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Feasible Path Identification in Optimal Power Flow
with Sequential Convex Restriction
Dongchan Lee, Konstantin Turitsyn, Daniel K. Molzahn, and Line A. Roald

Abstract—Nonconvexity induced by the nonlinear AC power
flow equations challenges solution algorithms for AC optimal
power flow (OPF) problems. While significant research efforts
have focused on reliably computing high-quality OPF solutions,
it is not always clear that there exists a feasible path to reach
the desired operating point. Transitioning between operating
points while avoiding constraint violations can be challenging
since the feasible space of the OPF problem is nonconvex and
potentially disconnected. To address this problem, we propose
an algorithm that computes a provably feasible path from
an initial operating point to a desired operating point. Given
an initial feasible point, the algorithm solves a sequence of
convex quadratically constrained optimization problems over
conservative convex inner approximations of the OPF feasible
space. In each iteration, we obtain a new, improved operating
point and a feasible transition from the operating point in the
previous iteration. In addition to computing a feasible path to a
known desired operating point, this algorithm can also be used to
improve the operating point locally. Extensive numerical studies
on a variety of test cases demonstrate the algorithm and the
ability to arrive at a high-quality solution in few iterations.

Index Terms—Feasible Path Identification, Convex Restriction,
Optimal Power Flow

I. INTRODUCTION

AC optimal power flow (OPF) is a fundamental optimization
problem in power system analysis [1]–[3]. The classical form
of an OPF problem seeks an operating point that is feasible
(i.e., satisfies both the AC power flow equations that model the
network physics and the inequality constraints associated with
operational limits on voltage magnitudes, line flows, genera-
tor outputs, etc.) and economically efficient (i.e., minimizes
generation cost). While previous research has improved the
tractability of OPF algorithms and the quality of the resulting
solutions [2]–[9], a number of challenging issues remain. One
such issue is to determine a sequence of control actions that
facilitate a safe transition from the current operating point to
the desired operating point [2], [3].

With increasing variability due to the growth of renewable
generation and the expansion of electricity markets, power
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systems experience more frequent and larger magnitude tran-
sitions from one operational state to another. When there is a
significant change in the operating point, the transition needs
to be carried out gradually in a sequential order rather than
instantaneously. Previous literature has considered sequencing
control actions to mitigate disturbances [10]–[12]. References
such as [11], [12] formulate a mixed-integer linear program-
ming problem to minimize the number of control actions based
on linear approximations of the AC power flow equations.
While these linear approximations avoid complications from
nonlinear equality constraints, they do not guarantee feasibility
of the full, non-linear AC OPF problem. Approximations of the
power flow equations may result in an infeasible state and can
lead to incorrect security assessments. This can be understood
by analyzing the set of feasible dispatch points (also referred
to as the feasible space) for the AC OPF problem, which is
nonconvex and sometimes disconnected [13]–[15]. Due to the
complicated feasible space, a feasible path connecting the two
steady-state operating points (where each intermediate state is
AC power flow feasible) can be difficult to compute or may
not exist. The example shown in Figure 1 illustrates a situation
where a linear transition from an initial to a desired operating
point leads to constraint violations, but the piece-wise linear
transition shown by the red line allows us to reach the desired
operating point.

The main contribution of this paper is an algorithm that
allows us to compute a feasible path between two operating
points. For the purposes of the paper, we are interested in
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Fig. 1. Illustration of a feasible path identification for a 9-bus system. The
axes show the active power generation at buses 2 and 3. The blue region is the
nonconvex feasible space, which is defined by the line flow limits (in purple)
and the reactive power generation limits (in yellow). The black dotted line
illustrates how a linear transition from the current to the desired operating
point crosses through an infeasible region. The red line provides a feasible,
piece-wise linear path from the origin to the desired operating point that avoids
the infeasible region.
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steady-state feasibility, i.e., feasibility of the nonlinear AC
power flow equations and operational limits without consider-
ation of the system dynamics.

The idea of a feasible path may bring to mind the con-
cept of numerical continuation, which produces a sequence
of solutions to a system of nonlinear equations when the
parameters are varied along one degree of freedom [16]. Com-
mon applications of continuation methods include computing
voltage stability margins [17]–[19], analyzing the power flow
solvability boundary [20], and calculating multiple power flow
solutions [21]–[23]. Continuation methods have also been
used to improve the convergence characteristics of solution
algorithms for OPF problems, particularly near the voltage
stability boundary [24]–[27], and have additionally been ap-
plied to compute multiple local optima for OPF problems [28].
Another application of continuation methods in the context of
OPF problems is the tracking of optimal dispatch points with
respect to varying load parameters. This is achieved by apply-
ing continuation methods to trace the solutions to the KKT
optimality conditions for the OPF problem [25], [29]–[32].

While the idea of tracking the optimal solutions might seem
similar to the idea of a feasible path proposed in this paper,
the goal of this problem formulation is fundamentally different
from our problem. The continuation OPF identifies a sequence
of optimal solutions, frequently under limiting assumptions on
nonlinear operational constraints such as line flow limits and
reactive power generation limits. There is no guarantee that
the transition between subsequent points obtained with the
continuation method are feasible, and therefore the optimal
“path” of the continuation method consists of a set of discrete,
optimal points with respect to a varying load profile. In
contrast, our method identifies a continuous path where every
transition is guaranteed to be feasible with respect to both the
full, non-linear AC power flow equations and other operational
constraints. Another distinction is that continuation algorithms
which trace an OPF solution require that the initial operating
point is the solution to an OPF problem for some load profile.
Our approach specifically does not require an optimal starting
point, but rather permits the calculation of a feasible transition
path between any feasible operating points.

Another related research area is model predictive control,
which has been applied to a variety of power system appli-
cations such as frequency control [33], [34], voltage regula-
tion [35], HVDC control [36], contingency mitigation [37],
etc. MPC approaches generally rely on linearized dynamics
without considering the nonlinear AC power flow equations,
and hence can not guarantee feasibility. Additional related
work in [38] and [39] controls the power injections in order
to enforce operational constraints in distribution systems.
However, similar to MPC, these methods are focused more
on real-time control as opposed to optimization. Further, these
approaches are limited to radial networks with only PQ buses,
making them unsuitable for transmission system applications.

We finally mention another class of related algorithms called
sequential convex programming, which solve optimization
problems via iteratively updated convex approximations of the
equations over a trust region [40], [41]. Sequential convex
programming approaches such as [42] and [43] seek OPF

solutions by solving a sequence of convex power flow ap-
proximations. However, these convex approximations are not
inner approximations of the feasible space and therefore do
not guarantee feasibility of the intermediate iterates or the
transition between them.

Thus, the main novelty of our method is that we provide a
dispatch solution and an associated transition path for which
the nonlinear AC power flow equations are guaranteed to be
feasible and the operational constraints are certifiably satisfied.
To the best of our knowledge, this paper proposes the first
algorithm that provides guaranteed feasible paths for general
OPF problems.

