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Abstract—The application of semidefinite programming (SDP)
to power system problems has recently attracted substantial
research interest. Specifically, a recent SDP formulation offers
a convex relaxation to the well-known, typically nonconvex
“optimal power flow” (OPF) problem. This new formulation was
demonstrated to yield zero duality gap for several standardpower
systems test cases, thereby ensuring a globally optimal OPF
solution in each. The first goal of the work here is to investigate
this SDP algorithm for the OPF, and show by example that it can
fail to give a physically meaningful solution (i.e., it has anon-
zero duality gap) in some scenarios of practical interest. The
remainder of this paper investigates a SDP approach utilizing
modified objective and constraints to compute all solutions
of the nonlinear power flow equations. Several variants are
described. Results suggest SDP’s promise as an efficient algorithm
for identifying large numbers of solutions to the power flow
equations.

I. I NTRODUCTION

The optimal power flow (OPF) problem seeks decision
variable values to yield an optimal operating point for an
electric power system in terms of a specified objective and
subject to a wide range of engineering limits on active and
reactive power generation, bus voltage magnitudes, transmis-
sion line and transformer flows, and possibly network stability
constraints. Total generation cost is the typical objective; other
objectives, such as loss minimization, may be considered.

The nonconvexity of the OPF problem has made solution
techniques an ongoing topic of research since the problem was
first introduced in 1962 by Carpentier [1]. Nonconvexity in
typical OPF formulations enters largely through the nonlinear
power flow equations representing physical constraints on the
electric grid [2]. The long literature reflects a wide range of
proposed solution techniques including successive quadratic
programs, Lagrangian relaxation, genetic algorithms, particle
swarm optimization, and interior point methods [3], [4].

Recent research has pursued the application of semidefinite
programming (SDP) to the OPF problem [5], [6], [7]. SDP
formulations create a convex relaxation of the OPF problem;
the global solution of the relaxed problem can be found in
polynomial time. If the relaxed problem can then be guaran-
teed to display a zero duality gap, the solution of the relaxed
problem must be the global optimum of the original OPF.
None of the prior methods offer such a means to guarantee
global optimum, and hence the SDP formulation has attracted
significant interest.

While this approach is promising, the relaxation inherent
in the SDP formulation may yield solutions that are not
physically meaningful. However, with their success on a
significant number of standard IEEE test cases, Lavaei and
Low claim in [7] that their SDP formulation will satisfy a
condition ensuring zero duality gap between the primal and
dual objective functions for most practical OPF problems.

We explore a counterexample to this assertion: a three-
bus system with a constraint on the magnitude of complex
power flow (“apparent power”) on a transmission line. This
example represents a power system with parameters in realistic
ranges, operated with a commonly imposed constraint. The
SDP formulation finds a physically meaningful solution when
the line-flow limit is reasonably large, but fails when a stricter
line-flow limit is enforced. The latter case has a non-zero
duality gap.

Directing attention to constraint equations within the OPF,
the power flow equations govern the relationships between
voltages and active and reactive power injections in a power
system. Solutions to the power flow equations correspond to
the equilibrium points of the underlying differential equations
that govern power system dynamic behavior; it is well known
that large numbers of such solutions can exist [8]. Locating
multiple solutions to the power flow equations, particularly
those exhibiting low-voltage magnitude, is important to power
system stability assessment [9], [10], [11], [12].

One very direct approach to finding multiple power flow
solutions simply initializes a Newton-Raphson iteration [13]
over a range of carefully selected candidate initial conditions.
In another approach, Salamet al. [14] applied the homotopy
method of Chowet al. [15] to the power flow problem. This
method can reliably find all solutions [14] but has a com-
putational complexity that grows exponentially with system
size. Ma and Thorp developed a continuation power flow
algorithm that is computationally tractable for large systems
[16]. However, while the original work claimed a guarantee
that the algorithm would find all solutions, a recent critique
of this paper revealed a flaw in the associated proof [17], and
we have subsequently constructed a counterexample. Thus one
may fairly characterize the state of the art as lacking a tractable
algorithm to compute all solutions to the power flow solutions.

