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Abstract—The application of semidefinite programming (SDP) While this approach is promising, the relaxation inherent
to power system problems has recently attracted substantia jn the SDP formulation may yield solutions that are not
research interest. Specifically, a recent SDP formulation féers physically meaningful. However, with their success on a

a convex relaxation to the well-known, typically nonconvex .~ .. .
“optimal power flow” (OPF) problem. This new formulation was significant number of standard IEEE test cases, Lavaei and

demonstrated to yield zero duality gap for several standarpower LOW claim in [7] that their SDP formulation will satisfy a
systems test cases, thereby ensuring a globally optimal OPFcondition ensuring zero duality gap between the primal and
solution in each. The first goal of the work here is to investigte dual objective functions for most practical OPF problems.
this SDP algorithm for the OPF, and show by example that it can We explore a counterexample to this assertion: a three-

fail to give a physically meaningful solution (i.e., it has anon- . . .
zero duality gap) in some scenarios of practical interest. fie bus system with a constraint on the magnitude of complex

remainder of this paper investigates a SDP approach utilizig Power flow (“apparent power”) on a transmission line. This
modified objective and constraints to compute all solutions example represents a power system with parameters intiealis

of the nonlinear power flow equations. Several variants are ranges, operated with a commonly imposed constraint. The
described. Results suggest SDP's promise as an efficienta@ithm — gpp formylation finds a physically meaningful solution when
for identifying large numbers of solutions to the power flow . S ) .
equations. t_he Ilne-flqw_hrr_nt is reasonably large, but fails when a i
line-flow limit is enforced. The latter case has a non-zero
I. INTRODUCTION duality gap.

The optimal power flow (OPF) problem seeks decision Directing attention to constraint equations within the OPF
variable values to yield an optimal operating point for athe power flow equations govern the relationships between
electric power system in terms of a specified objective awdltages and active and reactive power injections in a power
subject to a wide range of engineering limits on active arsystem. Solutions to the power flow equations correspond to
reactive power generation, bus voltage magnitudes, trsasnthe equilibrium points of the underlying differential edjoas
sion line and transformer flows, and possibly network siigbil that govern power system dynamic behavior; it is well known
constraints. Total generation cost is the typical objectother that large numbers of such solutions can exist [8]. Locating
objectives, such as loss minimization, may be considered. multiple solutions to the power flow equations, particylarl

The nonconvexity of the OPF problem has made solutidghose exhibiting low-voltage magnitude, is important taveo
technigues an ongoing topic of research since the problesn vegstem stability assessment [9], [10], [11], [12].
first introduced in 1962 by Carpentier [1]. Nonconvexity in One very direct approach to finding multiple power flow
typical OPF formulations enters largely through the nagdin solutions simply initializes a Newton-Raphson iteratidr3][
power flow equations representing physical constraintshen tover a range of carefully selected candidate initial coodg.
electric grid [2]. The long literature reflects a wide randge dn another approach, Salaet al. [14] applied the homotopy
proposed solution techniques including successive qtiadranethod of Chowet al. [15] to the power flow problem. This
programs, Lagrangian relaxation, genetic algorithmstiggar method can reliably find all solutions [14] but has a com-
swarm optimization, and interior point methods [3], [4]. putational complexity that grows exponentially with syste

Recent research has pursued the application of semidefisitee. Ma and Thorp developed a continuation power flow
programming (SDP) to the OPF problem [5], [6], [7]. SDRilgorithm that is computationally tractable for large sys$
formulations create a convex relaxation of the OPF probleifi6]. However, while the original work claimed a guarantee
the global solution of the relaxed problem can be found ihat the algorithm would find all solutions, a recent crigqu
polynomial time. If the relaxed problem can then be guaraof this paper revealed a flaw in the associated proof [17], and
teed to display a zero duality gap, the solution of the ralaxeve have subsequently constructed a counterexample. Tleus on
problem must be the global optimum of the original OPHnay fairly characterize the state of the art as lacking adfde
None of the prior methods offer such a means to guarantgdgorithm to compute all solutions to the power flow soluson
global optimum, and hence the SDP formulation has attractedMe investigate a SDP formulation of the power flow
significant interest. problem in the context of five-bus and seven-bus example
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systems whose modest dimension allow for identification of
all solutions via [14]. We attempt to replicate these solusi
using two variants of the SDP approach to the OPF: one n
modifying constraints, the other modifying the objectifée + Vo Z (BitVai + Gix Vi) (2f)
constraint modification proved wholly unsuccessful. Otijec