Specifically, we propose an algorithm for computing a
sequence of control actions that ensures feasibility with respect
to both the nonlinear AC power flow equations and operational
limits (in the form of inequality constraints) as the system
transitions from one operating point to another. In contrast to
previous work, our proposed feasible path algorithm is not
limited to specific classes of systems, considers the nonlinear
AC power flow model, and is tractable for large problems.
Based on a quadratic convex restriction of the AC power
flow feasible space [15], we compute a piece-wise linear path
connecting an initial point to a desired operating point such
that all points along the path are feasible.

We highlight two characteristics of the convex restriction
which are crucial for the success of our algorithm:

(i) The convex restriction provides a conservative inner
approximation of the feasible space of the AC power flow
equations, which implies that all points within the restriction
are AC power flow feasible (and, by proper extensions, feasible
for additional inequality constraints). This is in contrast to
convex relaxations, which extend the originally nonconvex
feasible space to become convex by adding infeasible points.

(ii) The convex restriction is, as the name implies, a convex
set. This means that the transition between any two points
within the convex restriction will also lie inside the convex
restriction, hence guaranteeing that there exists a feasible AC
power flow solution at any intermediate point.

In summary, the main contributions of this paper are:

1. We formulate the AC OPF problem based on convex
restrictions from [15]. This is the first formulation of an
OPF with convex restriction, which requires extending
the convex restriction to include line flow constraints. The
formulation guarantees that the linear transition between
any two points within the restriction is feasible, is applica-
ble to general system models, considers the nonlinear AC
power flow equations, and is tractable for large problems.

2. Using the OPF with convex restriction, we propose a
sequential algorithm which in each iteration (i) constructs
a convex restriction around a feasible point and (ii) solves
the OPF problem to obtain an improved feasible point.
The algorithm’s outcome is a piece-wise linear feasible
path. We provide two objective functions which either
achieve local improvements to the current operating point
or identify a feasible path to a desired operating point.

3. We demonstrate the capabilities of the algorithm using
numerical experiments on a variety of test cases.
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The rest of the paper is organized as follows. Section II
presents the system model and preliminaries. Section III
reviews and extends convex restriction techniques to formulate
the OPF problem, including line flow limits and other fea-
tures. Section IV presents our algorithm for computing OPF
solutions with corresponding feasible paths. Section V demon-
strates the proposed algorithm with numerical experiments and
illustrative figures. Section VI concludes the paper.

II. SYSTEM MODEL AND PRELIMINARIES

Consider a power network with sets of buses N and lines
E ⊆ N×N . The scalars nb, ng , npq , and nl denote the number
of buses, generators, PQ buses, and lines. The network’s
incidence matrix is E ∈ Rnb×nl . The connection matrix
between generators and buses is C ∈ Rnb×ng , where the (i, k)
element of C is equal to 1 for each bus i and generator k and
zero otherwise. The active and reactive power generations are
pg ∈ Rng and qg ∈ Rng . Specified values of active and reactive
load demands are denoted pd ∈ Rnb and qd ∈ Rnb . The buses’
voltage magnitudes and phase angles are v ∈ Rnb and θ ∈ Rnb .
The superscripts “f” and “t” denote from and to buses for the
lines. The subscripts “vθ”, “ns”, “pv”, and “pq” denote the
slack (Vθ), non-slack (non-Vθ), PV, and PQ elements of the
corresponding vector. Superscript “T ” denotes the transpose.
I and 0 denote identity and zero matrix of appropriate size.

A. Phase-Adjusted AC Power Flow Formulation

To set the stage for our further discussion, we describe
a slightly modified representation of the standard AC power
flow equations, the so-called phase-adjusted AC power flow
formulation. The formulation is defined relative to a known,
feasible base point denoted by the subscript 0, i.e., v0 and θ0

denote the base point’s voltage magnitude and phase angle.
The angle differences across each line are

ϕl = θf
l − θt

l, l = 1, . . . , nl, (1)

where θf
l and θt

l denote the phase angle of the from bus and to
bus of line l. This can be equivalently expressed as ϕ = ET θ.
The phase-adjusted angle differences are then defined as

ϕ̃ = ϕ− ϕ0 = ET θ − ET θ0 = ET (θ − θ0),

where ϕ0 is the base phase angle differences. With this, the
phase-adjusted AC Power Flow equations can be written for
each bus k = 1, . . . , nb,

pinj
k =

nl∑
l=1

vf
lv

t
l

(
Ĝckl cos ϕ̃l + B̂skl sin ϕ̃l

)
+Gdkkv

2
k, (2a)

qinj
k =

nl∑
l=1

vf
lv

t
l

(
Ĝskl sin ϕ̃l − B̂ckl cos ϕ̃l

)
−Bdkkv2

k, (2b)

where vf
l and vt

l denote the voltage magnitude at the from and
to buses of line l. The active and reactive power injections
are pinj = Cpg − pd and qinj = Cqg − qd. The matrices
Ĝc, Ĝs, B̂c, B̂s ∈ Rnb×nl and Gd, Bd ∈ Rnb×nb are phase-
adjusted admittance matrices defined relative to the base point,
and their derivations are shown in the Appendix. In addition

to the power flow equations in (2), the OPF problem enforces
the following operational constraints:

p min
g,i ≤pg,i≤pmax

g,i , q
min
g,i ≤qg,i≤qmax

g,i , i=1, . . . , ng, (3a)

vmin
j ≤vj≤vmax

j , j=1, . . . , nb (3b)

ϕmin
l ≤ϕl≤ϕmax

l , l=1, . . . , nl, (3c)

(sf
p,l)

2 + (sf
q,l)

2 ≤ (smax
l )2, l=1, . . . , nl, (3d)

(st
p,l)

2 + (st
q,l)

2 ≤ (smax
l )2, l=1, . . . , nl. (3e)

Equation (3a) represents the generators’ active and reactive
power capacity limits, pmax

g , pmin
g and qmax

g , qmin
g , respectively.

Equations (3b) and (3c) limit the voltage magnitudes to the
range vmin, vmax and enforce stability limits on the angle
differences ϕmin, ϕmax. Equations (3d) and (3e) impose the line
capacity limit smax where sf

p,l, s
f
q,l represent the active and

reactive power flowing into the line l at the from buses, and
st
p,l, s

t
q,l represent the active and reactive power flowing into

the line l at the to buses.
The phase-adjusted AC power flow equations can be ex-

pressed in terms of basis functions, which are defined as

ψC
l (v, ϕ) = vf

lv
t
l cos (ϕl − ϕ0,l), l = 1, . . . , nl,

ψS
l (v, ϕ) = vf

lv
t
l sin (ϕl − ϕ0,l), l = 1, . . . , nl,

ψQ
k (v, ϕ) = v2

k, k = 1, . . . , nb.

(4)

The power flow equations (2) can then be rewritten as[
Cpg − pd

Cqg − qd

]
+

[
−Ĝc −B̂s −Gd

B̂c −Ĝs Bd

]
ψ(v, ϕ) = 0, (5)

where ψ(v, ϕ) =
[
ψC(v, ϕ)T ψS(v, ϕ)T ψQ(v, ϕ)T

]T
.

B. Control and State Variables

Standard power system definitions divide the system into
three sets of buses:

• PV buses: pinj
pv , vpv specified; qinj

pv , θpv implicitly defined.
• PQ buses: pinj

pq , q
inj
pq specified; vpq, θpq implicitly defined.