We investigate a SDP formulation of the power flow
problem in the context of five-bus and seven-bus example



systems whose modest dimension allow for identification of
all solutions via [14]. We attempt to replicate these solutions
using two variants of the SDP approach to the OPF: one
modifying constraints, the other modifying the objective.The
constraint modification proved wholly unsuccessful. Objective
modification had varying success, as described in more detail
below.

This paper is organized as follows. In Section II, we
present the OPF problem in both its classical form and the
SDP form. In Section III, we discuss cases where the SDP
formulation of the OPF problem fails to provide physically
meaningful results. This includes an example using a three-bus
system where the SDP formulation fails with a strict line-flow
constraint. In Section IV, we discuss techniques for finding
multiple solutions to the power flow problem using the SDP
formulation.

II. T HE OPTIMAL POWER FLOW PROBLEM

We first present the OPF problem as it is classically formu-
lated. Specifically, this formulation is in terms of rectangular
voltage coordinates, active and reactive power generation, and
apparent power line-flow limits. See [18] for a review of
the power flow equations in rectangular voltage coordinates.
As noted above, this classical OPF formulation is generally
nonconvex. We then review the SDP formulation of [7].

A. Classical Formulation of the Optimal Power Flow Problem

Consider ann-bus power system, whereN = {1, 2, . . . , n}
represents the set of all buses,G represents the set of generator
buses, andL represents the set of all lines. LetPDk + jQDk

represent the active and reactive load demand at each bus
k ∈ N . Let Vk = Vdk + jVqk represent the voltage phasors in
rectangular coordinates at each busk ∈ N . Let PGk + jQGk

represent the generation at generator busesk ∈ G. Let Slm

represent the apparent power flow on the line(l,m) ∈ L.
Superscripts “max” and “min” denote specified upper and
lower limits. LetY = G+ jB denote the network admittance
matrix.

Define a quadratic objective function associated with each
generatork ∈ G, typically representing a dollar/hour variable
operating cost.

fk (PGk) = ck2P
2
Gk + ck1PGk + ck0 (1)

The classical OPF problem can then be written as

min
∑

k∈G

fk (PGk) (2a)

subject to

Pmin
Gk ≤ PGk ≤ Pmax

Gk ∀k ∈ G (2b)

Qmin
Gk ≤ QGk ≤ Qmax

Gk ∀k ∈ G (2c)
(

V min
k

)2 ≤ V 2
dk + V 2

qk ≤ (V max
k )

2 ∀k ∈ N (2d)

|Slm| ≤ Smax
lm ∀ (l,m) ∈ L (2e)

PGk − PDk =Vdk

n
∑

i=1

(GikVdi −BikVqi)

+ Vqk

n
∑

i=1

(BikVdi +GikVqi) (2f)

QGk −QDk =Vdk

n
∑

i=1

(−BikVdi −GikVqi)

+ Vqk

n
∑

i=1

(GikVdi −BikVqi) (2g)

Note that this formulation limits the apparent power flow
measured at each end of a given line, recognizing that active
and reactive line losses can cause these quantities to differ.

B. Semidefinite Programming Formulation of the Optimal
Power Flow Problem

This section describes the formulation of the OPF problem
as adopted from the SDP algorithm of [7]. Letek denote
the kth standard basis vector inRn. Define the matrixYk =
eke

T
kY, where the superscriptT indicates the transpose opera-

tor. Define the matrixYlm =
(

j blm
2 + ylm

)

ele
T
l −(ylm) ele

T
m,

whereblm is the total shunt susceptance andylm is the series
admittance of the line (see Figure 1,ylm = (Rlm + jXlm)

−1).

Rlm jXlm

j blm
2 j blm

2

Fig. 1. Transmission LineΠ Circuit Model

Matrices employed in the SDP algorithm are given as
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(7)

Define vectors of Lagrange multipliers associated with
lower inequality bounds (2b), (2c), and (2d) asλk, γ

k
, and

µ
k
, and those associated with upper bounds asλ̄k, γ̄k, and

µ̄k, respectively.