modification had varying success, as described in moreldetai n
below. Qcr — Qpr =V Z (=BirVai — Gir Vi)
This paper is organized as follows. In Section Il, we i=1
present the OPF problem in both its classical form and the }
SDP form. In Section lll, we discuss cases where the SDP * quz ik Vai = Bi Vi) (29)

formulation of the OPF problem fails to provide physically

meaningful results. This includes an example using a thtese-  Note that this formulation limits the apparent power flow

system where the SDP formulation fails with a strict lineaflo measured at each end of a given line, recognizing that active

constraint. In Section 1V, we discuss techniques for findingnd reactive line losses can cause these quantities ta. diffe

multiple solutions to the power flow problem using the SDP

formulation. B. Semidefinite Programming Formulation of the Optimal
Power Flow Problem

Il. THE OPTIMAL POWER FLOW PROBLEM . . . .
This section describes the formulation of the OPF problem

We first present the OPF problem as it is classically formigs adopted from the SDP algorithm of [7]. Let denote
lated. Specifically, this formulation is in terms of rectafey the k! standard basis vector IlR”. Define the matrixy;, =
voltage coordinates, active and reactive power generadioth ¢,.e?Y, where the superscrifit indicates the transpose opera-
apparent power line-flow limits. See [18] for a review ofor. Define the matri®y,, = (j% bim + yim) €1l — (yim) €r€l,,
the power flow equations in rectangular voltage coordinateghereb,,, is the total shunt susceptance apgl is the series
As noted above, this classical OPF formulation is generaljmittance of the line (see Figurewyt,, = (R +lem)_1),
nonconvex. We then review the SDP formulation of [7].

. . . R i X
A. Classical Formulation of the Optimal Power Flow Problem m ,:7,\ m
Consider am-bus power system, whefd = {1,2,...,n}
represents the set of all buséstepresents the set of generator S 1,
buses, andC represents the set of all lines. LBb;, + jQpr — 72 — 772
represent the active and reactive load demand at each bus

ke N. Let Vi, = Vyi, + jVgi represent the voltage phasors in
rectangular coordinates at each dus N. Let Pgi, + iQck
represent the generation at generator buses G. Let S},
represent the apparent power flow on the liiem) € L.
Superscripts “max” and “min” denote specified upper an
lower limits. LetY = G + jB denote the network admittance
matrix.

Fig. 1. Transmission LinéI Circuit Model

d Matrices employed in the SDP algorithm are given as

) . - . . . 1 [Re (i +Y) Im (Y -Y)
Define a quadratic objective function associated with each Y, = 2 |t (Yi—YT) Re(Yi +Y{) 3)
generatork € G, typically representing a dollar/hour variable K k k k
operating cost. 9 = 1 Im (Y +Y") Re(Yi —Y/) @)
"7 72 |Re (YT ~Y) Im (Y +Y7)
fi (Par) = cx2Péy, + cr1 Pak + cro 1) enel
. : My =|"* 5
The classical OPF problem can then be written as g [ erer ®)
1 |Re (Yim +Yy,)  Im (Y, = Yim)
. 2 Ylm =3 T T (6)
min Y fi (Pak) (2a) 2 |Im (Vi = V1) Re(Yim +Y1)
keg T _vT
subject to Y, = ! En (3? * ?m) f{e (};m };?) (7)
PG in < PGk < Pmax vk € g (2b) e( Im — lm) m( im + lm)
QBN < Qar < QB Vke g (2c) Define vectors of Lagrange multipliers associated with

lower inequality bounds (2b), (2c), and (2d) as, v, , and

mln < max
(V ) Vir + VII (Ve ) vk eN (2d) u , and those associated with upper bounds\asv, and
max k
|Stm| < Sph V(l,m)e L (2e) iy, respectively.