• Vθ (slack) bus: vvθ, θvθ specified; pinj
vθ, q

inj
vθ implicitly

defined.

For the analysis, variables that are explicitly set by the system
operator are control variables, and variables that are implicitly
determined through the AC power flow equations are state
variables. Constants such as the active and reactive power load
on PQ buses and the reference angle θvθ=0 are not considered
as variables.

The control variables are the active power outputs of genera-
tors at PV buses, ppv, and the voltage magnitudes at the Vθ and
PV buses, vg. The state variables are the phase angles at non-
slack buses, θns, and voltage magnitude at PQ buses, vpq. The
state variables are implicitly defined through the power flow
equations given a set of control variables. The set of control
variables are denoted by u ∈ R2ng−1, and state variables are
denoted by x ∈ Rnb−1+npq where

u =

[
ppv
vg

]
, x =

[
θns
vpq

]
. (6)
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In addition, the intermediate variables [pvθ, qvθ, qpv] are
explicitly defined by the power flow equations and a given
set of state and control variables (x, u).

For a given set of control variables u, the state variables x
are obtained from a subset of the phase-adjusted power flow
equations (5),[
Cnspg − pd,ns
Cpqqg − qd,pq

]
︸ ︷︷ ︸

τ(u)

+

[
−Ĝc

ns −B̂s
ns −Gd

ns

B̂c
pq −Ĝs

pq Bd
pq

]
︸ ︷︷ ︸

Meq

ψ(v, ϕ) = 0, (7)

where τ(u) denotes the active and reactive power injections
at certain buses. The matrix Ĝc

ns ∈ R(nb−1)×nl contains the
rows corresponding to the non-slack buses from Ĝc ∈ Rnb×nl ,
and B̂c

pq ∈ Rnpq×nl contains the rows corresponding to PQ
buses from B̂c ∈ Rnb×nl . The other submatrices are defined
similarly. Note that (7) is a square system of equations where
the number of state variables and the number of equations
are the same. This is a minimal subset of the AC power flow
equations that completely describes the relationships among
the control and state variables.

The intermediate variables (i.e., the active power at the Vθ
bus pvθ and the reactive power at the Vθ and PV buses qvθ, qpv)
are functions of state and control variables (x, u):Cvθpg − pd,vθ

Cvθqg − qd,vθ
Cpvqg − qd,pv


︸ ︷︷ ︸

ζ(pg,qg)

=

 Ĝc
vθ B̂s

vθ Gd
vθ

−B̂c
vθ Ĝs

vθ −Bd
vθ

−B̂c
pv Ĝs

pv −Bd
pv


︸ ︷︷ ︸

Mineq

ψ(v, ϕ). (8)

This is a subset of the AC power flow equations that are
necessary to define the intermediate variables. Line flows can
be represented in terms of the phase-adjusted basis functions,[

sf
p

sf
q

]
︸︷︷︸
sf

=

[
Gft Bft GffE

T
f

−Bft Gft −BffE
T
f

]
︸ ︷︷ ︸

Lf
line

ψ(v, ϕ), (9)

[
st
p

st
q

]
︸︷︷︸
st

=

[
Gtf −Btf GttE

T
t

−Btf −Gtf −BttE
T
t

]
︸ ︷︷ ︸

Lt
line

ψ(v, ϕ), (10)

where the Appendix gives the block matrices in Lf
line and Lt

line.

C. Phase-Adjusted AC Optimal Power Flow

The AC OPF problem can be written based on the phase-
adjusted AC power flow with the consideration of state and
control variables. This formulation is equivalent to the classical
form of the AC OPF problem without any approximation. The
AC OPF problem identifies the operating point with minimum
generation cost while respecting the operational constraints:

minimize
x,u,sf,st

c(pg) =

ng∑
i=1

ci(pg,i) (11a)

subject to τ(u) +Meqψ(v, ϕ) = 0 (11b)

ζ(pmin
g , qmin

g ) ≤Mineqψ(v, ϕ) ≤ ζ(pmax
g , qmax

g ) (11c)


ETns 0
0 I
−ETns 0
0 −I


︸ ︷︷ ︸

A

x ≤


ϕmax

vmax
pq
−ϕmin

−vmin
pq


︸ ︷︷ ︸

bmax

,

[
pmin

pv
vmin

g

]
︸ ︷︷ ︸
umin

≤ u ≤
[
pmax

pv
vmax

g

]
︸ ︷︷ ︸
umax

(11d)

|Lf
lineψ(x, u)| ≤ sf, |Lt

lineψ(x, u)| ≤ st(
sf
p

)2
+
(
sf
q

)2 ≤ (smax)
2
,
(
st
p

)2
+
(
st
q

)2 ≤ (smax)
2

(11e)

The cost function of each generator i, ci(pg,i), is assumed to
be monotonically increasing with respect to the active power
generation. Equation (11b) contains the subset of power flow
equations which relate the control and state variables, and
the matrix Meq is defined in (7). Equation (11c) imposes
constraints on the intermediate variables (the active power on
the Vθ bus and reactive power on generator buses). The matrix
Mineq and function ζ(pg, qg) are defined in (8). Equation (11d)
imposes the voltage magnitude limits, active power limits for
PV buses, and angle limits. Equation (11e) imposes the line
flow limits with Lf

line and Lt
line defined in (9) and (10). The

matrix Ens ∈ R(nb−1)×nl is a submatrix of E that selects the
rows corresponding to the non-slack buses.

III. OPTIMAL POWER FLOW WITH CONVEX RESTRICTION

In this section, we summarize the procedure of obtaining
a convex restriction for the AC OPF problem. A convex
restriction provides a convex condition on the control variables
u such that there exists state variables x that satisfy both the
AC power flow equations in (2) and the operational constraints
in (3). A sufficient convex condition for AC power flow
feasibility was developed in [15], and we extend its application
to solve the full OPF problem including line flow limits.

A. Quadratic Convex Restriction of the Feasible Space

1) Power Flow Constraints in Fixed Point Form: The
convex restriction is constructed around the known, feasible
base point (x0, u0), which is assumed to have a non-singular
power flow Jacobian with respect to the state variables.1

Consider the power flow equations in (7) as finding the zeros
of f(x, u) = τ(u) + Meqψ(v, ϕ). Let us denote the Jacobian
with respect to x as Jf,0 = ∇xf |(x0,u0) = MeqJψ,0 where
Jψ,0 = ∇xψ(v,ET θ)|(v0,ϕ0). Then, we can write the power
flow equations in the following fixed-point form

x = −J−1
f,0(f(x, u)− Jf,0x)

= −J−1
f,0 (Meqg(x, u) + τ(u)) ,

(12)

where g(x, u) represents the residual of the basis functions,

g(x, u) = ψ(v, ϕ)− Jψ,0x. (13)

Note that (12) corresponds to a single iteration of the Newton-
Raphson procedure, which is commonly used to solve the
power flow equations.

