (2.1) holds if
and only if there exist A,~y such that

Yt+c'y+d+ M F(y'B+b' +A") -0
1(BTy+b+ \o) AL+ A =
A >0,
9(y) =,

where ¥, 0 and r are the parameters from (2.1), and other parameters are defined in (4.2).
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Proof. We have
h(y,¢) > 0 for all ¢ € Q
PESNTACH (BB )Tyt dtgly) >0forall (ER™ (TS 40 ¢+7r<0
= (TACH B+ Ty +d+gly) - M-r—(TS¢C—07¢) = [1]7 5[],

S=0,A>0
y+c'y+d+ A (y'B+b 4+ As") o B S
= LB y+b+ o) AS + A =0, 9(y) =7 A 20.

d

If some inequalities in problem (2.3) are linear in x and ¢, then h in (4.1) is linear in ¢ as
well. In this case, the constraint considered in this section simplifies to the classical linear robust
constraint. It is well known how to eliminate uncertainty from such constraints; see, e.g., [4].
Each linear constraint under the ellipsoidal uncertainty in (2.1) will become a second-order cone
constraint after eliminating the uncertainty.

4.2. Alternating projections algorithm. In Section 4.1, we eliminate ¢ from constraints
(3.6a) in problem (3.6) and add auxiliary control variables (e.g., A,v in Proposition 4.2). By
eliminating ¢, we reformulate problem (3.6). This reformulation can be written in a general way as

PROBLEM 4.3.

(4.3a) z; = inf fly
(4.3b) s.t. H(y)=7
(4.3¢) F[ilec,

where v are auxiliary control variables as in Proposition 4.2, y includes other original and auxiliary
control variables, H is a polynomial mapping, F' is a linear mapping, and C is a proper semialgebraic
cone amenable for optimization (e.g., positive semidefinite cone, second-order cone, or the non-
negative orthant).

Under Assumption 2.4, the equality constraints are quadratic, the objective function is convex
with degree at most two, and C is the positive semideninite cone. The approach we use next
is applicable for general polynomial equality constraints and semialgebraic cones C, therefore we
introduce the formulation above.

Problem (4.3) would be a classical conic problem for which many solvers exist if we did not
have those non-linear equality constraints. Hence, we first relax those complicating equalities and
obtain a solution feasible for (4.3c). Then we iteratively transform it into a solution feasible for
the whole problem (4.3). Notice that problem (4.3) cannot be unbounded as the feasible set of its
nominal problem is compact by Assumption 2.4. We begin with a lower bound for the problem,
which can be obtained using any relaxation of the polynomial equality constraints. One can use
lifting techniques, e.g., SDP relaxations or the reformulation-linearization technique as in [40]. The
lower-bound relaxation might provide a solution that is infeasible for (4.3b). To obtain a feasible
solution from the solution to the relaxation, we use the alternating projection method as presented
in Algorithm 3. Let zY be an upper bound on f(y) in problem (4.3). Define two sets:

(4.3) A= {(y,7) : (4.3¢) holds, f(y) < 2V},
(4.4) B := {(y,7) : (4.3b) holds}.
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We denote y := (y™°,y°), where y"¢ y°¢ are the subsets of variables y that are involved (resp. not
involved) in the non-convex constraints (4.3b). We use two subsets of the variables to speed up the
algorithm by skipping the iterations in which only y¢ changes.

THEOREM 4.4. Let ANB # 0. Then the following holds:

(a) Algorithm 3 stops after finitely many iterations. The algorithm can either find a feasible
solution, or report an infeasible problem, or not be able to find a solution in the given
number of iterations.

(b) If Algorithm 3 starts at a point (yo,v0) that is sufficiently close to AN B, then it stops in
a point (y*,v*) that is tol-close to AN B for N large enough.

(c) If A has a non-empty interior and (yo,vo) is sufficiently close to AN B, Algorithm 3
converges to a point in AN B linearly. We say that a sequence (ai)52, converges linearly

AR lakt1—al
to a Zf 11H1]€_>OO ﬁ < 1.

(d) For any & > 0 there exists N large enough and tol, (v;)N.; small enough such that the
solution obtained by Algorithm (3) is d-close to a local minimum.