Define 3 × 3 symmetric matrices to represent generalized
Lagrange multipliers for the line-flow limits (2e):Hlm, with
H

ik
lm the (i, k) element ofHlm.
Define 2 × 2 symmetric matrices to represent generalized

Lagrange multipliers for the quadratic cost functions (2a): Rk,
with R

ik
k the (i, k) element ofRk.

Define aggregate multipliersλk, γk, andµk for all k ∈ N .

λk =

{

λ̄k − λk + ck1 + 2
√
ck2 R

12
k if k ∈ G

λ̄k − λk otherwise
(8)

γk = γ̄k − γ
k

(9)

µk = µ̄k − µ
k

(10)

Finally, define a scalar real-valued functionh and matrix-
valued functionA.

h =
∑

k∈N

{

λkP
min
k − λ̄kP

max
k + λkPDk + γ

k
Q

min
k

−γ̄kQ
max
k + γkQDk + µ

k

(

V
min
k

)2

− µ̄k (V
max
k )2

}

(11)

+
∑

k∈G

(

ck0 −R
22
k

)

−
∑

(l,m)∈L

{

(Smax
lm )2 H11

lm +H
22
lm +H

33
lm

}

A =
∑

k∈N

{

λkYk + γkȲk + µkMk

}

+
∑

(l,m)∈L

{

2H12
lmYlm + 2H13

lmȲlm

}

(12)

The SDP formulation of the dual OPF problem may then
be written as:

max h (13a)

subject to

A � 0 (13b)

Hlm � 0 ∀ (l,m) ∈ L (13c)

Rk � 0, R
11
k = 1 ∀k ∈ G (13d)

λk ≥ 0, λ̄k ≥ 0, γ
k
≥ 0, γ̄k ≥ 0, µ

k
≥ 0, µ̄k ≥ 0 (13e)

where � 0 indicates the corresponding matrix is positive
semidefinite. This formulation is Optimization 4 in [7].

The matrixW is the generalized Lagrange multiplier of
constraint (13b). If the matrix functionA evaluated at the
dual problem’s optimal solution has two zero eigenvalues, [7]
demonstrates that a unique rank oneW can be obtained, and
the duality gap is zero. The optimal voltages in rectangular
coordinates can be extracted from the rank oneW. Expressing
the rank one matrix as an outer product,W = xxT , one has

x =
[

Vd1 · · · Vdn Vq1 · · · Vqn

]T
(14)

yielding the globally optimal solution to the primal OPF
problem.

III. D ISCUSSION ON THESEMIDEFINITE PROGRAMMING

FORMULATION ’ S ABILITY TO PROVIDE PHYSICALLY

MEANINGFUL RESULTS

It is important to note that the SDP formulation above
does not enforce the two-dimensional nullspace forA nor the
corresponding rank one condition onW. If the nullspace ofA
has dimension greater than two at the dual problem’s solution,
the duality gap is non-zero andW does not yield a solution
to the primal OPF problem of interest. In [7] the authors
argue that “practical systems operating at normal conditions”
will display this zero duality gap based on their experience
with a number of IEEE test systems. However, in general,
the SDP formulation of the dual problem offers three possible
outcomes: a solution that meets conditions for zero duality
gap, and hence yields a globally optimal solution to the OPF
problem; a solution to the relaxed SDP formulation with a
higher rankW (hence physically meaningless as a solution to
the original OPF problem); the SDP formulation may have no
feasible solution.

We begin by discussing a class of solution that [7] discounts
as being abnormal, and for which they argue one may not
expect a zero duality gap: that of negative Lagrange multipliers
associated with active power balance constraints.

A. Duality Gap in the Case of Negative LMPs

The Lagrange multipliersλk for the active power constraints
given in (2f) and (8) are, in the terminology of power markets,
locational marginal prices (LMP). These are commonly com-
puted and updated many times daily in wholesale electricity
markets in the U.S. Simple intuition regarding unconstrained
markets might lead one to believe an OPF solution with
negativeλk, (i.e., consumers at some locations are paid to
consume) could be considered “abnormal” and excluded from
consideration. The authors of [7] do so, stating that their SDP
formulation is not guaranteed to yield a solution with zero
duality gap under these conditions. However, power system
markets operate at conditions with negative LMPs with some
regularity. Binding line-flow constraints can cause negative
LMPs. In systems with binding line-flow constraints, it is
possible that increasing the power delivered to certain buses
may relieve congestion elsewhere in the system. Reducing
transmission congestion allows for greater output from cheaper
generators, thus reducing overall system costs. Negative LMPs
will occur at buses where increasing power consumption leads
to decreased overall system costs.