1If the power flow Jacobian is singular, the system is operating at the nose
of PV curve where the solution to power flow equations can disappear by an
arbitrarily small perturbation in the power injections.
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2) Sufficient Condition for Existence of x: The derivation
of the sufficient condition for AC power flow solvability relies
on Brouwer’s Fixed Point Theorem.

Theorem 1. (Brouwer’s Fixed Point Theorem [44]) Let P ⊆
Rn be a nonempty compact convex set and F : P →P be a
continuous mapping. Then there exists some x ∈ P such that
F (x) = x.

In our approach, the map F corresponds to the power flow
equations (12). We define the self-mapping set P as

P(b) = {x | ϕ ≤ ϕ ≤ ϕ, vpq ≤ vpq ≤ vpq}
= {x | Ax ≤ b},

(14)

where the matrix A is defined in (11d) and the bound b is

b =
[
ϕT vTpq −ϕT −vTpq

]T
. (15)

The polytope P(b) is a closed and compact set parametrized
by b, which provides the upper and lower bounds on the state
variables. The bounds b are not the same as the limits provided
in (3c), but are decision variables. Then Brouwer’s fixed point
condition is equivalent to the existence of b ∈ R(2npq+2nl)

such that

max
x∈P(b)

Kg(x, u)−AJ−1
f,0τ(u) ≤ b, (16)

where K = −AJ−1
f,0Meq .

3) Concave envelopes and bounds for g(x, u) and ψ(x, u):
A concave envelope of a function g(x, u) is given by a concave
under-estimator g

k
(x, u) and a convex over-estimator gk(x, u),

such that
g
k
(x, u) ≤ gk(x, u) ≤ gk(x, u). (17)

Given this concave envelope, the bound on gk over the domain
P(b) is

gP,k(u, b) ≥ max
x∈P(b)

gk(x, u) = max
x∈∂Pk(b)

gk(x, u),

gP,k(u, b) ≤ min
x∈P(b)

g
k
(x, u) = min

x∈∂Pk(b)
g
k
(x, u),

(18)

where ∂Pk(b) is the set of vertices in polytope P(b) that
are involved in function gk(x, u). For the second equality,
we exploit the fact that since the envelopes are concave for
the minimization problem and convex for the maximization
problem in (18), the extreme values gP,k(u, b), gP,k(u, b)

will occur at one of the vertices in ∂P(b). Hence, we can
ensure that the max/min inequalities holds over the polytope
by requiring all vertices to satisfy the above inequalities.
Fig. 2 illustrates the concave envelope and the bounds over
the polytope P(b) for an example function.

In the power flow equations, the functions g(x, u) can
be expressed as a combination of bilinear, cosine, and sine
functions. The concave envelopes for these functions from [15]
are provided below. The envelopes of a bilinear function are

〈xy〉Q ≥ −1

4
[(x− x0)− (y − y0)]2 + x0y + xy0 − x0y0,

〈xy〉Q ≤ 1

4
[(x− x0) + (y − y0)]2 + x0y + xy0 − x0y0.

For trigonometric functions, we exploit the angle difference
limits with the phase-adjusted power flow formulation to

 k(x, u)
<latexit sha1_base64="i/UAbvnctFvuzZSWOrLW5k+549w=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSJUkLJbBT0WvXisYD9gu5Rsmm1Ds8mSZMWy9Gd48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcKZNq777aysrq1vbBa2its7u3v7pYPDlpapIrRJJJeqE2JNORO0aZjhtJMoiuOQ03Y4up367UeqNJPiwYwTGsR4IFjECDZW8ruJZr1R5ek8PeuVym7VnQEtEy8nZcjR6JW+un1J0pgKQzjW2vfcxAQZVoYRTifFbqppgskID6hvqcAx1UE2O3mCTq3SR5FUtoRBM/X3RIZjrcdxaDtjbIZ60ZuK/3l+aqLrIGMiSQ0VZL4oSjkyEk3/R32mKDF8bAkmitlbERlihYmxKRVtCN7iy8ukVat6F9Xa/WW5fpPHUYBjOIEKeHAFdbiDBjSBgIRneIU3xzgvzrvzMW9dcfKZI/gD5/MHkeeQyA==</latexit>

 k(x, u)<latexit sha1_base64="204UFeCZPvjV8dUwmnvKqua6jzo=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2ARKkiZqYIui25cVrAP6AxDJk3b0EwyJBmxjF34K25cKOLW33Dn35hpZ6GtBwKHc+7h3pwwZlRpx/m2CkvLK6trxfXSxubW9o69u9dSIpGYNLFgQnZCpAijnDQ11Yx0YklQFDLSDkfXmd++J1JRwe/0OCZ+hAac9ilG2kiBfeAJY2fp1IsVnQSjysNpchLYZafqTAEXiZuTMsjRCOwvrydwEhGuMUNKdV0n1n6KpKaYkUnJSxSJER6hAekaylFElJ9O75/AY6P0YF9I87iGU/V3IkWRUuMoNJMR0kM172Xif1430f1LP6U8TjTheLaonzCoBczKgD0qCdZsbAjCkppbIR4iibA2lZVMCe78lxdJq1Z1z6q12/Ny/SqvowgOwRGoABdcgDq4AQ3QBBg8gmfwCt6sJ+vFerc+ZqMFK8/sgz+wPn8AE4qWHw==</latexit>

 
k
(x, u)

<latexit sha1_base64="Ig7bH329te4edamVh/HRPOieVWI=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUEFKUgVdFt24rGAf0IQwmUzaoZNJmJmIJWTjr7hxoYhbP8Odf+OkzUKrBwYO59zDnXv8hFGpLOvLqCwtr6yuVddrG5tb2zvm7l5PxqnApItjFouBjyRhlJOuooqRQSIIinxG+v7kuvD790RIGvM7NU2IG6ERpyHFSGnJMw+clAdEFPHMSSTNvUnj4TQ98cy61bRmgH+JXZI6KNHxzE8niHEaEa4wQ1IObStRboaEopiRvOakkiQIT9CIDDXlKCLSzWYH5PBYKwEMY6EfV3Cm/kxkKJJyGvl6MkJqLBe9QvzPG6YqvHQzypNUEY7ni8KUQRXDog0YUEGwYlNNEBZU/xXiMRIIK91ZTZdgL578l/RaTfus2bo9r7evyjqq4BAcgQawwQVogxvQAV2AQQ6ewAt4NR6NZ+PNeJ+PVowysw9+wfj4BtXKlos=</latexit>

 P,k
(u, b)

<latexit sha1_base64="pOH3rF7cIp/rDWxU/za92XDAVJ0=">AAACDnicbVDLSsNAFJ3UV62vqEs3g6VQoZSkCrosunFZwT6gCWEymbZDJ5MwMxFKyBe48VfcuFDErWt3/o2TNgttPTBwOOce5t7jx4xKZVnfRmltfWNzq7xd2dnd2z8wD496MkoEJl0csUgMfCQJo5x0FVWMDGJBUOgz0venN7nffyBC0ojfq1lM3BCNOR1RjJSWPLPmJDwgIo+nTixp5qVOiNQEI5Z2ssY0qycN/8wzq1bTmgOuErsgVVCg45lfThDhJCRcYYakHNpWrNwUCUUxI1nFSSSJEZ6iMRlqylFIpJvOz8lgTSsBHEVCP67gXP2dSFEo5Sz09WS+qlz2cvE/b5io0ZWbUh4ninC8+GiUMKgimHcDAyoIVmymCcKC6l0hniCBsNINVnQJ9vLJq6TXatrnzdbdRbV9XdRRBifgFNSBDS5BG9yCDugCDB7BM3gFb8aT8WK8Gx+L0ZJRZI7BHxifP/LInKM=</latexit>