Proof. Ttem (a) follows by construction of the algorithm since we limit the number of iterations.
Item (b) follows from Assumption 2.4 and Theorem 7.3 in [15] as the sets A and B are closed and
semialgebraic. Item (c) follows from the fact that A is convex. Hence the normal cone at any point
in the interior of A equals {0}, and thus A and B satisfy the conditions of Theorem 2.1 in [15], which
implies linear convergence. Next we prove item (d). For a given v, let S, := ANBN{(y,v) : f(y) <
vf(y*)+(1—v)zE}. Let (y,7%) be the best solution of the algorithm at iteration i, and assume that
it is not the closest local optimum denoted by (4,4). Then f(y%) < f() and there exist v; > 0 such
that S,, # 0 and (y*,~?) is close enough to S,, to satisfy the conditions of item (b). Notice that the
latter argument might fail if we require (,4) to be a global optimum. Using v;, the algorithm finds
the next point (y*+1,v*+1) that is tol-close to S,, and such that f(y*) < f(y**1) < f(¢). Since the
interval (f(y%), f(9)) is bounded, for any § > 0 there are N large enough, tol small enough and a
sequence (;)X; such that f(yV) is d-close to f(9). d

In the next subsection, we demonstrate the performance of the combination of Algorithm 2 with
Algorithm 3 to solve problem (2.3) on the ACOPF. The experiments show that in the majority of
tested cases this combination of algorithms finds a robustly feasible solution within 15 minutes of
computational time for small uncertainty sets.

5. Adjustable ACOPF with uncertain renewable generation and load demands.
Optimal power flow (OPF) is one of the key optimization problems relevant to the operation of
electric power systems. OPF solutions provide minimum cost operating points that satisfy both
equality constraints termed the “power flow equations” which model the power system network and
inequality constraints that impose limits on line flows, generator outputs, voltage magnitudes, etc.
Accurately modeling the steady-state behavior of power systems requires the non-linear AC power
flow equations, which can be formulated as a system of quadratic equality constraints.

Compounding the difficulties posed by the power flow non-linearities, rapidly increasing quanti-
ties of wind and solar generation are introducing significant amounts of power injection uncertainties
into electric grids. To address these uncertainties, researchers have studied a wide range of sto-
chastic and robust OPF problems [39], many of which use the DC power flow approximation; see,
e.g., [44, 8] for several relevant examples. This linear power flow representation permits the appli-
cation of stochastic and robust optimization techniques developed for linear programs. Alternative
approaches replace the AC power flow equations with other more sophisticated approximations,
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Algorithm 3: Alternating projections algorithm for problem (4.3)

Input: small tol > 0, upper bound 2V > z;, (1;)¥, € (0,1], N >1
Solve a lower bound relaxation of problem (4.3) and denote its solution by (yo, ) and its
objective value by z~;

fary

2 if the lower bound relaxation is infeasible, then

3 | Lower-bound relaxation is infeasible, stop, return “Problem (4.3) infeasible”

4 Set i = 0 and choose (y1,71) such that ||(y5° v0) — (Y7, 1) > tol;

5 while ||(y3°, v0) — (y7¢,71)|| > tol and i < N do

6 et i: =14+ 1;

7 | Project on B: (y1,71) := (v, H(y0));

8 | Project on A: (yo,0) := argming, e [[(y™,7) = (W1, 1) l;

o | if (45 y0) — (y1, 7))l < tol, then

10 Find the best y© given (yg°,vo0) by solving y§ = argmin(yne ye vo)ea f (43¢, ¥);
11 Save (y*,7*) := (y§°, y§, Y0) as the current best feasible solution;

12 Try to find a feasible solution with a better objective value:

13 Update zY := v; f(y*) + (1 — 1)z (to decrease the upper bound);

14 Update A := AN {(y,7): f(y) <2Y} (to work with lower objective values);
15 Adjust (y1,71) := t—il(yo, o) (to proceed with the while loop)

16 if No feasible solution is obtained, then

17 | Problem (4.3) could be infeasible, return “Inconclusive, out of iterations”
18 else

19 | Return “The best obtained solution is (y*,~v*)”

such as the work in [34] and [38], or convex relaxations, such as the work in [43]. Such approaches
can provide useful solutions in many contexts, particularly when the approximations are iteratively
updated or adaptively adjusted. However, the quality guarantees from these approaches are pro-
vided with respect to the approximation or convex relaxation as opposed to the original non-convex
ACOPF problem. Since power flow approximations and relaxations can introduce substantial errors
relative to the non-linear AC power flow equations [36, 16, 2], the resulting solutions may lead to
unacceptable constraint violations during operation in the physical system.

