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Abstract—In distribution systems, power injection variability
due to growing penetrations of distributed energy resources
(DERs) and dispatchable loads can lead to power quality issues
such as severe voltage unbalance. To ensure safe operation of
phase-balance-sensitive components such as three-phase motor
loads, the amount of voltage unbalance must be maintained
within specified limits for a range of uncertain loading conditions.
This paper builds on existing “solvability conditions” that char-
acterize operating regions for which the power flow equations
are guaranteed to admit a unique high-voltage solution. We
extend these existing solvability conditions to be applicable to
distribution systems and augment them with a “balancibility”
condition that quantifies an operating region within which a
unique, adequately balanced power flow solution exists. To build
this condition, we consider different unbalance definitions and
derive closed-form representations through reformulations or
safe approximations. Using case studies, we evaluate these closed-
form representations and compare the balancibility conditions
associated with different unbalance definitions.

Index Terms—Distribution network; power flow solvability;
quadratically constrained quadratic program; semidefinite pro-
gramming; voltage unbalance.

I. INTRODUCTION

Increasing penetrations of distributed energy resources
(DERs) and dispatchable loads can result in greater vari-
ability and stochasticity of the power injections in distri-
bution systems. Extreme variations in power injections can
also lead to power quality issues such as significant voltage
unbalances. Unbalanced voltages can greatly impact essential
power system devices such as three-phase induction motors
and transformers [1], [2]. Specifically, for induction motors,
even small amounts of voltage unbalance can cause severe
temperature rise, efficiency loss, and decreased life expectancy,
which leads to serious consequences from premature motor
failures, costly shutdowns, and lost production [3]. Voltage
unbalance is estimated to cause annual losses to U.S. industries
of up to $28 billion [4]. Hence, it is critical to provide secure
criteria for power system operations subject to uncertainties
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(e.g., renewable generation and load consumption) such that
the resulting operating points have voltage balance guarantees.

Organizations such as International Electrotechnical Com-
mission (IEC), National Electrical Manufacturers Association
(NEMA), and IEEE have each developed definitions to quan-
tify the amount of voltage unbalance. For example, IEC [5] and
IEEE [6] have definitions that are based on the ratio between
negative/zero-sequence voltage and positive-sequence voltage
calculated from the symmetrical component transformation.
Other standards from NEMA [7] and IEEE [8], [9] define
voltage unbalance using line-to-line and line-to-ground voltage
magnitudes, respectively. Previous research in [10] and [11]
summarizes and compares these definitions.

This paper characterizes regions of power injections for
which the power flow equations admit a unique high-voltage
solution that satisfies specified phase unbalance requirements
according to these definitions. This paper extends existing
power flow solvability conditions, which have been exten-
sively studied for both transmission systems [12]–[14] and
distribution systems [15]–[18], in order to consider voltage
balance requirements. This extension results in our proposed
“balancibility” condition, which quantifies a region of power
injections for which a unique and adequately balanced power
flow solution is guaranteed to exist.

To the best of our knowledge, this is the first paper to
incorporate voltage balance requirements into power flow
solvability conditions. As specific contributions, we consider
different unbalance definitions and develop various approaches
for deriving closed-form representations or safe approxima-
tions that quantify the voltage unbalance level. We say a set
is a “safe approximation” of a robust set if it contains the
entire robust set. We use a general model to describe the sets
that contain the power flow solutions under uncertain power
injections and provide supporting theoretical guarantees on
the quality of the approaches. We demonstrate the proposed
balancibility condition using the solvability condition in [14].
We then numerically illustrate the quality of the balancibility
conditions associated with different unbalance definitions.

The proposed balancibility condition is expected to be a
key enabling tool for many applications due to its ability to
greatly simplify various problem formulations. One impor-
tant application is reformulating the power flow equations
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in stochastic optimization problems in order to guarantee
satisfaction of voltage balance requirements despite uncertain
power injections. The balancibility condition can also be used
to identify and ameliorate voltage unbalance problems at
critical buses as well as to characterize worst-case uncertainty
realizations with respect to voltage balance limits.

The remainder of the paper is organized as follows. Sec-
tion II introduces notation. Section III describes the distribu-
tion network model and the solvability condition from [14].
Section IV derives the closed-form approximations or refor-
mulations for various unbalance definitions and proposes our
balancibility condition. Section V presents case studies. Sec-
tion VI summarizes the paper and discusses future directions.

II. NOTATION

Boldface letters indicate complex variables and roman font
is used for real variables. The complex unit is j =

√
−1.