Define 3 x 3 symmetric matrices to represent generalizedll. D1SCUSSION ON THESEMIDEFINITE PROGRAMMING
Lagrange multipliers for the line-flow limits (2eH;,,, with FORMULATION’S ABILITY TO PROVIDE PHYSICALLY
H;jjl the (¢, k) element ofH,,. MEANINGFUL RESULTS

Define 2 x 2 symmetric matrices to represent generalized |t js important to note that the SDP formulation above
Lagrange multipliers for the quadratic cost functions (2%),  does not enforce the two-dimensional nullspace£onor the
with Rj" the (i, k) element ofR,.. corresponding rank one condition 8. If the nullspace ofA

Define aggregate multipliersy, vz, andpy, for all k € V. has dimension greater than two at the dual problem’s saiptio

the duality gap is non-zero an&/ does not yield a solution

Mo A b 42 EER2 i ke to the primal OI_DF problem of inte_rest. In [7] the au_thors
Y= { kT A T Gk R g (8) argue that “practical systems operating at normal conustio

Ak = A otherwise will display this zero duality gap based on their experience
Yo =Tk =, (9) with a number of IEEE test systems. However, in general,
pie = ik~ (10) the SDP formulation of the dual problem offers three possibl

outcomes: a solution that meets conditions for zero duality

Finally, define a scalar real-valued functibnand matrix- gap, and hence yields a globally optimal solution to the OPF

valued functionA. problem; a solution to the relaxed SDP formulation with a

higher rankW (hence physically meaningless as a solution to

the original OPF problem); the SDP formulation may have no
feasible solution.

We begin by discussing a class of solution that [7] discounts

)2} (11) as being abnormal, and for which they argue one may not

h=3%" {Akpgli“ — M PP+ A\ Ppr +7, QP
keN

. 2
_ﬁszmaX + ’kaDk + Ek (Vkmm) — [k (kanax
expect a zero duality gap: that of negative Lagrange migdtipl

22 max 2 11 22 33
+ Z (eko — Ry — Z {(Slm )" Him + Hip, + Higy associated with active power balance constraints.
keg (I,m)eLl

A. Duality Gap in the Case of Negative LMPs

_ S The Lagrange multipliers;, for the active power constraints
A= WY+ Y+ M} given in (2f) and (8) are, in the terminology of power markets
_ locational marginal prices (LMP). These are commonly com-

+ Y {2HP Y +2H Y ) (12) puted and updated many times daily in wholesale electricity
(tm)eL markets in the U.S. Simple intuition regarding unconstdin

The SDP formulation of the dual OPF problem may thefarkets might lead one to believe an OPF solution with

be written as: negative \i, (i.e., consumers at some locations are paid to
consume) could be considered “abnormal” and excluded from
consideration. The authors of [7] do so, stating that thBIPS

keN

max h (13a) formulation is not guaranteed to yield a solution with zero
subject to duality gap under these_qonditiqns. Hovyever, power system
markets operate at conditions with negative LMPs with some
A>x0 (13b) ) - . : .
regularity. Binding line-flow constraints can cause negati
Hipm =0 V(,m)eL  (13c) LMPs. In systems with binding line-flow constraints, it is
R, >0, R}'=1 Vkeg (13d) possible that increasing the power delivered to certaire®us

A >0,0>0,7, >0, 4 >0, u >0, i, >0 (13e) May relieve congestion elsewhere in the system. Reducing
—k =k transmission congestion allows for greater output fromaplee
where = 0 indicates the corresponding matrix is positivgenerators, thus reducing overall system costs. Negakiifed_
semidefinite. This formulation is Optimization 4 in [7]. will occur at buses where increasing power consumptionslead
The matrix W is the generalized Lagrange multiplier ofto decreased overall system costs.
constraint (13b). If the matrix functioA evaluated at the The MidwestlSO, which operates one the largest wholesale
dual problem’s optimal solution has two zero eigenvalu@k, [power markets in the U.S., displays a color-coded contoyr ma
demonstrates that a unique rank di&can be obtained, and of LMPs throughout its system on its publicly accessible web
the duality gap is zero. The optimal voltages in rectangulaite [19], updating the LMP values at 5-minute intervalsisTh
coordinates can be extracted from the rank WieExpressing market saw periods of negative LMPs many times throughout
the rank one matrix as an outer produ¥, = 2, one has the summer 2011 period; a sample June 2011 LMP contour is
shown in Figure 2. In this example, 32 of the 190 commercial
]T (14) pricing nodes in the MidwestlISO market displayed negative
LMPs, with the most negative being a price of $-112 per
yielding the globally optimal solution to the primal OPRAMWh at a node in the Hoosier Energy control area. Inability
problem. to reliably compute OPF solutions for situations that yield