The power systems literature also includes approaches that directly address the non-linear AC
power flow equations. These approaches can provide high-quality solutions in certain instances but
may be limited to special classes of problems, such as systems that satisfy restrictive requirements
on the power injections at each bus as in [29]. Other approaches use scenario-based techniques
that enforce feasibility for selected uncertainty realizations, possibly obtained via subproblems that
compute worst-case uncertainty realizations with local solvers as in [12] or convex relaxations as
n [28]. Certifying robustness with such approaches is challenging due to the possibilities of local
solutions and inexact relaxations. Rather than seeking the worst-case uncertainty realizations, the
approach in [32] instead bounds the worst-case impacts of the uncertainties with respect to each
constrained quantity. While this approach provides guarantees regarding the satisfaction on the
engineering inequality constraints, each iteration requires the solution of many computationally
expensive subproblems. We also note recent work in [26] that uses so-called “convex restriction”
techniques (see [25]) to compute robustly feasible ACOPF solutions. While promising, this approach
is undergoing continuing development and requires specialization to the particular non-linearities
in each class of problems.
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Accordingly, new computational methods such as the framework proposed in this paper are
needed to address power system optimization problems that model both uncertain power injections
from renewable generators and non-linearities from the AC power flow equations. The proposed
framework would most naturally fit into a system operator’s generation scheduling processes as part
of near-real-time (five-minute to hourly) generator setpoint computations via optimal power flow
algorithms, which is a key application at the heart of power system operations. Since optimization
in this case is repeated frequently during the day, the uncertain deviations in loads or generation
are likely to be of small size. However, they can lead to infeasibility of the nominal solutions,
thus an approach is needed that takes the uncertainty into account. This situation corresponds
well with the result in Corollary 3.5 (b) about small uncertainty sets. Extensions to incorporate
binary variables would facilitate other applications, such as solving unit commitment problems for
day-ahead scheduling that models generators’ start up and shut down decisions. Thus, developing
algorithms suitable for such extensions is an important direction for future work.

5.1. Robust ACOPF formulation. Exploiting the polynomial representation of the AC
power flow equations, we next apply the approach described in this paper to the robust ACOPF
problem, beginning with our notation and the problem formulation. Consider a power network with
the set of buses N = {1,...,n} and the set of lines connecting these buses E. We denote the set
of buses with generators by G and the active and reactive power demand (load) at each bus k € N
by P,gl and Q? respectively and denote the index of the reference bus by s. To implement thermal
restrictions on the transmission lines, we impose line current limits, see [50]. Our objective is to
minimize the cost of power generation, which is one of classical objectives in OPF problems.

Denote the active and reactive power injections due to load or generation fluctuation by P
and @}, respectively, for all £ € N. In the nominal ACOPF without uncertainty, P} and @} are
known and fixed. Next we define the ACOPF problem as a quadratic optimization problem.

PROBLEM 5.1.

2" = inf Z c,%(P,f)z + c}cP,f + cg

ERR A v=rz

s.t. PPin < pg o< ppex forallk e N
Q" < Q < Q™ forallk e N
(Vpimy2 < @ +ah, < (Vpmex)? forallk € N
tr(Vipaa ) < Smax for all {Im} € E
Py + P, = P+ tr(Yyox ") forallk e N
QI+ Q= Qf + tr(Yyax ") forallk € N
Tstn =0,

where the last constraint sets the phase angle of the reference bus to zero. Now, let the active power
fluctuations for each k € N be Pj = P} + (, where ( represents the uncertainty. We assume that
the power injection uncertainties from the load and generation at each bus & € N are modeled via
a constant power factor cos ¢ so that the reactive power fluctuations are

o 0 if P¢ =0,
Q;c = Qz + Pkak:a Yk = {\/I—COSZ fays

s dr otherwise.
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Without loss of generality, we let 13,; = Qz = 0, otherwise one can adjust the loads P,‘j and Qg.
We denote by § the total change in the active power losses due to the redistribution of power flows
from the uncertain power injection fluctuations relative to the losses from the nominal power flows.
Note that § is typically near zero, as the losses themselves are usually small and the changes in
losses are even smaller. For an operating point to be robustly feasible, the generators must account
for the total change in the active power injections, Y ., ¢; — d, associated with each uncertainty
realization without leading to constraint violations. We adopt a “participation factor” model where
this change in power injections is distributed among all generators according to a linear recourse
policy with specified participation factors ay for each generator k. Thus, for each k € N, the actual
active power generation consists of the nominal power P{ and an adjustment in generation due to
the uncertainty:

(51) P,f—ak (i@é),aizo,iazl,

Thus, when introducing uncertainty to problem (5.1), we replace P{ in this problem with (5.1).
We note that this model represents the steady-state behavior of widely used automatic generation
control (AGC) (see [22]) and is adopted in many robust and stochastic OPF formulations, e.g.,
those used by [43], [38], and [32]. To model the uncertainty, we let the uncertain parameters ¢
belong to the region 1 = {¢ € R™ : ("¢ < 1}, where ¥ is a covariance matrix. That is, our
uncertainty region is an ellipsoid centered on the point with no fluctuations.