 P,k(u, b)
<latexit sha1_base64="KT6FXBash0E/S7CpFEbHL21GfC8=">AAACDXicbVDLSsNAFJ3UV62vqEs3g1WoUEpSBV0W3bisYB/QhDCZTtqhk0mYmQgl5Afc+CtuXCji1r07/8ZJm4W2Hhg4nHMPc+/xY0alsqxvo7Syura+Ud6sbG3v7O6Z+wddGSUCkw6OWCT6PpKEUU46iipG+rEgKPQZ6fmTm9zvPRAhacTv1TQmbohGnAYUI6UlzzxxIm3n6dSJJc281AmRGmPE0nZWn2S1pO6feWbValgzwGViF6QKCrQ988sZRjgJCVeYISkHthUrN0VCUcxIVnESSWKEJ2hEBppyFBLpprNrMniqlSEMIqEfV3Cm/k6kKJRyGvp6Ml9VLnq5+J83SFRw5aaUx4kiHM8/ChIGVQTzauCQCoIVm2qCsKB6V4jHSCCsdIEVXYK9ePIy6TYb9nmjeXdRbV0XdZTBETgGNWCDS9ACt6ANOgCDR/AMXsGb8WS8GO/Gx3y0ZBSZQ/AHxucPKxCcNw==</latexit>

Fig. 2. Illustration of the concave envelope (in red) for the function ψ(x, u)
(in blue) and the corresponding bounds on ψ(x, u) over the interval Pk(b).

construct a tight concave envelope. Assuming ϕmax ∈ [0, π]
and ϕmin ∈ [−π, 0], the concave envelopes for the sine and
cosine functions are

〈sin ϕ̃〉S ≥ ϕ̃+

(
sin ϕ̃max − ϕ̃max

(ϕ̃max)2

)
ϕ̃2, ϕ̃ < ϕ̃max,

〈sin ϕ̃〉S ≤ ϕ̃+

(
sin ϕ̃min − ϕ̃min

(ϕ̃min)2

)
ϕ̃2, ϕ̃ > ϕ̃min,

〈cos ϕ̃〉C ≥ 1− 1

2
ϕ̃2, 〈cos ϕ̃〉C ≤ 1.

The upper bounds on g(x, u) over P(b) are defined as

gCP,l(u, b) ≥ max
xl∈Xl

〈〈vf
lv

t
l 〉Q〈cos ϕ̃l〉C〉Q − vf,pq

0,l v
t
l − vf

lv
t,pq
0,l

gS
P,l(u, b) ≥ max

xl∈Xl
〈〈vf

lv
t
l 〉Q〈sin ϕ̃l〉S〉Q − vf

0,lv
t
0,lϕ̃l

gQP,k(u, b) ≥ max
vk∈{vk,vk}

〈vkvk〉Q − 2vpq
0,kvk,

where the constant vpq
0,k is set to vk,0 if bus k is a PQ bus

and 0 if it is non-PQ bus. Similarly, vf,pq
0,l and vt,pq

0,l are
set to vf

0,l and vt
0,l if they are PQ buses and 0 if they are

non-PQ buses. The vertices are defined by xl = (vf
l, v

t
l, ϕ̃l)

and Xl = {(vf
l, v

t
l, ϕ̃l) | vf

l ∈ {vf
l, v

f
l}, vt

l ∈ {vt
l, v

t
l}, ϕ̃l ∈

{ϕ
k
− ϕ0,k, ϕk − ϕ0,k}}.

Note that the number of vertices that need to be checked for
each line is constant, i.e., the cardinality of Xl is 23 regardless
of the size of the system. Similarly, gP,k(u, b) are defined by
replacing maximization with minimization and changing the
direction of inequality sign, and ψP,k(u, b) and ψP,k(u, b) are
defined by replacing the function g by ψ.

4) Convex Restriction of the OPF Feasible Space: The
above upper and lower bounds on g(x, u) over the region
P(b) allow us to guarantee that condition (16) for power
flow feasibility holds. Similarly, the bounds on ψ(x, u) are
used to ensure satisfaction of the inequality constraints (11c)–
(11e). The resulting convex restriction represents a convex
inner approximation of the feasible space in the OPF problem.
This is proven by the following Theorem from [15], which we
extend to include line flow limits.

Theorem 2. (Convex Restriction of Power Flow Feasibility
Constraints) Given the operating point u = (ppv, vg), there
exists a solution for the state x = (θns, vpq) that satisfies the AC
OPF constraints (2), (3) if there exist b = (ϕ, vpq, −ϕ, −vpq)

and (sf, st) such that the following conditions hold:

−AJ−1
f,0τ(u) +K+gP(u, b) +K−gP(u, b) ≤ b, (19)
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M+
ineqψP(u, b) +M−ineqψP(u, b) ≤ ζ(pmax

g , qmax
g ),

M−ineqψP(u, b) +M+
ineqψP(u, b) ≥ ζ(pmin

g , qmin
g ),

b ≤ bmax, umin ≤ u ≤ umax,

Lk,+
line ψP(u, b) + Lk,−

line ψP(u, b) ≤ sk, k ∈ {f, t},
−Lk,−

line ψP(u, b)− Lk,+
line ψP(u, b) ≤ sk, k ∈ {f, t},(

sk
p

)2
+
(
sk
q

)2 ≤ (smax)
2
, k ∈ {f, t},

(20)

where K = −AJ−1
f,0Meq, and Λ+

ij = max{Λij , 0} and Λ−ij =
min{Λij , 0} for an arbitrary matrix Λ.

Proof. Condition (19) is sufficient to satisfy condition (16) in
Brouwer’s Fixed Point Theorem:

max
x∈P(b)

Kg(x, u)−AJ−1
f,0τ(u)

≤ K+gP(u, b) +K−gP(u, b)−AJ−1
f,0τ(u) ≤ b.

Then for all x ∈ P(b), −J−1
f,0Meqg(x, u) ∈ P(b). By applying

Brouwer’s Fixed Point Theorem to (12), there exists a solution
x ∈ P(b). Further, (20) ensures the operational constraints are
satisfied for all x ∈ P(b). A more detailed proof is in [15].

Note that the number of inequality constraints in (19) and
(20) is linearly proportional to the system size. Further, the
convex restriction can be written analytically, and the only
necessary computation is the inversion of the Jacobian matrix
at the base operating point.

B. Optimal Power Flow with Quadratic Convex Restriction

We obtain an inner convex approximation of the AC OPF
problem’s feasible space by replacing the original AC OPF
constraints (2), (3) with the convex restriction (19), (20). The
objective function requires further consideration.