a::[le coo Vin Vq1 an



negative LMPs appears to be a practical limitation of the SDP
formulation.
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5] Novth Carlies Fig. 3. Three-Bus Example System
Fig. 2. Negative LMPs (Lagrange Multipliers) in the Midw&® Market From Bus | To Bus R X b
(19] 1 3 0.065 | 0.620 | 0.450

3 2 0.025 | 0.750 | 0.700

. ) ) ) . 1 2 0.042 | 0.900 | 0.300

B. Duality Gap in the Case of Strict Line-Flow Constraints TABLE Il

Here we provide a new computational example to demon- THREE-BUS SYSTEM NETWORK DATA

strate that the SDP formulation of the OPF problem may

also fail to produce physically meaningful solutions in the

presence of line-flow constraints. The SDP formulation of

the OPF problem was solved using YALMIP version 3 [20pave no flow limits). The SDP formulation yields a physi-

and SeDuMi version 1.3 [21] for a simple three-bus examplelly meaningful result, as evidenced by the two-dimeraiion

For comparison purposes, the classical formulation of tfllspace ofA, that matches the solution of the classical

OPF prob|em was solved using an interior point metho‘grmulation. The solution is shown in Tables Il and v,

implemented in MATPOWER version 4.0 [4]. and aggregated Lagrange multipliers (LMPs) for active and
The three-bus power system for our example is depicted®@@ctive power obtained from (8) and (9) are given in Table V.

Figure 3, where the numeric values indicate thg, + jQpx

load demands in MW and MVAR. This example uses a 100 Bus1 | Bus2 | Bus3

MVA base. The active and reactive power outputs of genesator Vi 1.069 1 1.028 1 1.001
: reactive p p 9 5 (degrees) 0 9.916 | -13.561

1 and 2 have large, nonbinding limits. The “generator’at bus Py (MW) 131.09 | 185.93 0

3 is a synchronous condenser (i.e. it produces only reactive Qg (MVAR) | 17.02 | -350 | 0.06

power). The reactive power limits for generator 3 are large TABLE Il

enough to be nonbinding. The quadratic generator cost surye SOLUTIONTO 3-BUS SYSTEM WITH LINE-FLOW LIMIT OF 60 MVA
for generators 1 and 2 are given in Table | for power genearatio (CLASSICAL AND SDP FORMULATIONS)

in MWh, wherec; is the coefficient of the squared term, is
the coefficient of the linear term, amng is a constant. There is
no cost associated with generator 3 since it produces neeacti

. . - From Bus | To Bus | From MVA | To MVA
power. The network data are given in Table Il. Line shunt 1 3 43.90 47.47
susceptances are specified for the entire line (see Figuse 1 f 3 2 60.00 60.00
N . . 1 2 22.72 28.69
the IT model circuit representation). The voltage magnitudes
TABLE IV

at all buses are constrained to the range 1.1 to 0.9. All galue

. . . LINE-FLOW DATA FOR 3-BUS SYSTEM WITH LINE-FLOW LIMIT OF 60
are given in per unit.