For k € N, we denote by V}J := xi + xi 4, the squared voltage magnitude at bus k. Following
traditional power system modeling practices, we consider three types of buses: PV, PQ and the
reference bus. If k is a PV bus, the active power Py and squared voltage magnitudes V) are set by
the operator while the reactive power @Y can change. If k is a PQ bus, then the active power and
reactive power are fixed to constant values while the voltage magnitude can change. Without loss
of generality, we assume that active and reactive power generation at PQ buses is zero, otherwise
the loads can be adjusted. Finally, the operator selects the voltage magnitude at the reference bus
while the active and reactive powers are free to vary. We also introduce a variable ¢ that denotes the
worst-case upper bound on the active power on the reference bus. We use this bound to estimate
the worst-case objective value over the uncertain power injection fluctuations, as is typical in robust
optimization problems. As a result, the control variables y in the problem include ¢, P¢, where k
belongs to the set of PV buses, and V¢, where k belongs to the union of PV and reference buses.

Now we define the problem in the same form as (2.3) to more easily use the results from the
earlier sections. This yields the following:

(5.2) &, POV = Y G(PO?+ p P+ & + it +clt + 2,
keG\{s}
Sy ={(P9,V9): P < P < P™ forall k € G\ {s},
(5.3) (Vprim)2 < V9 < (V)2 for all k € G, P <t < PR}

Plitr(Yezae ') — G — Pl + o d iy ¢ forallk € G\ {s}
Pl+tr(Yiza") — G+ o >y G forallk e N\ G
(5.4) L(P9, VI ( x) = QY+ tr Vixx ") — vl forall ke N\G |,
e+ ai,, =V for all k € G
Ls+n



18 KURYATNIKOVA, GHADDAR AND MOLZAHN

—PMn 4 Pyt (YaarT) = G+ ap Y0 G
t— Psd —tr (YSLEQTT) + (s —ay Z?:l Gi

5.5 G(t, P9, VI ( x) = Qi 1 QF +tr (YVizx ") — 1r forallke G |,
k k .
Qrax — QF — tr (Yizz ") + e for all k € G
—tr (Vo ") + Smax for all {Im} € E
(5.6) Sy ={x e R : (V™) <2} + a2}, < (V") for all k € N\ G}

In the next subsection, we run numerical experiments solving problem (2.3) with the inputs defined
above and the instances from MATPOWER [50].

5.2. Numerical results. In this section, we implement Algorithm 2 and compare it with
several algorithms used in the literature. All computations are done using MATLAB R2021a and
Yalmip (see [27]) on a computer with the processor Intel® Core® i7-8665U CPU @ 1.90GHz and
16 GB of RAM. Semidefinite programs are solved with MOSEK, Version 9.3.21 [33].

In the experiments, we need to choose the vector a and the parameters defining the ellipsoid
Q). We assume that all uncertainty balances out on the reference bus since this is the default setup
of MATPOWER. Therefore oy =1 and oy = 0 for k # s.

We implement Algorithm 2 with the following inputs:

e We do not split the uncertainty set 2 and set é =0.

e We consider only one Z: the initial feasible solution to the solution of the nominal prob-
lem (5.1) provided by MATPOWER [50]. For constraint (**) in Algorithm 2, we set v =
V/Izi-1ll/10 for |N| < 30, and v = /ll=i-1l/30 for |N| > 30 since the solution norm grows
with the instance size.

o We reformulate problem (3.6) as problem (4.3) (see Proposition 4.2).

e To solve problem (4.3), we use Algorithm 3 with fo = 1 x 105, tol = 1 x 107%, N = 100,
v; =1 for all i € [N].

e To compute the lower bound in Algorithm 3, we use the classical SDP relaxation of the
quadratic problem (4.3), linearizing all non-convex quadratic terms in the control variables
and obtaining an SDP constraint of the size n, + 1.

e In the ACOPF problem, some matrices A in (4.2) are negative semidefinite. We do not
have to project on the corresponding equality constraints (4.3b). Instead, we replace the
equality sign by “<” and add the resulting constraints to the definition of A in (4.3).

e We do the posterior check in step 2 of Algorithm 2 for f = 0, i.e., we check that the obtained
solution is nominally feasible.

Setting v; = 1 implies that we do not try to improve the objective value after finding the first
feasible solution. We considered setting v; < 1, however, for all tested cases the initially obtained
objective value was close to the lower bound. Attempts to improve the objective values resulted
in using substantially more or all N iterations with negligible or no improvement in the objective
value. This result can be explained by the high quality of the lower bound from the SDP relaxation,
which frequently provides a feasible or close to feasible solution to problem (4.3). Therefore, we
decided to stop at the first obtained feasible solution by setting v; = 1 for all ¢ € [N].