The MidwestISO, which operates one the largest wholesale
power markets in the U.S., displays a color-coded contour map
of LMPs throughout its system on its publicly accessible web-
site [19], updating the LMP values at 5-minute intervals. This
market saw periods of negative LMPs many times throughout
the summer 2011 period; a sample June 2011 LMP contour is
shown in Figure 2. In this example, 32 of the 190 commercial
pricing nodes in the MidwestISO market displayed negative
LMPs, with the most negative being a price of $-112 per
MWh at a node in the Hoosier Energy control area. Inability
to reliably compute OPF solutions for situations that yield



negative LMPs appears to be a practical limitation of the SDP
formulation.

Fig. 2. Negative LMPs (Lagrange Multipliers) in the MidwestISO Market
[19]

B. Duality Gap in the Case of Strict Line-Flow Constraints

Here we provide a new computational example to demon-
strate that the SDP formulation of the OPF problem may
also fail to produce physically meaningful solutions in the
presence of line-flow constraints. The SDP formulation of
the OPF problem was solved using YALMIP version 3 [20]
and SeDuMi version 1.3 [21] for a simple three-bus example.
For comparison purposes, the classical formulation of the
OPF problem was solved using an interior point method
implemented in MATPOWER version 4.0 [4].

The three-bus power system for our example is depicted in
Figure 3, where the numeric values indicate thePDk + jQDk

load demands in MW and MVAR. This example uses a 100
MVA base. The active and reactive power outputs of generators
1 and 2 have large, nonbinding limits. The “generator”at bus
3 is a synchronous condenser (i.e. it produces only reactive
power). The reactive power limits for generator 3 are large
enough to be nonbinding. The quadratic generator cost curves
for generators 1 and 2 are given in Table I for power generation
in MWh, wherec2 is the coefficient of the squared term,c1 is
the coefficient of the linear term, andc0 is a constant. There is
no cost associated with generator 3 since it produces no active
power. The network data are given in Table II. Line shunt
susceptances are specified for the entire line (see Figure 1 for
the Π model circuit representation). The voltage magnitudes
at all buses are constrained to the range 1.1 to 0.9. All values
are given in per unit.

Generator c2 c1 c0
1 $0.11per (MWh)2 $5 per MWh $0
2 $0.085per (MWh)2 $1.2 per MWh $0

TABLE I
THREE-BUS SYSTEM GENERATORCOST DATA

First consider a line-flow limit of 60 MVA enforced on both
ends of the line between bus 2 and bus 3 (all other lines

1 2

3

110. MW 
+ j 40. MVAR

95 MW 
+ j 50. MVAR

110. MW 
+ j 40. MVAR

P   + j Q
G1 G1 P   + j Q

G2 G2

0 + j Q
G3

Fig. 3. Three-Bus Example System

From Bus To Bus R X b
1 3 0.065 0.620 0.450
3 2 0.025 0.750 0.700
1 2 0.042 0.900 0.300

TABLE II
THREE-BUS SYSTEM NETWORK DATA

have no flow limits). The SDP formulation yields a physi-
cally meaningful result, as evidenced by the two-dimensional
nullspace ofA, that matches the solution of the classical
formulation. The solution is shown in Tables III and IV,
and aggregated Lagrange multipliers (LMPs) for active and
reactive power obtained from (8) and (9) are given in Table V.