Transposition and Hermitian transposition are denoted as (·)>
and (·)H, respectively. In ∈ Rn×n represents the identity
matrix. 0n denotes an n×n zero matrix. Hn denotes the set of
n×n Hermitian matrices. For y ∈ R, byc returns the greatest
integer less than or equal to y. For x ∈ Rn or Cn, x̄ denotes
its component-wise conjugate. Re(x) and Im(x) denote the
component-wise real and imaginary parts, respectively, of x.
xi denotes the i-th entry in the vector x and xi,j (i ≤ j)
denotes the vector from i-th entry to j-th entry. ‖x‖ denotes
the `2-norm and ‖x‖p denotes the `p-norm. |x| returns the
magnitude of x ∈ C. All angle values are reported in degrees.
A × B denotes the Cartesian product of sets A and B. An
represents the Cartesian product with set A for n times. For
matrix X ∈ Cn×n or Rn×n, Xij represents the entry at i-th
row and j-th column. Xi represents the vector of the i-th row.
Xj,k
i (j ≤ k) represents the vector from j-th to k-th elements

in the i-th row of X . N(X) represents the nullspace of X .
rank(X) and Tr(X) return the rank and trace, respectively,
of X . X � 0 indicates positive semidefiniteness of X . The
function λmin(X) returns the smallest eigenvalue of X . The
function blkdiag(·) returns a block diagonal matrix with its
input matrices and diag(·) returns a diagonal matrix. 0 (1)
represents all-zero (all-one) vector or matrix with appropriate
size. For a set S, its closure and boundary are denoted by
S̄ and ∂S, respectively. D(x, r) represents an open disk with
center x and radius r. For brevity, we denote D(0, r) by D(r).

III. NETWORK MODEL AND SOLVABILITY CONDITION

In this paper, we use a distribution network model similar
to [14], [18] and assume a generic network topology (i.e.,
radial or meshed) with a single slack bus and multiple-phase
wye-connected PQ buses.1 We choose the slack bus to be at
node 0 and define NL as the set of PQ buses. Denote the
voltage at the slack bus as VG = (VG,a,VG,b,VG,c)

> for
each phase a, b, c. Similarly, for all i ∈ NL, we define its wye-
connected power consumption to be SiL = (SiL,a,S

i
L,b,S

i
L,a)>

1The wye connection assumption comes from the solvability condition that
we consider. However, the idea of the balancibility condition applies to other
solvability conditions with different network assumptions (see Section IV).

Uncertain

Solution        and Set  

Phase a

Phase b

Phase c

Fig. 1. Relationship among SL, VL, and VL

and its voltage to be Vi
L = (Vi

L,a,V
i
L,b,V

i
L,a)>. Based on

the admittance matrix Y, we have[
IG
−IL

]
=

[
YGG YGL

YLG YLL

] [
VG

−VL

]
, (1)

where IG is the current injected at the slack bus and IL is the
current withdrawn at PQ buses.2 Based on [14], [18], we have

vL = 1− Ẑdiag−1(v̄L)S̄L, (2)

where3

E = −Y−1
LLYLGVG, (3a)

vL = diag−1(E)VL, (3b)

Ẑ = diag−1(E)Y−1
LL diag−1(Ē). (3c)

We use the solvability condition from [14] to analyze the
secure region of SL for which there exists a unique VL within
a set VL(SL) (i.e., parameterized on SL). As illustrated in
Fig. 1, if SL changes in its uncertainty set, VL also changes to
follow the power flow solution VL if the solvability condition
is satisfied. The uncertainty set of SL is typically constructed
using historical data and we do not assume any specific
structure for this set. In practice, any computationally efficient
selection of this set will suffice. Since the variation of VL
can be easily represented as an explicit function of SL, the
solvability condition summarized in this section provides an
efficient way to confidently locate the power flow solution
under uncertainty. A detailed description of this condition is
available in [14].

Define a nominal power flow solution (v0
L,S

0
L),

v0
L = 1− Ẑ diag−1(v̄0

L) S̄0
L, (4)

and σL = SL − S0
L. If no nominal solution is provided, a

trivial selection is v0
L = 1 when S0

L = 0. We also define the
following quantities used in the solvability condition and VL:

Z̃ = diag−1(v0
L) Ẑ diag−1(v̄0

L), uL = diag−1(v0
L)vL.

2For two-phase or single-phase nodes, VL, SL, and Y only collect
quantities for the existing phases.

3The invertibility of YLL is proved in [16]. As in [14], [16], [18], we
assume that E and vL do not contain zero elements, which is the case for
practical power systems.
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For i ∈ NL and phase p ∈ {a, b, c}, denote Z̃pi as the
corresponding row of Z̃ and define

ηi,p(σL) = (Z̃pi )
>σ̄L, ξi,p(SL) = ‖(Z̃pi )

>diag(S̄L)‖1,
γi,p(σL,SL) = 2(ξi,p(SL) + Re(ηi,p(σL)))

− |ηi,p(σL)|2 − ξi,p(SL)2,

where ηi,p(σL) and ξi,p(SL) represent aggregated system
stress measures on each node and phase resulting from in-
cremental and total loads. These measures appear in other
existing solvability literature [13], [16], [19]. We also define
γi,p(σL,SL) fusing these two stresses. Accordingly, we define

η(σL) = max
i∈NL, p∈{a,b,c}

|ηi,p(σL)|,

ξ(SL) = max
i∈NL, p∈{a,b,c}

ξi,p(SL),

γ(σL,SL) = max
i∈NL, p∈{a,b,c}

γi,p(σL,SL),

∆ = (1− γ(σL,SL))2 − 4ξ(SL)2η(σL)2.

Next, we construct the following framework which geomet-
rically quantifies a disk for uL with parameter r ≥ 0. For
i ∈ NL and p ∈ {a, b, c}, we have

ξi,p(SL) > 0 : |1− ηi,p(σL)− uiL,p| ≤ r ξi,p(SL), (5a)

ξi,p(SL) = 0 : uiL,p = 1− ηi,p(σL). (5b)

Hence, when ξi,p(SL) = 0, uiL,p degenerates into a single
point. The relationship between r and these quantities is
presented in the next theorem.