MVA (C LASSICAL AND SDP FORMULATIONS)

Generator c2 c1 €0
1 $0.11per (MWh)? | $5 per MWh | $0
2 $0.085per (MWh)? | $1.2 per MWh | $0
Bus 1| Bus2 | Bus 3
TABLE | A ($/MWh) 33.84 | 32.81 | 35.96
THREE-BUS SYSTEM GENERATORCOSTDATA v ($/MVAR-hour) 0 0 0
TABLE V

AGGREGATEDLAGRANGE MULTIPLIERS FOR3-BUS SYSTEM WITH

First consider a line-flow limit of 60 MVA enforced on both LINE-FLOW LIMIT OF 60 MVA

ends of the line between bus 2 and bus 3 (all other lines



The optimal objective values for both the SDP and classidalwer bounds that of the classical formulation, as expected
formulations are $5707.07 per hour. While space limitations preclude full system descriptions
Now reduce the line-flow limit to 50 MVA while leaving larger examples also showed these same properties, in which
the other parameters unchanged. The solution to the SDP fine SDP algorithm yielded aA matrix of rank greater than
mulation yields anA matrix with four-dimensional nullspace.two, and hence failed to provide a meaningful OPF solution.
The solution therefore has a non-zero duality gap and is Again, the problematic solution cases appeared as sufficien
longer physically meaningful. However, the classical farm strict line-flow limits were imposed.
lation solved via an interior point method in MATPOWER In cases for which the SDP formulation fails to provide a
does yield a (at least locally optimal) solution as shown irero duality gap, one may conjecture that there remainsilsef
Tables VI and VII. Aggregated Lagrange multipliers (pricesnformation to be garnered, particularly in cases for which
for active and reactive power obtained using MATPOWERYV is close to a rank one matrix. As a pragmatic heuristic,
are given in Table VIII. The aggregated Lagrange multigliethe binding constraints for the (nonphysical) solution he t
at the nonphysical SDP solution are given in Table IX. Not8DP formulation might be assumed to be the same as those
that all aggregated Lagrange multipliers in both the ctadsi for the actual optimal solution. For anbus system witl2n
and SDP formulations are non-negative, and the active povinding constraints, the values of all unknown variables ar
balance Lagrange multipliers are strictly positive. The du- fully determined, and, with a sufficiently close initial gse
ality gap/loss-of-physically-meaningful SDP solutiompat, could be computed via standard Newton-Raphson. In cases for
therefore, be attributed to negative Lagrange multipliers  which the binding constraints do not yield a fully deterndne
system, the dimension of the feasible space is still sigaitiy

- ‘i’“lsoé ‘3“932625 gugsog reduced, and the closest rank one approximatioWtaould

5 (degrees) 0 7959 | 17 267 be employed to yield an initial guess to an alternative OPF
Py (MW) 148.07 | 170.01 0 algorithm.
Qg (MVAR) | 54.70 | -8.79 | -4.84
IV. THE POWER FLOW PROBLEM
TABLE VI ] ] _

SOLUTION TO 3-BUS SYSTEM WITH LINE-FLOW LIMIT OF 50 MVA We first review the power flow problem in rectangular

(CLASSICAL FORMULATION) coordinates. As noted previously, in practice, individsallu-

tions are easily computed via Newton methods; the challenge
lies in attempting to identify all solutions. To this end, we
demonstrate how the power flow problem can be formulated

Fron; BuS T03Bus Fro5n;‘2A9VA T%OMZVBA as an OPF problem through suitable choice of the constraints
3 2 50.00 50.00 and objective function. The SDP formulation of this probliem
1 2 14.02 33.33 adapted to the goal of finding multiple solutions to the power
TABLE VII flow equations.
LINE-FLOW DATA FOR 3-BUS SYSTEM WITH LINE-FLOW LIMIT OF 50
MVA (CLASSICAL FORMULATION) A. The Power Flow Equations in Rectangular Coordinates

The power flow equations relate the active and reactive
power injected at each bus to the voltage phasor at each bus.
The variables associated with each Busre the net active

Bus1l| Bus2 | Bus 3 . _ . .
X (S/MWh) 3757 | 3010 | 4554 power injection P, = Pgr — Ppy), the net reactive power in-
v (8/MVAR-hour) 0 0 0 jection @Qr = Qar — Qpr), and the voltagd’, = Vyi + 5 Vs
TABLE VIII The power flow equations are shown in (2f) and (2g). The
AGGREGATEDLAGRANGE MULTIPLIERS FOR3-BUS SYSTEM WITH voltage magnitude equation is
LINE-FLOW LIMIT OF 50 MVA (CLASSICAL FORMULATION)
2
Vil® = Vi + Vi (15)
See [18] for a review of the power flow equations in rectan-
T 2&; 2?365 3838;" gular voltage coordinates.
5 ($/MVAR-hour) 0 0 0 While (2f), (Zg), and (15_) must all be satisfied at all buses,
TABLE IX only two equations are directly enforced at each bus when