As benchmarks, we use three other approaches. First, we consider the nominal solution found
by MATPOWER to see how robust or not it is. Next, we implement the classical DCOPF relaxation of
ACOPF, which is a linear problem. We follow the approach from [8]. In this paper, the parameters
« are optimized while in our case they are fixed. We can eliminate all equalities and second-stage
variables in DCOPF, thus obtaining a standard linear robust optimization problem under ellipsoidal
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uncertainty. Finally, we implement an approach based on the classical SDP relaxation of ACOPF
[24]. Without the uncertainty, this relaxation usually provides exceptionally good approximations.
A number of papers in the literature (e.g., [43, 46]) implement an ARO version of this relaxation
by replacing the nominal positive semidefinite matrix in the relaxation by a linear matrix function
of the uncertainty; see the earlier mentioned papers for details. Since the initial relaxation is linear,
except for the SDP constraint, after substituting the linear decision rule, all equalities can be
eliminated and the standard linear robust approach applies. To ensure approximate feasibility of
the uncertain SDP constraint, one usually imposes this constraint for many enough realizations of
the uncertainty. We followed the approach in [43] and imposed the SDP constraint for the largest
possible value of each uncertainty. We have also tried using the sampling approach to ensure
feasibility of the constraint with high probability, as in [46]. However, even for small cases this
required many scenarios, resulted in too many SDP constraints, and lead to numerically unstable
problems even if we used row generation to add the constraints.

For all algorithms, we limit the running time to 15 minutes (for our approach, 15 minutes from
the moment after obtaining the SDP lower bound). DCOPF and Taylor approach do not reach this
time limit in the presented cases. For the SDP relaxation, this limit is reached for the large cases
(57 and 118 buses), therefore this approach is omitted in the corresponding table.

The two benchmark models we consider have affine constraints and use a chance constraints
framework. However, to obtain the final reformulations, both models exploit the analogy between
the ellipsoidal uncertainty and chance constraints for normally distributed random variables and
affine constraints. Therefore, we also use this analogy to conduct experiments. Namely, we say
that the uncertainty vector ( is a random variable with the mean zero and the vector of standard
deviations is equal to w% of the initial load. Let ¢ be normally distributed, and let W be a variance-
covariance matrix of ¢. Let P be such that W = PP (obtained, e.g., via Cholesky decomposition)
and ¢q1_c be the (1 — ¢)-percentile of the standard normal distribution. Then making one affine
constraint robust against the uncertainty set

(5.7) Q:={C: IP7CI < qu-e}

is equivalent to requiring this constraint to hold with probability at least 1—% for ¢. This is a
well-known result which follows from classical robust optimization (see, e.g., [4]) applied to a linear
constraint with ellipsoidal uncertainty and a straightforward reformulation of a chance constraint
using the cumulative probability function.

We allow the uncertainty to occur at all buses with positive active power loads. This is easy
to change. For instance, we could also consider uncertainty in generation by allowing additional
sources of uncertainty at generator buses. We use two options for the variance-covariance matrix
W. For the first option, we set W = Diag (wP{), where Diag is the operator that creates a
diagonal matrix from a vector. We let w vary from 0.01 (1% of the load at the corresponding
bus) to 0.5 (50% of the load at the corresponding bus). In the second option, we allow random
correlations among the uncertainties. Namely, we generate a random positive definite matrix and
scale it such that the standard deviations are equal to wP¢. We relate our uncertainty to 95%

chance constraints using ¥ = p1Tp-1, p=0and r = —1.652 in (2.1). In real-life applications,
one can choose a correlation matrix that is suitable for the given application; for instance, one can
assume that correlations are proportional to distances between buses.

Choosing the probability of violations of the chance constraints is not trivial. The number of
constraints in the problem is large even for small cases. Thus, when we restrict the probability that
each chance constraint is violated, the probability that at least one constraint is violated tends to
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one when the number of constraints grows. Formally, to obtain the 5%-safe radius of the ellipsoid
for m constraints, we can just require all chance constraints to hold with probability 1 — ¢/m.
However, in practice this approach is usually too conservative, and thus we choose the typical 5%
level for each constraint and investigate how robust the solutions are for this setup.

Another reason to connect robust constraints to a probabilistic setup is the property that the
volume of the ball with a constant radius tends to zero when the dimension of the ball grows. Thus,
for larger cases, it would be hard to generate a large enough sample of uncertainties within the unit
ball while we can easily generate uncertainties from a normal distribution.

To evaluate the performance of the algorithms, we generate ( according to the normal distribu-
tion around zero with the covariance matrix W. In particular, we first generate a standard normal
vector z and then use ( = Pz, where P comes from the earlier mentioned factorization W = PPT.
We generate 1000 values of the uncertainly including the nominal case where { = 0.

The computational results are presented in Tables 1-3. Tables 1 and 2 cover power networks
with fewer than 30 buses, and Table 3 shows the results for larger power networks. Our main
indicator is the share of experiments where the solution provided by the corresponding approach
had some infeasibilities. We round all infeasibilities down to 1 x 10~ per unit since this is precise
enough for our application. We also checked more precise rounding, and the differences in the tables
were minor. In all presented instances, the equality constraints were always feasible.