Bus 1 Bus 2 Bus 3
|V | 1.069 1.028 1.001

δ (degrees) 0 9.916 -13.561
Pg (MW) 131.09 185.93 0

Qg (MVAR) 17.02 -3.50 0.06

TABLE III
SOLUTION TO 3-BUS SYSTEM WITH L INE-FLOW L IMIT OF 60 MVA

(CLASSICAL AND SDP FORMULATIONS)

From Bus To Bus From MVA To MVA
1 3 43.90 47.47
3 2 60.00 60.00
1 2 22.72 28.69

TABLE IV
L INE-FLOW DATA FOR 3-BUS SYSTEM WITH L INE-FLOW L IMIT OF 60

MVA (C LASSICAL AND SDP FORMULATIONS)

Bus 1 Bus 2 Bus 3
λ ($/MWh) 33.84 32.81 35.96
γ ($/MVAR-hour) 0 0 0

TABLE V
AGGREGATEDLAGRANGE MULTIPLIERS FOR3-BUS SYSTEM WITH

L INE-FLOW L IMIT OF 60 MVA



The optimal objective values for both the SDP and classical
formulations are $5707.07 per hour.

Now reduce the line-flow limit to 50 MVA while leaving
the other parameters unchanged. The solution to the SDP for-
mulation yields anA matrix with four-dimensional nullspace.
The solution therefore has a non-zero duality gap and is no
longer physically meaningful. However, the classical formu-
lation solved via an interior point method in MATPOWER
does yield a (at least locally optimal) solution as shown in
Tables VI and VII. Aggregated Lagrange multipliers (prices)
for active and reactive power obtained using MATPOWER
are given in Table VIII. The aggregated Lagrange multipliers
at the nonphysical SDP solution are given in Table IX. Note
that all aggregated Lagrange multipliers in both the classical
and SDP formulations are non-negative, and the active power
balance Lagrange multipliersλ are strictly positive. The du-
ality gap/loss-of-physically-meaningful SDP solution cannot,
therefore, be attributed to negative Lagrange multipliers.

Bus 1 Bus 2 Bus 3
|V | 1.100 0.926 0.900

δ (degrees) 0 7.259 -17.267
Pg (MW) 148.07 170.01 0

Qg (MVAR) 54.70 -8.79 -4.84

TABLE VI
SOLUTION TO 3-BUS SYSTEM WITH L INE-FLOW L IMIT OF 50 MVA

(CLASSICAL FORMULATION)

From Bus To Bus From MVA To MVA
1 3 52.29 60.28
3 2 50.00 50.00
1 2 14.02 33.33

TABLE VII
L INE-FLOW DATA FOR 3-BUS SYSTEM WITH L INE-FLOW L IMIT OF 50

MVA (C LASSICAL FORMULATION)

Bus 1 Bus 2 Bus 3
λ ($/MWh) 37.57 30.10 45.54
γ ($/MVAR-hour) 0 0 0

TABLE VIII
AGGREGATEDLAGRANGE MULTIPLIERS FOR3-BUS SYSTEM WITH

L INE-FLOW L IMIT OF 50 MVA (CLASSICAL FORMULATION)

Bus 1 Bus 2 Bus 3
λ ($/MWh) 35.78 31.62 40.83
γ ($/MVAR-hour) 0 0 0

TABLE IX
AGGREGATEDLAGRANGE MULTIPLIERS FOR3-BUS SYSTEM WITH

L INE-FLOW L IMIT OF 50 MVA (SDP FORMULATION)

The optimal objective value for the SDP formulation is
$5789.87 per hour, whereas the optimal objective value to
the classical formulation is $5812.60 per hour. Thus, the
objective function value at the relaxed solution of the SDP

lower bounds that of the classical formulation, as expected.
While space limitations preclude full system descriptions,
larger examples also showed these same properties, in which
the SDP algorithm yielded anA matrix of rank greater than
two, and hence failed to provide a meaningful OPF solution.
Again, the problematic solution cases appeared as sufficiently
strict line-flow limits were imposed.

In cases for which the SDP formulation fails to provide a
zero duality gap, one may conjecture that there remains useful
information to be garnered, particularly in cases for which
W is close to a rank one matrix. As a pragmatic heuristic,
the binding constraints for the (nonphysical) solution to the
SDP formulation might be assumed to be the same as those
for the actual optimal solution. For ann-bus system with2n
binding constraints, the values of all unknown variables are
fully determined, and, with a sufficiently close initial guess,
could be computed via standard Newton-Raphson. In cases for
which the binding constraints do not yield a fully determined
system, the dimension of the feasible space is still significantly
reduced, and the closest rank one approximation toW could
be employed to yield an initial guess to an alternative OPF
algorithm.