Theorem 3.1: (Theorem B.3 in [14]) Given a nominal
solution (v0

L,S
0
L), if the following condition is satisfied

γ(σL,SL) + 2ξ(SL)η(σL) < 1, (6a)
ξ(SL)− η(σL) ≤ 1, (6b)

then there exists a unique solution uL in (5) with{
r =

√
1−γ(σL,SL)−

√
∆

2ξ(SL)2 , if ξ(SL) > 0,

r = 0, if ξ(SL) = 0.
(7)

From Theorem 3.1, we know where uL is located under
SL, which can then be used to obtain VL. For any i ∈ NL
and p = {a, b, c}, we have Vi

L,p = Eipv
0,i
L,pu

i
L,p where Eip

and v0,i
L,p are corresponding terms in E and v0

L. Then, the set
ViL,p that contains Vi

L,p can be represented as

|(1− ηi,p(σL))Eipv
0,i
L,p −Vi

L,p| ≤ r|Eipv
0,i
L,p|ξi,p(SL). (8)

With VL, we then have the foundations to analyze voltage
unbalance levels under (VL,SL) under uncertainty and derive
balancibility conditions that limit this level.

IV. SAFE APPROXIMATION ON BALANCIBILITY

This section derives our proposed the balancibility con-
ditions which guarantee satisfaction of the voltage balance
requirements for all the realizations in VL. We use safe ap-
proximations and different reformulation techniques to develop
closed-form representations of these conditions. We choose

safe approximations since relaxations may underestimate the
true voltage unbalance level and give insecure results. We
assume that there are critical nodes (i∗ ∈ NL) that are sensitive
to amounts of voltage unbalance outside of specified limits.
Then, for each critical node, we rewrite VL as a general set
Uin (with Up

in denoting a particular phase p = {a, b, c}) as

|Va −Ca| ≤ ra, |Vb −Cb| ≤ rb, |Vc −Ca| ≤ rc (9)

where subscripts a, b, c denote the phases. Geometrically, Up
in

is a disk D̄(Cp, rp) with center Cp and radius rp. To help
some of the derivations, we also represent these sets in real
coordinates, denoted Vin, by separating the real and imaginary
parts in (9):

(V ra − Cra)2 + (V ia − Cia)2 ≤ r2
a, (10a)

(V rb − Crb )2 + (V ib − Cib)2 ≤ r2
b , (10b)

(V rc − Crc )2 + (V ic − Cic)2 ≤ r2
c , (10c)

where the superscripts r and i denote the real and imaginary
parts. Note that Uin/Vin can be seen as a general output from
any solvability conditions in complex domain [16]–[18] or
involving voltage magnitudes [13]. Hence, the applicability
is not restricted to any network assumptions (e.g., radial or
wye-connected loads) or particular solvability condition [14].

Linking back to solvability condition (8) (taking phase a as
an example), V ra and V ia represent the real and imaginary parts
of the complex voltage Va = Vi∗

L,a. Cra and Cia represent the
real and imaginary parts of Ca = (1−ηi∗,a(σL))Ei

∗

a v
0,i∗

L,a and
ra = r|Ei∗a v

0,i∗

L,a |ξi∗,a(SL). If ξi∗,a(SL) = 0, (5) is degenerate
and V ra and V ia can be treated as constants while analyzing
the voltage unbalance and hence do not affect the results.

To make (10) concise, we define vectors Va = (V ra , V
i
a )> ∈

R2, Ca = (Cra, C
i
a)> ∈ R2, and set Vain ⊂ R2 :=

{Va that satisfies (10a)}, with the same notations applied to
phase b and c. We also define Vabc = (V >a , V

>
b , V

>
c )> ∈ R6,

Vabc = (Va,Vb,Vc)
> ∈ C3, rabc = (ra, rb, rc)

> ∈ R3
+,

and Cabc = (C>a , C
>
b , C

>
c )> ∈ R6. Next, we derive the

reformulations or safe approximations of the voltage balance
requirement for different unbalance definitions.

A. Phase Voltage Unbalance Rate (PVUR) Definition

In [8], the following definition of phase voltage unbalance
rate (PV UR) is provided using the line-to-ground voltage
magnitudes |Va|, |Vb|, and |Vc|:

PV UR = ∆max
V /Vavg, (11)

where Vavg = |Va|+|Vb|+|Vc|
3 and

∆max
V = max{||Va| − Vavg|, ||Vb| − Vavg|, ||Vc| − Vavg|}.