For each case, we present all levels of uncertainty where at least one model has at most 10%
of constraint violations. As we mentioned earlier, it is not obvious which performance should be
considered good, especially for large cases. A perfect performance would be to have less than 5% of
experiments with constraints violations since this is the violation possible in our setup for a single
constraint. However, given that even the smallest case we present has more than ten constraints,
we choose 10% as an acceptable violation.

We do not present typical MATPOWER smallest cases with three buses (LMBM3) and five buses
(WBB5) since for the first case even the nominal solution is robustly feasible for moderate values of
the uncertainty, and for the second case none of the models is able to obtain a robustly feasible
solution. The latter test case is known to be especially challenging in various contexts (see [31]).

In all tables, the first column denotes the values of the uncertainty as a fraction of load,
mentioned earlier as w, in percent. The second column indicates the evaluated model. The first
two model names speak for themselves, the third name “SDP” means the model from [43], and the
name “Taylor” indicates the approach from this paper. The third column shows average estimated
objective values among all instances. In general, robust optimization approaches do not aim to
optimize the average objective, so the second column is just a rough indicator of the performance
of each approach in terms of the objective value. We find this indicator sufficient since our primary
goal is not to compare the objectives but rather to ensure feasibility of the constraints. The fourth
column shows the running time of each benchmark algorithm required to find a solution used for the
experiments. We do not include the input construction time for each test case since all benchmarks
use roughly the same inputs. The fifth column highlighted by grey shows our main indicator—
the share of all experiments where the solution provided by the corresponding approach had some
infeasibilities. The last two columns show the maximum number of violated constraints among all
experiments: “PQ” indicates violations of active and reactive power bounds in one test case and
“VI” indicates violations of voltage and current flow bounds in one test case. Small violations of the
“PQ” constraints could lead to more serious problems than small violations of the “VI” constraints,
therefore we have separated these indicators.

A hyphen indicates that the corresponding model delivered no solution (the resulting problem
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was infeasible). The bold font in the “Model” column indicates the best model: the one which is
most robust and runs in the shortest time. We have also marked by the bold font in the “Constraint
violations” column all best performing models in terms of feasibility.

TABLE 1
Results for instances up to 30 buses, without correlation. All objective values are divided by 100 in comparison
to the original data.

Uncertainty, Average R Constraint Max # violations, | Max # violations,
Model Time, sec. . R
% of load objective violations, % per exper., PQ per exper., VI
case 6ww, 6 buses
Nominal 31.3 0.0 43.9 0 2
1 DCOPF - - - - -
SDP 314 28.4 22.1 0
Taylor 31.6 69.4 0.0 0 0
case 9, 9 buses
Nominal 53.0 0.0 0.7 0 2
1 DCOPF 53.2 9.1 0.0 0 0
SDP 53.0 22.5 100.0 0 2
Taylor 53.3 57.6 0.0 0 0
Nominal 53.2 0.0 35.7 0 2
5 DCOPF 53.5 13.8 0.0 0 0
SDP 53.2 30.5 100.0 0 3
Taylor 53.4 72.7 0.0 0 0
Nominal 53.5 0.0 43.9 0 2
10 DCOPF 54.4 12.6 0.1 1 0
SDP 53.6 23.8 87.5 0 3
Taylor 53.7 70.4 0.0 0 0
Nominal 54.9 0.0 48.5 1 5
20 DCOPF 55.5 12.1 3.4 1 0
SDP 55.0 29.4 99.8 1 6
Taylor 55.0 74.4 1.0 1 0
Nominal 57.1 0.0 51.3 1 6
30 DCOPF - - - - -
SDP 57.4 26.1 97.8 1 6
Taylor 57.2 68.1 7.1 1 2
case 30, 30 buses
Nominal 6.1 0.1 100.0 0 2
1 DCOPF - - - - -
SDP 5.8 178.6 31.7 0 2
Taylor 5.9 177.2 1.7 0 2

In most cases, the nominal solution is not robustly feasible, thus considering the uncertainty
is important. The results show that our approach provides a robust solution in reasonable time
even for the instance with 118 buses. By Corollary 3.5, the approach we implemented is guaranteed
to be robust only for small uncertainty sets, which is indeed reflected in the numerical results.
For all presented cases the “Taylor” solution is robust in more than 95% of the experiments when
the uncertainty is 1% of the loads while this is not the case for the nominal solutions and other
approaches. The second-best approach in terms of robustness is “DCOPF”. It works for some small
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TABLE 2
Results for instances up to 30 buses, with random correlation. All objective values are divided by 100 in
comparison to the original data.