IV. T HE POWER FLOW PROBLEM

We first review the power flow problem in rectangular
coordinates. As noted previously, in practice, individualsolu-
tions are easily computed via Newton methods; the challenge
lies in attempting to identify all solutions. To this end, we
demonstrate how the power flow problem can be formulated
as an OPF problem through suitable choice of the constraints
and objective function. The SDP formulation of this problemis
adapted to the goal of finding multiple solutions to the power
flow equations.

A. The Power Flow Equations in Rectangular Coordinates

The power flow equations relate the active and reactive
power injected at each bus to the voltage phasor at each bus.
The variables associated with each busk are the net active
power injection (Pk = PGk−PDk), the net reactive power in-
jection (Qk = QGk−QDk), and the voltageVk = Vdk+jVqk.
The power flow equations are shown in (2f) and (2g). The
voltage magnitude equation is

|Vk|2 = V 2
dk + V 2

qk (15)

See [18] for a review of the power flow equations in rectan-
gular voltage coordinates.

While (2f), (2g), and (15) must all be satisfied at all buses,
only two equations are directly enforced at each bus when
solving the power flow problem. To identify the class of
constraints imposed at each, buses in the power flow problem
are classified as one of three ”types”: PQ (bus indices denoted
by PQ), PV (bus indices denoted byPV), and slack (bus
index denoted byS). PQ buses enforce the active and reactive
power equations (2f) and (2g). PV buses enforce the active
power and voltage magnitude equations (2f) and (15). Finally,
a single slack bus enforces specified values ofVdk andVqk.



B. The Power Flow Equations Formulated as an OPF Problem

By “tightening” inequality constraints that appear in the
OPF problem (in the limit, upper and lower limits equal), it
is clear that one can recover the equalities for the power flow
problem as a subset of the standard constraints of the OPF
problem. In particular, for sufficiently smallǫ > 0, one may
impose OPF constraints:

Pk − PDk − ǫ ≤ PGk ≤ Pk − PDk + ǫ ∀k ∈ {PQ,PV} (16a)

Qk −QDk − ǫ ≤ QGk ≤ Qk −QDk + ǫ ∀k ∈ PQ (16b)

|Vk|
2 − ǫ ≤ V

2
dk + V

2
qk ≤ |Vk|

2 + ǫ ∀k ∈ {PV,S} (16c)

As will be described below, by suitable choice of objective
function, one may seek to “steer” the OPF towards different
power flow solutions. However, it is useful to first consider
general properties of the respective feasible spaces for the
power flow problem, the classical OPF problem, and the SDP
formulation of the OPF problem. The feasible space of the
power flow problem is made up of discrete points at the
solutions to the power flow equations. The feasible space of
the classical OPF problem is more difficult to characterize.
It is generally nonconvex and may not be connected [2]. By
appropriately setting the constraints, the OPF formulation of
the power flow problem shrinks the feasible space to emulate
a discrete set of points. The SDP formulation of the OPF
problem is connected and convex. However, the rank relax-
ation of this formulation increases the feasible space to include
nonphysically meaningful solutions. The rank relaxation also
increases the feasible space of the power flow problem from
a set of discrete points to a continuous space. This may result
in nonphysically meaningful solutions to the SDP formulation
of the power flow problem.

C. Finding Multiple Solutions to the Power Flow Equations

We discuss two different approaches using SDP to find mul-
tiple solutions to the power flow equations. The first approach
involves modifying the constraints of the SDP formulation.
The second approach involves modifying the objective func-
tion.

1) Example Systems:The five-bus and seven-bus systems
shown in Figures 4 and 5 were used to test both approaches.
Load, generation and voltage magnitudes in Figures 4 and
5 are given in per unit. Network values in Figures 4 and 5
are given asR + jX in per unit. The complete set of power
flow solutions for these systems have been calculated using a
homotopy method [14], and are summarized in Table X and
Table XI.