AGGREGATEDLAGRANGE MULTIPLIERS FOR3-BUS SYSTEM WITH SOlVIng.the. pOWGI’ flow prOblem' TO Identlfy the class of
LINE-FLOW LIMIT OF 50 MVA (SDP FORMULATION) constraints imposed at each, buses in the power flow problem

are classified as one of three "types”: PQ (bus indices dénote
by PQ), PV (bus indices denoted b)), and slack (bus
The optimal objective value for the SDP formulation isndex denoted bys). PQ buses enforce the active and reactive
$5789.87 per hour, whereas the optimal objective value power equations (2f) and (2g). PV buses enforce the active
the classical formulation is $5812.60 per hour. Thus, timwer and voltage magnitude equations (2f) and (15). Binall
objective function value at the relaxed solution of the SD& single slack bus enforces specified value¥gf and V.



B. The Power Flow Equations Formulated as an OPF Problem O 0.45+j0.15 0.4+0.05
By “tightening” inequality constraints that appear in the Vv=1.06
| 5

OPF problem (in the limit, upper and lower limits equal), it 0deg
is clear that one can recover the equalities for the power flow
problem as a subset of the standard constraints of the OPF
problem. In particular, for sufficiently smadl > 0, one may

impose OPF constraints:

0.08 + 0.24 0.01+j0.03

0.06+j0.18

0.02+]0.06 .
0.06+]0.18 0.08+j0.24

P, — Ppr — e < Pgr < P, — Ppr+e€¢ Vke {PQ, PV} (l6a)
Qr —Qpr — €< Qor < Qr — Qpr +eVk € PQ (16b)
[Vil* — € < Vi, + Vq2k < |Vil® +e Vk € {PV,S} (16c)

0.04+j0.12

Ll

J

0.6+j0.1

As will be described below, by suitable choice of objective N\
function, one may seek to “steer” the OPF towards different 0.2+jo.1
power flow solutions. However, it is useful to first consider P—04
general properties of the respective feasible spaces fr th V|=1.0
power flow problem, the classical OPF problem, and the SDP
formulation of the OPF problem. The feasible space of the Fig. 4. Five-Bus Example System
power flow problem is made up of discrete points at the .
solutions to the power flow equations. The feasible space ¢ Solution
the classical OPF problem is more difficult to characteriz 1 2 3 2 >

- P Bz 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000
It is generally nonconvex and may not be connected [2]. By v, 0.9805 0.5012 0.3770 0.7933 0.0626
appropriately setting the constraints, the OPF formutatid Vs 8-8;2; 8-2279 8-361382 8-;428 g-éégg
the power flow problgm shrinks the feasible space to emulal_e“;g 1.0600 1106(1)(7) 1.0600 1:0200 1.0600
a discrete set of points. The SDP formulation of the OPK s, -2.0675 | -138.9679 | -128.5864 | -12.1469 | -126.6253

problem is connected and convex. However, the rank relax-9%2 || -4.5358 | -129.8511| -116.8370 -12.6793| -159.5293
b3 || -4.8535 | -134.8640 | -124.1731| -13.8795| -144.7963

Fh

ation of t_hls formulat_lon increases the feasible spacectt_mde 5 || -5.6025 | -141.6605 | -185.7340 | -71.5017 | -133.4401
nonphysically meaningful solutions. The rank relaxatitsoa | s 0.0000 0.0000 0.0000 0.0000 0.0000
increases the feasible space of the power flow problem from Solution