Uncertainty, Average . Constraint Max # violations, | Max # violations,
Model L Time, sec. . K
% of load objective violations, % per exper., PQ per exper., VI
case 6ww, 6 buses
Nominal 31.3 0.1 43.9 0 2
1 DCOPF - - - - -
SDP 31.4 80.9 25.3 0 2
Taylor 31.6 176.9 0.0 0 0
Nominal 31.4 0.1 47.0 0 3
5 DCOPF - - - - -
SDP 31.4 80.8 37.6 0 3
Taylor 32.0 177.0 4.8 0.0 2.0
case 9, 9 buses
Nominal 53.0 0.0 0.0 0 0
1 DCOPF 53.2 33.9 0.0 0 0
SDP 53.0 81.7 100.0 0 2
Taylor 53.3 201.5 0.0 0 0
Nominal 53.1 0.0 23.3 0 2
5 DCOPF 53.3 33.5 0.0 0 0
SDP 53.1 81.8 100.0 0 3
Taylor 53.3 199.5 0.0 0 0
Nominal 53.2 0.0 37.6 0 3
10 DCOPF 53.8 34.2 0.0 0 0
SDP 53.3 81.7 100.0 0 4
Taylor 53.5 201.6 0.0 0 0
Nominal 54.0 0.0 47.8 1 5
20 DCOPF 55.4 34.0 2.6 1 0
SDP 54.2 82.0 0.7 1 0
Taylor 54.1 201.0 0.1 1 0
Nominal 55.1 0.0 53.7 1 5
30 DCOPF 55.5 33.9 6.1 1 1
SDP 55.1 82.3 68.6 1 5
Taylor 55.2 201.0 2.1 1 1
Nominal 56.7 0.0 57.8 1 5
40 DCOPF - - - - -
SDP 56.8 82.0 93.0 1 6
Taylor 56.8 201.5 6.5 1 2

case 30, 30 buses

Infeasible for all robust approaches.

instances but fails for larger ones. DCOPF is an accurate approximation under quite restrictive
assumptions and seems to become less precise under uncertainty. Finally the “SDP” model provides
most violations among the three robust models. However, if we look deeper into these violations,
when the uncertainty sets are small, the “SDP” solution usually leads to few small violations of “VI”
constraints. This could be expected since the voltages are approximated in the SDP relaxation and
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TABLE 3
Results for instances larger than 30 buses, without correlation. All objective values are divided by 100 in
comparison to the original data. The SDP approach results in too-large-to-solve problems for these instances, so we
do not mention this approach in the table.

Uncertainty, Average . Constraint Max # violations, | Max # violations,
Model L Time, sec. . .
% of load objective violations, % per exper., PQ per exper., VI
case 57, 57 buses

Nominal 417.4 0.1 70.6 2 1

1 DCOPF 418.5 43.0 100.0 2 1
Taylor 426.8 467.2 0.0

case 118, 118 buses

Nominal 1296.7 0.2 99.5 9 0

1 DCOPF 1315.6 94.9 100.0 21 0
Taylor 1301.3 830.0 1.1 1 0

these approximations could become looser under uncertainty. Adding some tightening constraints
to the “SDP” model could potentially improve the robustness of that approach.

As to the running times, our approach is the slowest for small test cases since it is an iterative
approach due to Algorithm 3. However, when our approach found robust solutions, it could usually
do that within several iterations of the alternating projections Algorithm 3. Longer running times
for the two largest instances indicate that the alternating projections algorithm went through many
iterations and could not converge, thus a robust solution may not exist for the considered subset
of state variables. For the two largest cases, the SDP approach is the slowest, and it is in fact too
large to solve (e.g., for case 118 it includes 100 SDP constraints of the size 236 x 236).

Finally, our approach often provides somewhat higher average objective than others. Given that
the approach is more robust than the others, the difference in the average objective is minimal.
To understand the performance with respect to the objective better, we looked at Case 9 with
correlations, which is robustly feasible for three of four models for the 1%-uncertainty and robustly
feasible for two models for the 10%-uncertainty. Below we show the box plots of the objective
values of all robustly feasible approaches. The two box plots use same interval of possible objective
values in the y-axes for comparability. We see that the “Taylor” approach tends to have higher cost
in both cases, and it also results in larger standard deviations for the larger uncertainty, meaning
that very low costs are also more common than in DCOPF. The worst-case objective value of our
algorithm in the experiments is a little larger than for DCOPF, and the algorithm does not find
the DCOPF solution. To find more solutions, such as the DCOPF solution when it is robust, it
could be useful to enlarge the search space of the algorithm.

Finally, we see that adding correlations to the uncertainty ellipsoid does not substantially
change the results for small cases. However, when the instance size grows, no robust solutions
could be found by any model for “case30”, “caseb7”, and “casell8”, even for the lowest values of
the uncertainty. Therefore, we do not provide results with correlations for larger cases. Further
investigation is needed to see why exactly this situation occurs and to possibly tune the models to
work for larger cases with correlated uncertainties.