To ensure the power flow solutions are balanced, we re-
quire that the voltage profile satisfies (11) with a predefined
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tolerance of ε ∈ (0, 1) with PV UR ≤ ε. This requirement is
equivalent to the following linear constraints [20]:

ε+ 2 ε− 1 ε− 1
ε− 1 ε+ 2 ε− 1
ε− 1 ε− 1 ε+ 2
ε− 2 ε+ 1 ε+ 1
ε+ 1 ε− 2 ε+ 1
ε+ 1 ε+ 1 ε− 2


|Va|
|Vb|
|Vc|

 ≥ 0. (12)

Next, we require that all the solutions Vabc ∈ Vin satisfy
(12). Without loss of generality, we only use the first linear
constraint in (12) as an example and the problem becomes

min
Vabc∈Vin

{
(ε+2)|Va|+(ε−1)|Vb|+(ε−1)|Vc|

}
≥ 0. (13)

Since Vin is separable in each phase, (13) is equivalent to

min
Va∈Va

in

(ε+ 2)|Va|+ min
Vb∈Vb

in

(ε− 1)|Vb|

+ min
Vc∈Vc

in

(ε− 1)|Vc| ≥ 0. (14)

Each subproblem in (14) can be easily solved since Vain, Vbin,
and Vcin are closed disks. Since ε + 2 > 0 and ε − 1 < 0
(ε ∈ (0, 1)), we have the following reformulation of (14):

(ε+ 2) max{‖Ca‖ − ra, 0}+(ε− 1)(rb + ‖Cb‖) (15)
+(ε− 1)(rc + ‖Cc‖) ≥ 0. (16)

We use max{‖Ca‖ − ra, 0} in case |Va| = 0 when Vain
contains the origin. Now, we can derive the voltage balance
requirements using each of the linear constraints in (12). This
approach also applies to other PV UR definitions as in [9],
[10] where

∆max
V = max{|Va|, |Vb|, |Vc|} −min{|Va|, |Vb|, |Vc|}.

B. Line Voltage Unbalance Rate (LVUR) Definition

In [7], an unbalance definition called the line voltage
unbalance rate (LV UR) is provided using line-to-line voltages
|Vab|= |Va−Vb|, |Vbc|= |Vb−Vc|, and |Vca|= |Vc−Va|:

LV UR = ∆max
VL

/Vavg,L, (17)

where Vavg,L = |Vab|+|Vbc|+|Vca|
3 and

∆max
VL

= max{||Vab| − Vavg|, ||Vbc| − Vavg|, ||Vca| − Vavg|}.

Similar to PV UR, with voltage balance requirement
LV UR ≤ ε, we have

ε+ 2 ε− 1 ε− 1
ε− 1 ε+ 2 ε− 1
ε− 1 ε− 1 ε+ 2
ε− 2 ε+ 1 ε+ 1
ε+ 1 ε− 2 ε+ 1
ε+ 1 ε+ 1 ε− 2


|Vab|
|Vbc|
|Vca|

 ≥ 0. (18)

We require that all Vabc ∈ Vin satisfy (18). Here, we use
the first constraint in (18) as an example:{

min
Vabc∈Vin

(ε+ 2)|Vab|+ (ε− 1)|Vbc|+ (ε− 1)|Vca|
}
≥ 0.

(19)

There are several approaches for safely approximating (19).
The first approach bounds |Vab|, |Vbc|, and |Vca| as in [21].
Taking |Vab| as an example, we have

|Vab| = ‖Ca − Cb + raua + rbub‖

where ua and ub are any vectors in the unit ball in R2. Then,
we see that

max{‖Ca − Cb‖ − ra − rb, 0} ≤ |Vab|, (20a)
‖Ca − Cb‖+ ra + rb ≥ |Vab|. (20b)

The voltages |Vbc| and |Vca| are bounded analogously.
Using a similar idea as in (14), we safely approximate (19) as

(ε+ 2) max{‖Ca − Cb‖ − ra − rb, 0}
+ (ε− 1)(‖Cb − Cc‖+ rb + rc)

+ (ε− 1)(‖Ca − Cb‖+ rb + rc) ≥ 0. (21)

The second approach for approximating (19) uses the fol-
lowing relationship:∣∣|Va| − |Vb|

∣∣ ≤ |Vab| ≤ |Va|+ |Vb|,∣∣|Vb| − |Vc|
∣∣ ≤ |Vbc| ≤ |Vb|+ |Vc|,∣∣|Vc| − |Va|
∣∣ ≤ |Vca| ≤ |Vc|+ |Va|.

Denote |Vabc| = (|Va|, |Vb|, |Vc|)>. Since ε ∈ (0, 1), we
also have

min
Vabc∈Vin

(ε+ 2)|Vab|+ (ε− 1)|Vbc|+ (ε− 1)|Vca|

≥ min
Vabc∈Vin

(ε+ 2)
∣∣|Va| − |Vb|

∣∣+ (ε− 1)(|Vb|+ |Vc|)

+ (ε− 1)(|Vc|+ |Va|)
= min
Q|Vabc|≤q

(ε+ 2)
∣∣|Va| − |Vb|

∣∣+ (ε− 1)(|Vb|+ |Vc|)

+ (ε− 1)(|Vc|+ |Va|) (22)

where Q = [I3,−I3]> and

q =(ra + ‖Ca‖, rb + ‖Cb‖, rc + ‖Cc‖,min{ra − ‖Ca‖, 0},
min{rb − ‖Cb‖, 0},min{rc − ‖Cc‖, 0})>.