1) Objective Function: The objective is a function of the
active power output from each generator (pg,i). Since the active
power generation at the slack (Vθ) bus is an implicit state
variable, it is replaced by its over-estimator. Given that the
objective function is monotonically increasing with respect
to the active power generation, the objective can be over-
estimated by

c(u, b) = cvθ(pg,vθ) +

npv∑
i=1

cpv,i(ppv,i) (21)

where pg,vθ is an over-estimator on the active power generated
at the slack bus. This over-estimator is constrained by

Cvθ pg,vθ − pd,vθ ≥M+
vθ ψP(u, b) +M−vθ ψP(u, b), (22)

where Mvθ ∈ R1×(2nl+nb) is the row of Mineq that corresponds
to the active power generation limit at the Vθ bus.

2) Optimal Power Flow with Convex Restriction: The
AC OPF problem can be solved by minimizing the upper
bound on the cost function subject to the convex restriction’s
conditions. The decision variables are the control variables u
and the state variable bounds b as well as the intermediate
variables that represent upper bounds on the line flows (sf, st)
and slack bus active power generation pg,vθ, respectively. The
resulting optimization problem is

minimize
u,b,sf,st,pg,vθ

(21) objective function

subject to (19), (20), (22) convex restriction.

Remark 1. The solution obtained via convex restriction
(pcvxrs

g ) is lower bounded by the globally optimal solution of
the original AC OPF problem (p∗g ) and is upper bounded by
the objective value at the base point (pg,0):

c(p∗g) ≤ c(pcvxrs
g ) ≤ c(pg,0).

Remark 2. The OPF with convex restriction (i.e., (19)–(22)) is
a convex quadratically constrained quadratic program (convex
QCQP) that can be solved with commercial solvers such
as Mosek, CPLEX, and Gurobi. The number of quadratic
constraints is bounded by 30nl + 4nb + 4ng .

Remark 1 states that the solution of OPF with convex
restriction has reduced or equal objective value relative to
the base point. Remark 2 indicates that the size of the
resulting convex optimization problem increases linearly with
the system size.

IV. FEASIBLE PATH OPTIMAL POWER FLOW

We present an iterative algorithm to solve OPF with the
convex restriction, while guaranteeing the existence of a
feasible path to the new operating point.

A. Definition of the Feasible Path

The motivation for studying the feasible path is to bring
the system from the current operating point to the desired
operating point while guaranteeing steady-state stability, i.e.,
a trajectory which satisfies the AC power flow equations as
well as the operational constraints. This leads to the following
definition of a feasible path.

Definition 1. A feasible path between two control set points
u(0) and u(N) is a set of control variables that forms a contin-
uous trajectory connecting the two set points such that there
exists state variables x that satisfy the AC OPF constraints in
(2), (3) at every point along the trajectory.

In particular, the feasible path will be described by a
sequence of control actions u(k), i = 0, . . . , N where

Upath = {αu(k)+(1−α)u(k+1) | α ∈ [0, 1], k = 0, . . . , N−1}.

B. Feasible Path Identification Algorithm

The convex restriction provides an inner approximation of
the power flow feasibility set that is a convex set. By the
definition of a convex set, all points on the line connecting two
operating points u(k) and u(k+1) within the convex restriction
are guaranteed to be feasible. That is, for α ∈ [0, 1],

αu(k) + (1− α)u(k+1) ∈ U cvxrstr
(k) . (23)

Here, U cvxrstr
(k) denotes the convex restriction (19), (20), con-

structed with the base point at u(k). By leveraging this property
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of convexity, we propose to use sequential convex restrictions
to identify a feasible path. The algorithm based on sequential
convex restrictions is described in Algorithm 1. Given a
current set of control variables u(k), each iteration of the
algorithm (i) solves the power flow equations to obtain the base
point (x(k), u(k)), (ii) constructs the convex restriction at this
base point, and (iii) solves a convex restriction OPF to obtain
a new set of control variables u(k+1). The output of the algo-
rithm is a sequence of control set points u(k), k = 0, . . . , N ,
that forms a piece-wise linear feasible path between the initial
operating point u(0) and u(N).

Algorithm 1 Feasible Path Identification Algorithm with
Sequential Convex Restriction

1: Initialize: Set u(0) and x(0) to the initial operating point.
2: while ‖u(k+1) − u(k)‖2 > ε do
3: Solve power flow given u(k) to obtain x(k).
4: Set x0 = x(k) and compute the power flow Jacobian at

the base point (Jf,0).
5: Construct Convex Restriction (U cvxrstr

(k) ) with (19), (20).
6: Solve

u(k+1) = arg min
u∈U cvxrstr

(k)

f0(u, b). (24)

7: k := k + 1.
8: end while
9: return u(1), . . . , u(N).

Due to the property of convexity explained in (23), the
output of the algorithm provides a feasible path for the OPF
problem in (11).

Corollary 1. The piece-wise linear path from u(0) to u(N),

Upath = {αu(k)+(1−α)u(k+1) | α ∈ [0, 1], k = 0, . . . , N−1},

provided by Algorithm 1 is a feasible path with respect to the
OPF constraints in (2) and (3).

The objective function of the algorithm, f0(u, b), can be
designed to either directly reduce the generation cost or aim
to get close to a known desirable operating point.

C. Operational Scenarios for Feasible Path OPF

Depending on the problem setting, we might want to con-
sider different objective functions f0 in (24). We provide two
examples.

1) Optimal Power Flow with Feasible Path Guarantees:
Given the current, sub-optimal operating point (x0, u0), we
want to find a lower-cost operating point (x∗, u∗) while
providing a certifiably feasible path between the two points. In
this formulation, the OPF problem is directly solved by setting
the objective to be the cost of generation:

f0(u, b) = c̄(u, b), (25)

where c̄(u, b) is defined in (21). The algorithm solves the
OPF with convex restriction as discussed in Section III-B2 and
iterates by setting the solution to the base point and repeating
the process of solving OPF with convex restriction.

2) Feasible Path Identification for Known Operating Points:
In an alternative scenario, we are provided a known, desired
operating point (p∗pv, v

∗
g ) and seek a sequence of feasible

control actions which bring the system towards the desired
point. The objective function here minimizes the square of
the Euclidean distance from the desired generation set point,

f0(u, b) = λ‖ppv − p∗pv‖22 + ‖vg − v∗g‖22, (26)

where λ is a relative weighting of the differences in generator
power injections and voltage magnitudes. The convergence
of the algorithm depends on the weight λ, which will be
investigated further in the numerical studies section.

D. Convergence of the Feasible Path OPF

The sequential convex restriction may not always converge
to the optimal solution. We provide a few scenarios in which
the algorithm may not arrive at the desired operating point.
• If the initial and the optimal operating points belong

to separate, disconnected regions of the feasible space,
there is no feasible path between the two points. The
algorithm’s final point will reside in the region with the
initial point.

• The algorithm could converge to a point at the nonconvex
boundary of the feasible set where all cost-descending
directions are infeasible.

• The dispatch point could get too close to the voltage col-
lapse point. As it gets close to the voltage collapse point,
the power flow Jacobian, Jf,0, will become singular.

The next section provides quantitative experiments to show
the convergence of the algorithm on standard IEEE test cases.