Our evaluations are equally conservative for all models. First, we say that more than 10% of
experiments with constraint violations is a bad performance while we have many constraints and
the analogy between the normal distribution and our ellipsoid is only valid for one constraint. The
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Fi1G. 1. Boz plot of the objective value realizations for models without constraint violations for Case 9 with
correlations, 1% and 10% uncertainty.
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5%-safe radius of the ellipsoid for many constraints would be much larger, but using this radius
would be too conservative. Second, we do not deeply analyze magnitudes of violations. By the
experiment setup they are larger than 1 x 10~2 per unit, but the importance of such violations can
depend on the type of constraint and the details of the test case. Finally, we did not fine-tune the
algorithm to each specific case and allowed for as many power injection uncertainties as possible.
The performance could improve if the algorithms are fine-tuned, especially for large instances.

6. Conclusions and directions for future research. In this paper, we propose a frame-
work to obtain approximately feasible solutions to quadratic ARO problems with equalities, which
implicitly define the second-stage decision rules for the state variables. We replace the implicit
decision rules by their explicit piecewise affine approximations. As a result, we can eliminate the
state variables from the problem and replace the original ARO problem by a sequence of classical
quadratic problems with additional tractable conic constraints. Since, a generally efficient algo-
rithm does not exist yet for the latter problems, we design an alternating projections algorithm
that converges to a local optimum of the problem. For any € > 0, if the piecewise affine approxima-
tions are fine enough, the suggested algorithm guarantees that the second-stage equality constraints
are satisfied and the inequality constraints are not violated by more than € on “large” subsets of
uncertainty, where “large” is defined in Theorem 3.4 (a), (b). The feasibility of the second-stage
equalities is rarely addressed in the literature, thus we consider analysing and ensuring such feasi-
bility an important contribution to the existing research. We suggest two versions of the algorithm,
Algorithm 1 for general problems and Algorithm 2 for problems linear in the control variables.

We implement the algorithm for ACOPF problems with uncertainty in loads and simulate the
uncertainty to evaluate the performance of the algorithm in comparison to three known bench-
marks: nominal solution, robust DCOPF and robust SDP relaxation. The solutions provided by
our approach are robustly feasible for small uncertainty sets and for cases with up to 118 buses.
Moreover, the solutions are substantially more robust than the benchmarks. The algorithm also
performs well in terms of the objective function values. The experiments show that DCOPF and
SDP approximations work well for problems without uncertainty, but possible inexactness of these
methods is magnified after adding the uncertainty. As a result, they are less robust in an ex-post
experiment. In contrast, our approach yields more robust results in the experiments. The good
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performance can be explained by the fact that our approach preserves more non-linearities from
the original problem. Notice that the size of the final problem (i.e., problem (3.6)) which we solve
depends on the number of sources of uncertainty. Hence, even for larger networks, the approach
could work well for systems with uncertain power injections at a limited subset of the buses.

We conclude by analyzing the limitations of our algorithms and suggesting directions for further
research. First, the non-linearities which we keep in the problem have drawbacks. Namely, when
DCOPF can find a robust solution, it does so substantially faster than the approach we propose.
At the last step of our approach, after removing the state and uncertainty variables, we need to
solve a problem with quadratic and SDP constraints. We proposed the alternating projections in
Algorithm 3 for this purpose. This algorithm only finds locally optimal solutions, may take a number
of iterations to converge, and each iteration solves an SDP problem, which makes the procedure
rather slow for larger instances. However, this approach is still relevant since no generally efficient
algorithms exist for such problems yet, and our Algorithm 3 contributes to the development of
quadratic optimization with SDP constraints. In the future, one could use an alternative algorithm
or a relaxation to solve the obtained problem with quadratic and SDP constraints.

Next, our algorithms can exploit various subsets of uncertainty, control and/or state variables.
However, the actual implementation considered small uncertainty sets without partitioning them,
and we restricted the search to one subset of state variables around the initial optimal solution. As
expected, for larger values of the uncertainty in our numerical experiments, the algorithm becomes
imprecise or could not find a feasible solution. A natural remedy to increase precision and find
additional feasible solutions would be to consider several subsets of the state variables as described
in subproblem (3.6). Next, to work with larger uncertainty sets, we could combine Algorithm 1 and
Algorithm 2 with the approach proposed in [35] to split larger uncertainty sets.

Third, some improvements could be done in particular for ACOPF problems. These prob-
lems possess much sparsity, and it is to a large extent preserved under the transformation (3.2).
Therefore, it would be also important to explore the true scalability of our method for ACOPF
problems by implementing the algorithms more efficiently and investigating possibilities to exploit
the inherent sparsity structure of ACOPF problems. Finally, it would be interesting to look at the
extensions of our method for multiperiod problems, especially those incorporating binary variables
to enable application to unit commitment problems for longer-term generator scheduling.
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