The last equality in (22) is true since Vabc is independent in
each phase in Vin, Similar to (14), only the upper and lower
bounds of |Vabc| are taking effect. It can be seen that (22)
is convex and the feasible set Q|Vabc| ≤ q only has eight
extreme points (combinations of upper and lower bounds for
|Vabc|. Hence, evaluating the extreme points and finding the
minimum efficiently solves (22). Linear program duality [22]
can also be used to handle (22). Below, we directly give the
duality-based safe approximation to (19) by introducing the
dual variable λ:

−q̂>λ ≥ 0, Q̂>λ+ c = 0, λ ≥ 0,

where q̂ = (q>, 0, 0)>, c = (ε− 1, ε− 1, 2ε− 2, ε+ 2)>, and

Q̂ =


Q 0

1 −1 0 −1
−1 1 0 −1

 .
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C. Voltage Unbalance Factor (VUF) Definition

References [5] and [6] give the following voltage unbal-
ance factor (V UF ) definitions based on the magnitudes of
negative-, positive-, and zero-sequence voltages, Vn, Vp, and
V0, respectively:

V UFn = |Vn|/|Vp|, (23a)
V UF0 = |V0|/|Vp|, (23b)

where

Vp = (Va + αVb + α2Vc)/3, (24a)

Vn = (Va + α2Vb + αVc)/3, (24b)
V0 = (Va + Vb + Vc)/3, (24c)

and α = 1∠120◦. With the tolerance ε ∈ (0, 1), we
equivalently transform the voltage balance requirements into
quadratic inequality constraints:

|Vn|/|Vp| ≤ ε ⇔ VnV̄n − ε2VpV̄p ≤ 0, (25a)

|V0|/|Vp| ≤ ε ⇔ V0V̄0 − ε2VpV̄p ≤ 0. (25b)

Next, to ensure the power flow solutions are balanced, we
obtain the following constraints{

max
Vabc∈Uin

VnV̄n − ε2VpV̄p

}
≤ 0, (26a){

max
Vabc∈Uin

V0V̄0 − ε2VpV̄p

}
≤ 0. (26b)

A direct way to safely approximate (26) is using approxi-
mation by bound. For example, (26a) is implied by{

max
Vabc∈Uin

9VnV̄n − ε2 min
Vabc∈Uin

9VpV̄p

}
≤ 0 (27)

where scaling helps eliminate 1/3 in (24). Further, we have

max
Vabc∈Uin

9VnV̄n ≤ (|Ca + α2Cb + αCc|+ ra + rb + rc)
2

and the inequality is tight when Va−Ca, α2(Vb−Cb), and
α(Vc − Cc) share the same angle as Ca + α2Cb + αCc.
Similarly, we get

min
Vabc∈Uin

9VpV̄p

= (max{|Ca + αCb + α2Cc| − ra − rb − rc, 0})2.

Hence, (27) is equivalent to

(|Ca + α2Cb + αCc|+ ra + rb + rc)
2

≤ ε2(max{|Ca + αCb + α2Cc| − ra − rb − rc, 0})2 (28)

and (26b) can be handled similarly. In addition to the approx-
imation by bound, we give other approximation techniques by
further transforming (26) into the real domain using Vabc:{

max
Vabc∈Vin

V >abc(An − ε2Ap)Vabc
}
≤ 0, (29a){

max
Vabc∈Vin

V >abc(A0 − ε2Ap)Vabc
}
≤ 0. (29b)

where V >abcAnVabc = 9VnV̄n, V >abcA0Vabc = 9V0V̄0, and
V >abcApVabc = 9VpV̄p. Matrices An ∈ R6×6, Ap ∈ R6×6,
and A0 ∈ R6×6 can be calculated from (24) and have the
following structure with off-diagonal matrices Bn ∈ R2×2,
B0 ∈ R2×2, and Bp ∈ R2×2

An =

 I2 Bn B>n
B>n I2 Bn
Bn B>n I2

 , Bn =

[
cos(240◦) − sin(240◦)
sin(240◦) cos(240◦)

]
,

(30a)

A0 =

 I2 B0 B>0
B>0 I2 B0

B0 B>0 I2

 , B0 =

[
cos(0◦) − sin(0◦)
sin(0◦) cos(0◦)

]
,

(30b)

Ap =

 I2 Bp B>p
B>p I2 Bp
Bp B>p I2

 , Bp =

[
cos(120◦) − sin(120◦)
sin(120◦) cos(120◦)

]
.

(30c)

Both An and Ap are rank-two matrices and all four corre-
sponding eigenvectors are orthogonal to each other. Hence, the
matrix An−ε2Ap is indefinite with rank four and the left-hand
side (LHS) of (29a) is a nonconvex quadratically constrained
quadratic program (QCQP) with multiple constraints. A simi-
lar conclusion holds for the LHS of (29b). General non-convex
QCQPs are NP-hard to solve.

To effectively approximate the QCQP or its solution, we first
give the following lemma that provides a necessary condition
on the location of the optimal solutions. For the rest of the
paper, we use (29a) and V UFn as an example since (29b)
and V UF0 can be similarly handled with exactly the same
theoretical properties.

Lemma 4.1: If V ∗abc = (V ∗a , V
∗
b , V

∗
c )> is optimal for (29a),

then
V ∗a ∈ ∂Vain, V ∗b ∈ ∂Vbin, V ∗c ∈ ∂Vcin.