; ; ; ; ald 6 7 8 9 10
a set of discrete points to a continuous space. This maytre b 10600 15000 15006 10000 15000

in nonphysically meaningful solutions to the SDP formwati | v, || 0.1972 | 0.0563 0.0342 | 0.1968 0.0884

of the power flow problem. Vs || 0.0301 | 0.0496 0.1846 | 0.0369 0.1658
Vi || 06289 | 0.6327 0.6865 | 0.0814 | 0.0756

C. Finding Multiple Solutions to the Power Flow Equations | V5 1.0600 1.0600 1.0600 1.0600 1.0600
. . . . 61 || -16.5040 | -18.0976 | -16.9090 | -22.5210 | -119.8826
We discuss two different approaches using SDP to find mul- 5, || -26.0422 | -61.1266 | -69.0465 | -30.6818 | -141.8399

tiple solutions to the power flow equations. The first apphoac| ¢s || -81.8652| -80.6706 | -37.7869 | -85.9455| -144.7567
involves modifying the_constraints c_>f _the SDP f_ormulation. g‘; %‘3(')?)3%)9 'ff’ééé%‘r’ %%%%9 'Z)%éégg -1&gg§§2
The second approach involves modifying the objective func= TABLE X
tion. . THE TEN SOLUTIONS FOR THEFIVE-BUS SYSTEM
1) Example Systemsthe five-bus and seven-bus systems
shown in Figures 4 and 5 were used to test both approaches.
Load, generation and voltage magnitudes in Figures 4 and
5 are given in per unit. Network values in Figures 4 and Bon-zero duality gap and failed to yield a meaningful soluti
are given ask + j X in per unit. The complete set of powerto the power flow.
flow solutions for these systems have been calculated using @&dditionally, we attempted to constrain the voltage mag-
homotopy method [14], and are summarized in Table X amitudes at PQ buses to be below the base solution results.
Table XI. This approach also failed; imposing such voltage congdsain
2) Modifying the ConstraintsWe first seek to differentiate yielded only nonphysical results (i.e., non-zero dualigpp
among possible solutions by imposing an inequality coirgtra 3) Modifying the Objective FunctionAn alternate formu-
on slack bus active power. The solution having least powkation examined selected slack bus active power generation
generated by the slack bus corresponds to the solution wéth an objective to be maximized. The solution with highest
lowest losses. This base solution is reliably found with nlosses for the five-bus system, solution 3 in Table X, was
inequality constraint. Imposing a minimum slack bus poweabtained via SDP in this way. Other examples, including the
constraint greater than the slack bus power in the base seven-bus system, identified only nonphysical solutiorts wi
lution forces the OPF to another solution with higher lossethis objective function.
However, in all such cases examined, the SDP solution had\Next considered was an objective function based on bus




0.076 +j0.016 0.478 +j0.039 09-j03 Solution || ¢ co c3 c4 cs
V=10 1 0 -1 -1 -1 0
0deg 7 /r 6 5 1 2 0 1 -1 0 0
- | 4 0 0 0 1 0
0.054+j0.223 0.013 +j0.042 0.082+j0.192 6 0 0 1 0 0
7 0 1 1 0 0
0.057+j0.174 006740171 8 0 1 0 0 0
0.019 +j0.059 ) 9 0 0 1 1 0
0058410176 3 0 [ 065 -0.70] 090 | O
5 0 |070| -010| -015| O
0.024 +j0.100 0.024 +j0.100 10 0 045 _025 050 0
- 4 3
TABLE XII
j I COMBINATIONS OF WEIGHTSc AND CORRESPONDINGSOLUTIONS FOR
0.183+)0.127 0.135+)0.058 0.942+)0.190 FIVE-BUS SYSTEM
Fig. 5. Seven-Bus Example System
Solution c1 co c3 c4 cs5 cg c7
Solution 1 -1 -1 -1 -1 -1 -1 0
1 2 3 4 2 0 0 1 0 0 0 0
V1 1.0758 | 0.7312 0.2880 0.3435 3 1 0 0 0 0 0 0
Vo 0.9635 0.5876 0.5415 0.4332 4 030 | -0.20 | 0.35| 0.45| -040| 0.05| O