V. NUMERICAL STUDIES

This section computationally demonstrates our algorithm.
Two illustrative examples are presented to visualize how the
algorithm finds a feasible path to a desired point and to study
the convergence characteristics. Extensive numerical studies
show how the algorithm improves the initial operating point.

A. Implementation

The studies were conducted using the test cases from PGLib
v19.01 [45] with sizes up to the 588 buses. Computations
were done using a laptop with a 3.3 GHz Intel Core i7
processor and 16 GB of RAM. The code implementation
uses JuMP/Julia [46]. MOSEK was used to solve the convex
QCQPs associated with the convex restrictions. MATPOWER’s
interior point method was used to solve the AC OPF problems
to obtain desired operating points [47]. Algorithm 1 was imple-
mented with ε = 0.01, where the power flow in each iteration
(step 3) was solved using the Newton-Raphson method.

B. Illustrative Example using a Two-Bus System

This section presents a two-bus system composed of a
controllable load connected to the slack bus via a line with
impedance z = j1. In contrast to the normal practice for OPF
problems, we model the active and reactive power at the load
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Fig. 3. The nonlinear manifold created by the AC power flow equations for
the two-bus system. The set of states that satisfy the voltage magnitude limits
is colored in blue. The projection of the manifold and the feasible region onto
the space of active and reactive power are shown on the p and q axes.

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

Fig. 4. The feasible set and convex restriction for the control variables in the
two-bus system. Any piece-wise linear path between two points in the convex
restriction provides a feasible path. One such path is shown in red.

bus as control variables for the sake of illustration. Considering
a constant voltage magnitude of 1 p.u. at the slack bus, the
power flow equations are

p = v sinϕ

q = −v cosϕ+ v2.
(27)

The control variables are the active and reactive power at the
load bus (p ∈ R and q ∈ R), and the state variables are voltage
magnitude and the phase angle at the load bus (v and ϕ). In
addition to the power flow equations, the voltage magnitude
is constrained as 0.9 ≤ v ≤ 1.1.

Figure 3 shows the manifold created by the power flow
equations and the manifold’s projection onto the space of
control variables. Any p, q, and v on the manifold has a
phase angle ϕ that satisfies the power flow equation in (27).
If the voltage magnitude limits are not present, the solvability
condition over the active and reactive power at the load bus
is known to be p2 − q ≤ 1/4.

This condition corresponds to the solvability boundary given
by the thick blue line in Figure 4. This figure shows the
projection of the manifold onto the control variables, focusing
on the region with low reactive power consumption. With the
consideration of voltage magnitude limits visualized by the
thin solid and dashed blue lines, the projection is represented
in blue. The green region shows the convex restriction condi-
tion constructed around p = 0 and q = 0. Due to the properties
of convex sets, the linear paths between any two points within

the convex restriction are guaranteed to be feasible. The red
line in Figure 4 gives an example of one such feasible path.

C. Illustrative Example: Feasible Path for a 9-Bus System

For the second illustrative example, we consider the 9-bus
system from [48]. In this experiment, the voltage magnitudes at
the generators were fixed at 1 p.u. and the generators’ reactive
power limits were reduced from 300 MVAr to 100 MVAr.
Figure 5 shows the sequential convex restriction applied to
the 9-bus system, with the changes in the control variable
setpoints plotted as the algorithm progresses. The sequential
convex restriction is minimizing the square of the distance
to the desired operating point (marked by the × symbol) at
each iteration, using the objective function (26) with λ = 1.
The algorithm converges to the desired operating point in 7
iterations. The figure shows that the piece-wise linear path
goes around the infeasible operating region (plotted in white)
and arrives at the desired operating point without violating any
OPF constraints.

D. Convergence of Feasible Path Identification to a Specified
Operating Point

In this study, we investigate the convergence of the feasible
path algorithm in an example based on the IEEE 39-bus
system [49]. The desired operating point was specified to be
the globally optimal AC OPF solution. The initial operating
point was determined by solving OPF with linear uniform
generation cost (i.e., c(pg) =

∑
i pg,i) using MATPOWER. The

distance between the current and the desired operating point
was minimized with different values of the parameter λ in
the objective in (26), which determines the trade-off between
convergence for the active power and voltage magnitudes.

Figure 6 shows the convergence of the active power genera-
tion and voltage magnitudes to the desired operating point. For
large enough values of λ, the active power outputs (at the non-
slack generators) converge to those of the desired operating
point. However, the voltage magnitudes may converge to a
different, sub-optimal power flow solution. Similarly, if λ is set
too low, the voltage magnitudes may converge to the desired
operating point, while the active power set points do not.
For intermediate values of λ, both active power and voltage
magnitudes converge to the desired point.

The main takeaway from this result is that the convergence
of the algorithm is path-dependent, i.e., there are cases where
the sequential convex restriction gets trapped in a sub-optimal
point. This issue could be mitigated by appropriate tuning of
the objective function.

E. Optimal Power Flow with Feasible Path Guarantees

To show how the algorithm improves upon an initial, sub-
optimal point (using the objective (25) based on generation
cost), we run our algorithm on different PGLib test cases, con-
sidering both the typical and congested operating conditions.
The initial operating point was obtained by solving the OPF
problem with a linear uniform generation cost (

∑
i pg,i) in

MATPOWER. These solutions are far from the optima of the
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Fig. 5. Illustration of sequential convex restriction in the 9-bus system. The feasibility space is shown in blue, and the convex restriction is shown in green.
The desired operating point is marked by the × symbol. The red point • indicates the base operating point where the convex restriction was constructed, and
the blue circle ◦ shows the optimal operating point within the convex restriction. The red line shows the feasible path.

OPF problems with their original objective functions. Thus,
this experimental setup adequately exercises our sequential
convex restriction algorithm.

Table I summarizes the numerical studies where the cost of
generation was minimized at each iteration of the algorithm.
The costs after the first and last iteration of the sequential
convex restriction are shown in the fourth and fifth columns
of Table I. The optimality gap at the ith iteration is defined as

Optimality Gap =
c(p(i)g )−c(p∗g )

c(p∗g ) . (28)

Here, c(pg) is the objective function (11a), p(i)
g is the power

generation at the ith iteration and p∗g is the optimal set point
from MATPOWER. We observe that the OPF with convex
restriction is able to significantly improve the operating point
from the initial point, even if it does not reach the same
solution as MATPOWER. The algorithm converges within 5
iterations for all cases. For all of the considered optimal power
flow problems, the solutions obtained from the first step of

0 5 10 15 20
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4

6
(a) Active Power Generation

0 5 10 15 20
0

0.01

0.02

0.03
(b) Voltage Magnitude

Fig. 6. Convergence of the feasible path to the identified point for varying
values of λ for the 39-bus system.

the sequential convex restriction algorithm have optimality
gaps less than 20%, which suggests that the convex restriction
covers a significant portion of the feasible space. The average
solver time per iteration is also shown in the last two columns.