Proof: We prove by contradiction. First, we assume that
V ∗a /∈ ∂Vain and define a corresponding vector ∆V = α̂uV ∈
R6 with scalar α̂ and uV = (1, 0, 0, 0, 0, 0)>. Then, we
conclude that there exists δ > 0 such that (V ∗abc + ∆V ) ∈ Vin
for all {α̂ ∈ R : |α̂| < δ} since V ∗a /∈ ∂Vain. Next, we compare
the optimal objective with the objective under (V ∗abc + ∆V ):

(V ∗abc + ∆V )>(An − ε2Ap)(V ∗abc + ∆V )

− (V ∗abc)
>(An − ε2Ap)V ∗abc

= α̂2(u>V (An − ε2Ap)uV ) + α̂(2u>V (An − ε2Ap)V ∗abc)
= α̂2(1− ε2) + α̂(2u>V (An − ε2Ap)V ∗abc) = f(α̂). (31)

Since ε < 1, we have 1 − ε2 > 0 and f(α̂) is a convex
quadratic function of α̂. When α̂ = 0, we have f(0) = 0
and hence we must also have max{f( δ2 ), f(− δ2 )} > 0. In
other words, we can improve the optimal value of (29a) by
choosing either α̂ = δ

2 or − δ2 and constructing a new solution
(V ∗abc + ∆V ) ∈ Vin. Hence, this is contradictory with V ∗abc
being optimal. Similar discussions apply to cases when V ∗b /∈
∂Vbin and V ∗c /∈ ∂Vcin and the proof is complete.
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Using Lemma 4.1, we know that the optimal solution to
(29a) falls on ∂Vain × ∂Vbin × ∂Vcin and hence the inequality
constraint in (29a) is equivalent to{

max
Vabc∈∂Va

in×∂Vb
in×∂Vc

in

V >abc(An − ε2Ap)Vabc

}
≤ 0, (32)

since both maximizations in (29a) and (32) return the same op-
timal value. Next, we develop two approaches to approximate
(32) or its solution.

1) Polytope Approximation: First, we model three poly-
topes Pa ∈ R2, Pb ∈ R2, and Pc ∈ R2 such that

Vain ⊂ Pa, Vbin ⊂ Pb, Vcin ⊂ Pc. (33)

Denote the finite set of the extreme points of Pa, Pb, and Pc
as Ea, Eb, and Ec, respectively. We next present a theorem that
provides a necessary condition on the location of the optimal
solution for the maximization problem in{

max
Vabc∈Pa×Pb×Pc

V >abc(An − ε2Ap)Vabc
}
≤ 0. (34)

It is easy to see that (34) is a safe approximation of (29a) and
(32) with a larger optimal value.

Theorem 4.1: If V ∗abc = (V ∗a , V
∗
b , V

∗
c )> is optimal for the

maximization problem in (34), then

V ∗a ∈ Ea, V ∗b ∈ Eb, V ∗c ∈ Ec. (35)

Proof: First, we claim that

V ∗a ∈ ∂Pa, V ∗b ∈ ∂Pb, V ∗c ∈ ∂Pc (36)

whose proof is similar to the one of Lemma 4.1.
Next, we show the theorem by contradiction. Since V ∗a ∈

∂Pa, then V ∗a ∈ Ha where Ha is one of the hyperplanes
defining ∂Pa. Define Ha as {x ∈ R2 : h>x = h̃}, then
h>V ∗a = h̃. If we assume V ∗a /∈ Ea, then there exists δ > 0
and a direction {g ∈ R2 : ‖g‖ = 1, g>h = 0} such that
(V ∗a + α̂g) ∈ ∂Pa for all {α̂ ∈ R : |α̂| < δ}. Next, we
compare the optimal objective with the objective under (V ∗abc+
∆V ) where ∆V = α̂uV ∈ R6, uV = (g>, 0, 0, 0, 0)>, and get

(V ∗abc + ∆V )>(An − ε2Ap)(V ∗abc + ∆V )

− (V ∗abc)
>(An − ε2Ap)V ∗abc

= α̂2(u>V (An − ε2Ap)uV ) + α̂(2u>V (An − ε2Ap)V ∗abc)
= α̂2(1− ε2)g>I2g + α̂(2u>V (An − ε2Ap)V ∗abc)
= α̂2(1− ε2) + α̂(2u>V (An − ε2Ap)V ∗abc) = f(α̂), (37)

which is a convex quadratic function on α̂ with f(0) = 0 since
ε < 1. Then, similar to Lemma 4.1, we conclude that we can
improve the optimal value of (34) by using a new feasible
solution (V ∗abc + ∆V ) with α̂ = δ

2 or − δ2 . This contradicts the
optimality of V ∗abc. Similar discussions are applicable to cases
when V ∗b /∈ Eb and V ∗c /∈ Ec and the proof is complete.

Now, we equivalently reformulate (34) as{
max

Vabc∈Ea×Eb×Ec
V >abc(An − ε2Ap)Vabc

}
≤ 0 (38)

and solving an optimization problem (34) becomes an evalu-
ation problem on the set of extreme points.