2) Modifying the Constraints:We first seek to differentiate
among possible solutions by imposing an inequality constraint
on slack bus active power. The solution having least power
generated by the slack bus corresponds to the solution with
lowest losses. This base solution is reliably found with no
inequality constraint. Imposing a minimum slack bus power
constraint greater than the slack bus power in the base so-
lution forces the OPF to another solution with higher losses.
However, in all such cases examined, the SDP solution had

0.02 + j 0.06

0.06 + j 0.18

0.06 + j 0.18

0.04 + j 0.12

0.08 + j 0.24

0.01 + j 0.030.08 + j 0.24

0.08 + j 0.24

5 2 3

41

0.45 + j 0.15 0.4 + j 0.05

0.6 + j 0.10.2 + j 0.1

V = 1.06 
        0 deg

 P = 0.4
|V| = 1.0

Fig. 4. Five-Bus Example System

Solution
1 2 3 4 5

V1 1.0000 1.0000 1.0000 1.0000 1.0000
V2 0.9805 0.5012 0.3770 0.7933 0.0626
V3 0.9771 0.5879 0.4108 0.7403 0.2160
V4 0.9662 0.8317 0.0666 0.0580 0.6982
V5 1.0600 1.0600 1.0600 1.0600 1.0600
δ1 -2.0675 -138.9679 -128.5864 -12.1469 -126.6253
δ2 -4.5358 -129.8511 -116.8370 -12.6793 -159.5293
δ3 -4.8535 -134.8640 -124.1731 -13.8795 -144.7963
δ4 -5.6925 -141.6605 -185.7340 -71.5017 -133.4401
δ5 0.0000 0.0000 0.0000 0.0000 0.0000

Solution
6 7 8 9 10

V1 1.0000 1.0000 1.0000 1.0000 1.0000
V2 0.1972 0.0563 0.0342 0.1968 0.0884
V3 0.0301 0.0496 0.1846 0.0369 0.1658
V4 0.6289 0.6327 0.6865 0.0814 0.0756
V5 1.0600 1.0600 1.0600 1.0600 1.0600
δ1 -16.5040 -18.0976 -16.9090 -22.5210 -119.8826
δ2 -26.0422 -61.1266 -69.0465 -30.6818 -141.8399
δ3 -81.8652 -80.6706 -37.7869 -85.9455 -144.7567
δ4 -23.4519 -25.4435 -23.8729 -79.4189 -178.4992
δ5 0.0000 0.0000 0.0000 0.0000 0.0000

TABLE X
THE TEN SOLUTIONS FOR THEFIVE-BUS SYSTEM

non-zero duality gap and failed to yield a meaningful solution
to the power flow.

Additionally, we attempted to constrain the voltage mag-
nitudes at PQ buses to be below the base solution results.
This approach also failed; imposing such voltage constraints
yielded only nonphysical results (i.e., non-zero duality gap).

3) Modifying the Objective Function:An alternate formu-
lation examined selected slack bus active power generation
as an objective to be maximized. The solution with highest
losses for the five-bus system, solution 3 in Table X, was
obtained via SDP in this way. Other examples, including the
seven-bus system, identified only nonphysical solutions with
this objective function.

Next considered was an objective function based on bus
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Fig. 5. Seven-Bus Example System

Solution
1 2 3 4

V1 1.0758 0.7312 0.2880 0.3435
V2 0.9635 0.5876 0.5415 0.4332
V3 0.9041 0.1745 0.5430 0.2497
V4 0.9278 0.4122 0.6458 0.4359
V5 0.9638 0.7229 0.7750 0.6879
V6 0.9675 0.6638 0.6402 0.5496
V7 1.0000 1.0000 1.0000 1.0000
δ1 5.2859 14.9576 101.8188 88.3361
δ2 -2.9342 -5.2212 -6.2931 -6.8346
δ3 -8.4439 -52.6775 -19.8095 -44.2797
δ4 -5.7500 -14.2056 -11.2462 -16.1362
δ5 -2.4463 -3.2056 -3.8617 -3.9193
δ6 -2.5918 -4.3031 -5.0158 -5.3138
δ7 0.0000 0.0000 0.0000 0.0000

TABLE XI
THE FOUR SOLUTIONS FOR THESEVEN-BUS SYSTEM

voltage magnitudes, in the form

min cT |V |2 = min

n
∑

i=1

citrace (MiW) (17)

where c is a vector of weights; i.e. the objective function
in (17) is a weighted sum squares of voltage magnitudes.
Appropriate choices of the weights inc favored solutions with
low voltages at selected buses.