Note that the sequential convex restriction encountered
numerical issues for three test cases (the 89- and 240-bus
systems and 588-bus system with the congested operating
conditions) which are omitted from Table I. These issues are
due to the line flow constraints, which add quadratic limits on
the existing quadratic envelopes. This introduces higher-order
polynomial constraints (expressed in terms of two quadratic
constraints), which can be numerically challenging.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a sequential convex restriction al-
gorithm to obtain a feasible path from an initial, feasible
operating point to an improved operating point. The feasible
path is a trajectory of dispatch points for which all points are
AC power flow feasible and satisfy all operational constraints.
The algorithm relies on solving a sequence of OPF problems
that are formulated using convex restrictions, which are convex
inner approximations of the OPF feasible space. The case stud-
ies demonstrate that the sequential convex restriction algorithm
converges to a high-quality solution while generating feasible
control actions, and is scalable to large systems.

One of the challenges we aim to address in future work
is closing the optimality gaps when the sequential convex
restriction algorithm is used to solve OPF problems. Recent
work in [50] suggests that one of the necessary conditions for
convergence of the sequential convex restriction algorithm is
to have a matching Jacobian between the over- and under-
estimator at the base point. Constructing convex restrictions
using alternative representations of the power flow equations
may be also helpful for further closing the optimality gap.

There are other natural extensions to this work. Our current
approach requires a feasible initial operating point since a
feasible path by its definition requires that all points on the
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TABLE I
OPTIMALITY GAPS AND RUNTIMES OF OPF WITH CONVEX RESTRICTION FOR SELECTED PGLIB TEST CASES

Objective ($/h) Optimality Gap (%)

Test Case Initial MATPOWER
CVXRS
1st iter

CVXRS
last iter

Number of
iterations 1st iter last iter

Solver Time
(seconds)

Typical Operating Conditions (TYP)
pglib opf case3 lmbd 6089.54 5812.64 5986.53 5813.54 5 2.99 0.02 0.01
pglib opf case5 pjm 27356.2 17551.9 17839 17578.8 4 1.64 0.15 0.03

pglib opf case14 ieee 7008.23 6291.28 6291.35 6291.29 2 0 0 0.08
pglib opf case24 ieee rts 87065.8 63352.2 63393.8 63361.5 4 0.07 0.01 0.19

pglib opf case30 ieee 12308.3 11974.5 11981.1 11976.8 2 0.06 0.02 0.23
pglib opf case39 epri 152592 142980 144525 143010 4 1.08 0.02 0.41
pglib opf case57 ieee 46216.5 39323.4 44000.3 42494 5 11.89 8.06 1.04

pglib opf case73 ieee rts 262108 189764 189908 189789 5 0.08 0.01 1.73
pglib opf case118 ieee 145657 115804 117068 116071 5 1.09 0.23 3.55

pglib opf case162 ieee dtc 129083 126154 127622 127612 3 1.16 1.16 19.91
pglib opf case179 goc 905329 828404 893016 883301 5 7.8 6.63 11.47

pglib opf case200 tamu 37398.7 34730.7 37138.3 35895.9 5 6.93 3.35 10.21
pglib opf case300 ieee 850620 664220 734711 684909 5 10.61 3.11 55
pglib opf case588 sdet 476950 381555 447566 428569 5 17.3 12.32 219.66

Congested Operating Conditions (API)
pglib opf case3 lmbd api 11390.1 11242.1 11320.7 11242.4 4 0.7 0 0.01
pglib opf case5 pjm api 83270.4 76377.4 76752 76433.2 4 0.49 0.07 0.06

pglib opf case14 ieee api 13604.4 13310.7 13463.6 13424.1 3 1.15 0.85 0.1
pglib opf case24 ieee rts api 282746 134948 241878 172528 5 79.24 27.85 0.31

pglib opf case30 ieee api 24038.1 24032.1 24036.1 24036.1 1 0.02 0.02 0.34
pglib opf case39 epri api 259792 257214 259405 258749 5 0.85 0.6 0.59
pglib opf case57 ieee api 61522.6 59273.6 60600.3 60385.8 4 2.24 1.88 1.1

pglib opf case118 ieee api 327478 316424 323357 318211 5 2.19 0.56 3.77
pglib opf case162 ieee dtc api 144271 143514 144259 144259 1 0.52 0.52 11.79

pglib opf case179 goc api 2456980 1971220 2381450 2330960 2 20.81 18.25 15.75
pglib opf case200 tamu api 53307.9 44867.2 52408.5 51493.9 2 16.81 14.77 11.3
pglib opf case300 ieee api 967348 775490 879185 841581 2 13.37 8.52 59.45

path are feasible, including the initial point. The method
could be extended to allow for an infeasible initial point by
relaxing the violated operational limits with slack variables.
The objective of the sequential convex restriction could then
be designed to penalize violations of the operational limits
such that the operating point finds a path back to a feasible
dispatch point. This would be particularly useful to mitigate
the impacts of contingencies that lead to an infeasible dispatch
condition.

Additionally, the current approach only considers steady-
state security limits and does not consider system dynamics.
We believe that it is possible to extend the method to consider
system dynamics and plan to address this in the future.

We aim to further extend the approach by developing convex
restrictions that also ensure N-1 security. Given multiple
convex restrictions constructed for individual contingencies,
a convex restriction that enforces the N-1 contingency criteria
can be obtained by simply intersecting these restrictions due
to the convexity of these sets.

We also plan to better understand cases where the method
does not find a feasible path and consider additional control
actions (e.g., changing the setpoints for FACTS devices and
controllable transformers) that may help in these cases.

Finally, our future work will analyze the number of control
actions that are taken when following the feasible path, which
is an important consideration for practical applications.

APPENDIX

Let Ef ∈ Rnb×nl and Et ∈ Rnb×nl be the connection
matrix for from and to buses. The (k, l)th element of Ef and

the (m, l)th element of Et are equal to 1 for each transmission
line l, where the line l connects the “from” bus k to “to” bus
m, and zero otherwise, and E = Ef − Et. The matrices Yff,
Ytf, Yft and Ytt are diagonal with its elements,

Yff,kk =

(
yk + j

bck
2

)(
1

τk

)2

, Ytt,kk = yk + j
bck
2
,

Yft,kk = −yk
1

τke−jθ
shift
k

, Ytf,kk = −yk
1

τkejθ
shift
k

.

where Yff,kk represents kth row and kth column of the diagonal
matrix Yff. The transformer tap ratio, phase shift angle, and
line charging susceptance are τ , θshift, bc, respectively. These
values are modeled as specified constants while solving the
OPF problem. The phase adjusted admittance matrices Ŷft ∈
Cnl×nl and Ŷtf ∈ Cnl×nl are diagonal matrices with

Ŷft = Yftdiag
(
e−jϕ0

)
, Ŷtf = Ytfdiag

(
ejϕ0

)
.

where each diagonal element of Ŷft is an adjustment of Yft
by angle ϕ0. The complex matrix Ysh is a diagonal matrix
with the diagonal elements being the shunt admittances at the
corresponding buses. Then,

Ŷ c = Ef Ŷft + EtŶtf , Ŷ s = Ef Ŷft − EtŶtf ,

Y d = EfYffE
T
f + EtYttE

T
t + Ysh.

Replacing Y by G or B yields the real and imaginary parts
of the Y matrix, which are used in (5), (9), and (10).
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