There are many ways to find Pa, Pb, and Pc. Here, we
use a special polytope to analyze the optimality gap of the
approximation. Since each polytope is in dimension 2, we
propose to use the circumscribed regular polygon of the disk
(CRP). For a unit closed disk D̄(1), the extreme points of a
CRP with 2m (m ≥ 2) sides are as follows{

1

cos( π
2m )

[
cos(φ)
sin(φ)

]
: φ =

(2k − 1)π

2m
, k = 1, 2, ..., 2m

}
.

Note that while a CRP can have a phase shift, we do not
consider this here for the sake of simplicity. In combination
with Cabc and rabc, we can easily find Ea,2m, Eb,2m, and
Ec,2m. We add 2m in the notations to denote the dimension of
the CRP. By defining a general function E2m : R2×R→ R2m,
then Ea = E2m(Ca, ra) can be represented as{

Ca +
ra

cos( π
2m )

[
cos(φ)
sin(φ)

]
:

φ =
(2k − 1)π

2m
, ka = 1, 2, ..., 2m

}
.

We next show how the optimality gap between (32) and (38)
is affected by the dimension m.

Corollary 4.1: Denoting the optimal values of (32) and (38)
as F ∗b and F ∗e , respectively, we have

|F ∗e − F ∗b | ≤ |F ∗e − F ∗i |, (39)

where F ∗i is the optimal solution of the following problem

max
Vabc∈Êa×Êb×Êc

V >abc(An − ε2Ap)Vabc, (40)

in which

Êa = E2m(Ca, ra cos(
π

2m
)),

Êb = E2m(Cb, rb cos(
π

2m
)),

Êc = E2m(Cc, rc cos(
π

2m
)).

We also have

lim
m→+∞

|F ∗e − F ∗i | = 0. (41)

Proof: We prove (39) by demonstrating the relationship

F ∗e ≥ F ∗b ≥ F ∗i .

The first inequality results from the fact that (38) is a safe
approximation of (32). The second inequality is true because
Êa ⊂ ∂Vain (same for phases b and c). Hence, (32) is more
conservative than (40).

Next, we prove (41). Given any m ≥ 2, we have the
following inequality

|F ∗e − F ∗i | ≤ max
ka∈K,kb∈K,kc∈K

|J(V eabc)− J(V iabc)|, (42)

where J(Vabc) = V >abc(An − ε2Ap)Vabc. V eabc and V iabc are a
corresponding pair in Ea×Eb×Ec and Êa×Êb×Êc with the
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same ka, kb, and kc. K denotes the integer set on [1, 2m]. We
show that (42) is valid by substituting a special (ka, kb, kc)

>

that is optimal for (38) into the right-hand side of (42). The
inequality holds with the special choice of (ka, kb, kc)

> and
hence (42) is true. Further, we have

‖V eabc−V iabc‖ =

(
1

cos( π
2m )
− 1

)
‖rabc‖, ∀(ka, kb, kc)> ∈ K3

(43)
since V eabc and V iabc are a corresponding pair. Meanwhile,
J(Vabc) is continuously differentiable and hence Lipschitz on
compact set D̄(Ca,

√
2ra)×D̄(Cb,

√
2rb)×D̄(Cc,

√
2rc). We

choose this compact set since it contains all the feasible sets
of (38) and (40) for all m ≥ 2. Denote the Lipschitz constant
as L. For all m ≥ 2, we have

max
ka∈K,kb∈K,kc∈K

|J(V eabc)− J(V iabc)|

≤ max
ka∈K,kb∈K,kc∈K

L‖V eabc − V iabc‖. (44)

Combining (42), (43), and (44), we have

lim
m→+∞

|F ∗e − F ∗i | ≤ lim
m→+∞

max
ka∈K,kb∈K,kc∈K

L‖V eabc − V iabc‖

= lim
m→+∞

(
1

cos( π
2m )
− 1)L‖rabc‖ = 0.

The last equality holds since limm→+∞ cos( π
2m ) = 1.

Further, since |F ∗e − F ∗i | is non-negative, based on squeeze
theorem, the proof is complete.

This result tells us that as we increase m (i.e., the number of
sides of the CRP), the safe approximation (38) asymptotically
converges to the true optimal value of (29a) or (32).

2) Semidefinite and Lagrangian Relaxation: Other conven-
tional techniques [22], [23] for general QCQP problems use
semidefinite relaxation (SDR) or Lagrangian relaxation (LGR).
The SDR of (32) (shown below) is derived by lifting the vector
space of the variable Vabc to the matrix space Wabc ∈ R6×6

and relaxing the rank-one constraints from Wabc = VabcV
>
abc

to get a convex constraint Wabc � VabcV >abc and the following
semidefinite programming (SDP) problem. Since the original
problem in (32) is maximization, both LGR and SDR give
higher optimal values and hence a safe approximation to (32):

(SDR) max Tr((An − ε2Ap)Wabc)

s.t. Wabc,11 +Wabc,22 − 2C>a Va + ‖Ca‖2 = r2
a,

Wabc,33 +Wabc,44 − 2C>b Vb + ‖Cb‖2 = r2
b ,

Wabc,55 +Wabc,66 − 2C>c Vc + ‖Cc‖2 = r2
c ,

Wabc � VabcV >abc

LGR uses Lagrangian duality to derive an SDP-based re-
formulation as follows

(LGR) min
µ∈R3

γ

s.t. Y =

[
Q(µ) q(µ)
q(µ)> r(µ)

]
,

Y � 0

where

Q(µ) = −(An − ε2Ap + blkdiag(µ1I2, µ2I2, µ3I2)),

q(µ) = (−µ1C
>
a ,−µ2C

>
b ,−µ3C

>
c )>,

r(µ) = γ − µ1(‖Ca‖2 − r2
a)

− µ2(‖Cb‖2 − r2
b )− µ3(‖Cc‖2 − r2

c ).