V3 0.9041 0.1745 0.5430 0.2497
Vy 0.9278 0.4122 0.6458 0.4359
Vs 0.9638 0.7229 0.7750 0.6879
Ve 0.9675 0.6638 0.6402 0.5496
\%s 1.0000 1.0000 1.0000 1.0000
61 5.2859 | 14.9576 | 101.8188| 88.3361
62 -2.9342 | -5.2212 -6.2931 -6.8346
43 -8.4439 | -52.6775| -19.8095 | -44.2797

TABLE XIlI
COMBINATIONS OF WEIGHTSc AND CORRESPONDINGSOLUTIONS FOR
SEVEN-BUS SYSTEM

o1 || -5.7500 | -14.2056 | -11.2462 | -16.1362 computed, appropriately scaled, and set as t_he in_itial iiond
85 || -2.4463 | -3.2056 | -3.8617 | -3.9193 for a Newton-Raphson power flow solver. With this approach,
% || -2.5918 | -4.3031 | -5.0158 | -5.3138 some, but not all, of the nonphysical solutions obtainednfro
d7 || 0.0000 | 0.0000 | 0.0000 | 0.0000 . .
the SDP formulation for the five-bus and seven-bus systems
TABLE XI converged to power flow solutions.

THE FOUR SOLUTIONS FOR THESEVEN-BUS SYSTEM
V. CONCLUSION

This paper has investigated existing and new applications

voltage magnitudes, in the form e ) . .
9 9 of the semidefinite programming formulation of the optimal

o n power flow problem. We have discussed two practical system
min ¢’ [V|* = min ) _ ¢;trace (M;W) (17)  conditions where the SDP formulation of the OPF problem
i=1 may fail to give physically meaningful results. The first was

where ¢ is a vector of weights; i.e. the objective functioralready identified in the discussion of [7], but was not rec-
in (17) is a weighted sum squares of voltage magnitudexgnized as a commonly occurring practical system condition
Appropriate choices of the weights irfavored solutions with that of negative bus LMPs. In a new result, this work has
low voltages at selected buses. also provided a numerical optimal power flow example to

This method identified all of the ten solutions in the fivedemonstrate that a non-zero duality gap may arise in SDP
bus system, as summarized in Table XlI, and all of tHe@rmulation as a line-flow inequality constraint is proguigsly
four solutions in the seven-bus system, as summarized “fightened.” Under these conditions, the SDP fails to pdevi
Table XllII. Solutions above the line in Tables XlII and Xllla physically meaningful solution to the original OPF prable
were found using heuristically determined weightsSimilar of interest.
heuristically determined weights were identified that were To explore possible extensions of the SDP formulation in
expected to find the remaining solutions (3, 5, and 10 for theaditionally intractable power system computations, vegtn
five-bus system and 4 in the seven-bus system); however, #uglressed the problem of locating all possible solutiortbeo
SDP formulation for these heuristically determined wesghpower flow. To identify different power flow solutions, fameis
gave nonphysical results. Alternatively, testing a varief of OPF problems were formulated by modifying the OPF con-
randomly generated weights yielded the combinations bel@iraints and objective function. In the test cases examihed
the line in Tables Xl and Xlll that found the remainingmodified objective approach was successful in finding all of
solutions. the power flow solutions. Although not all objective functio

As noted previously, solutions with non-zero duality gapielded physically meaningful solutions, objective fubos
in which W has rank greater than one can be used tapable of finding all solutions were identified. As a heigist
estimate approximate, candidate solutions. As a heurtstic enhancement to the method, nonphysical solutions obtained
eigenvector associated with the largest eigenvalu&vofvas from the SDP formulation were used to construct approximate



solutions that then initialized a traditional Newton-Raph
power flow solver.

(6]

The examples examined in this paper demonstrate that t
SDP formulation in its present development is not capable of

reliably solving the OPF problem in several practical ofintp

conditions of interest. Initial attempts at adapting thePSDPF

(8]

approach to compute all possible power flow solutions showeid]
promise in test cases, but did not give physically meaningfu

results for all objective functions and constraints. igahe

use of relaxation-based SDP methods in otherwise nonconvex
power system problems has significant potential, but in its
present development does not yet reliably solve the fukj;ean[

of practical problems of interest.
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