This method identified all of the ten solutions in the five-
bus system, as summarized in Table XII, and all of the
four solutions in the seven-bus system, as summarized in
Table XIII. Solutions above the line in Tables XII and XIII
were found using heuristically determined weightsc. Similar
heuristically determined weights were identified that were
expected to find the remaining solutions (3, 5, and 10 for the
five-bus system and 4 in the seven-bus system); however, the
SDP formulation for these heuristically determined weights
gave nonphysical results. Alternatively, testing a variety of
randomly generated weights yielded the combinations below
the line in Tables XII and XIII that found the remaining
solutions.

As noted previously, solutions with non-zero duality gap
in which W has rank greater than one can be used to
estimate approximate, candidate solutions. As a heuristic, the
eigenvector associated with the largest eigenvalue ofW was

Solution c1 c2 c3 c4 c5
1 0 -1 -1 -1 0
2 0 1 -1 0 0
4 0 0 0 1 0
6 0 0 1 0 0
7 0 1 1 0 0
8 0 1 0 0 0
9 0 0 1 1 0
3 0 0.65 -0.70 0.90 0
5 0 0.70 -0.10 -0.15 0
10 0 0.45 -0.25 0.50 0

TABLE XII
COMBINATIONS OF WEIGHTSc AND CORRESPONDINGSOLUTIONS FOR

FIVE-BUS SYSTEM

Solution c1 c2 c3 c4 c5 c6 c7
1 -1 -1 -1 -1 -1 -1 0
2 0 0 1 0 0 0 0
3 1 0 0 0 0 0 0
4 0.30 -0.20 0.35 0.45 -0.40 0.05 0

TABLE XIII
COMBINATIONS OF WEIGHTSc AND CORRESPONDINGSOLUTIONS FOR

SEVEN-BUS SYSTEM

computed, appropriately scaled, and set as the initial condition
for a Newton-Raphson power flow solver. With this approach,
some, but not all, of the nonphysical solutions obtained from
the SDP formulation for the five-bus and seven-bus systems
converged to power flow solutions.

V. CONCLUSION

This paper has investigated existing and new applications
of the semidefinite programming formulation of the optimal
power flow problem. We have discussed two practical system
conditions where the SDP formulation of the OPF problem
may fail to give physically meaningful results. The first was
already identified in the discussion of [7], but was not rec-
ognized as a commonly occurring practical system condition:
that of negative bus LMPs. In a new result, this work has
also provided a numerical optimal power flow example to
demonstrate that a non-zero duality gap may arise in SDP
formulation as a line-flow inequality constraint is progressively
“tightened.” Under these conditions, the SDP fails to provide
a physically meaningful solution to the original OPF problem
of interest.

To explore possible extensions of the SDP formulation in
traditionally intractable power system computations, we next
addressed the problem of locating all possible solutions tothe
power flow. To identify different power flow solutions, families
of OPF problems were formulated by modifying the OPF con-
straints and objective function. In the test cases examined, the
modified objective approach was successful in finding all of
the power flow solutions. Although not all objective functions
yielded physically meaningful solutions, objective functions
capable of finding all solutions were identified. As a heuristic
enhancement to the method, nonphysical solutions obtained
from the SDP formulation were used to construct approximate



solutions that then initialized a traditional Newton-Raphson
power flow solver.

The examples examined in this paper demonstrate that the
SDP formulation in its present development is not capable of
reliably solving the OPF problem in several practical operating
conditions of interest. Initial attempts at adapting the SDP OPF
approach to compute all possible power flow solutions showed
promise in test cases, but did not give physically meaningful
results for all objective functions and constraints. Clearly, the
use of relaxation-based SDP methods in otherwise nonconvex
power system problems has significant potential, but in its
present development does not yet reliably solve the full range
of practical problems of interest.
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