Then, (32) can be safely approximated as

γ ≤ 0, µ ∈ R3,

[
Q(µ) q(µ)
q(µ)> r(µ)

]
� 0. (45)

Existing work [23] shows that SDR and LGR are dual to
each other. Strong duality also holds here as both SDR and
LGR are strictly feasible (i.e., there exists positive definite
matrix solutions).4 Since (32) is nonconvex, there is a gap
between SDR or LGR with the true optimal solutions. Next,
we give conditions on Cabc and rabc such that SDR and LGR
have the same optimal value to (32). Duality gaps have also
been analyzed for typical optimal power flow formulations in,
e.g., [24]–[27]. In this paper, we focus on different type of
constraint related to voltage balance requirements.

We start from LGR and show a sufficient condition such that
strong duality holds between LGR and (32). The conditions
can also be efficiently evaluated by solving three small convex
QCQPs. For concise derivation, we define three sets:

D̄abc = D̄(ra)× D̄(rb)× D̄(rc),

Dabc = D(ra)×D(rb)×D(rc),

∂D̄abc = ∂D̄(ra)× ∂D̄(rb)× ∂D̄(rc).

Theorem 4.2: If conditions

fi,i+1 /∈ [−ri, ri]× [−ri+1, ri+1], i = 1, 3, 5, (46a){
min

Ya∈D̄abc

‖(2BYa + f)1,2‖2
}
≥ 4(2 + ε2)2r2

a, (46b){
min

Yb∈D̄abc

‖(2BYb + f)3,4‖2
}
≥ 4(2 + ε2)2r2

b , (46c){
min

Yc∈D̄abc

‖(2BYc + f)5,6‖2
}
≥ 4(2 + ε2)2r2

c , (46d)

where

B = (ε2Ap −An)− λmin(ε2Ap −An)I6,
f = 2(ε2Ap −An)Cabc,

ri = 2(ra‖B1,2
i ‖+ rb‖B3,4

i ‖+ rc‖B5,6
i ‖), i = 1, .., 6,

are satisfied by certain Cabc and rabc, then strong duality holds
between LGR and (32).

Proof: We prove strong duality for the following problem:

min
Vabc∈∂Va

in×∂Vb
in×∂Vc

in

V >abc(ε
2Ap −An)Vabc. (47)

If strong duality holds for (47), strong duality also holds
for (32) since their duals always have opposite optimal values.

4In SDR, we can select Vabc = 0 and pick Wabc to be diagonal with
strictly positive elements. In LGR, we can choose any µ < −λmax(An −
ε2Ap), then Q(µ) is positive definite. Then, based on the Schur complement,
we can always choose γ large enough that r(µ)− q(µ)>P (µ)−1q(µ) > 0.
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Define Yabc = (Ya, Yb, Yc)
> = Vabc − Cabc and A = ε2Ap −

An. We rewrite (47) as

min
Yabc∈∂D̄abc

(Yabc + Cabc)
>A (Yabc + Cabc),

where

(Yabc + Cabc)
>A (Yabc + Cabc)

=Y >abc(A− λI6)Yabc + 2C>abcAYabc + C>abcACabc + λY >abcYabc.

Since Yabc ∈ ∂D̄abc, we ignore the last two terms (constant-
valued) and pick λ = λmin(A) = −3 such that B = (A −
λI6) � 0. Define f = 2ACabc. We then obtain

min
Yabc∈∂D̄abc

Y >abcB Yabc + f>Yabc. (48)

A sufficient condition ensuring that strong duality holds for
(48) is when the following problem

min
Yabc∈D̄abc

Y >abcB Yabc + f>Yabc (49)

has its optimal solution on ∂D̄abc under certain requirements
on Cabc and rabc. We leave the proof of this to the following
lemma. Now, we assume Y ∗ = (Y ∗a , Y

∗
b , Y

∗
c )> to be any

point in D̄abc and Y ∗a /∈ ∂D̄(ra) without loss of generality
since similar discussions can apply to Y ∗b and Y ∗c . The
sufficient condition for strong duality is satisfied if there exists
a direction {ga ∈ R2 : ‖ga‖ = 1} in the space of Ya
such that the objective can be improved when Y ∗a moves to
∂D̄(ra). Denote ∆Y = d(ga, 0, 0, 0, 0)> where d ≥ 0 denotes
the distance moving along the direction ∆Y . We compare the
objective at Y ∗ + ∆Y and Y ∗ and get

(Y ∗ + ∆Y )>B (Y ∗ + ∆Y ) + f>(Y ∗ + ∆Y )

− (Y ∗)>B Y ∗ − f>Y ∗

= d2(2 + ε2) + d h>a ga = f(d, ga) (50)

where ha = (2BY ∗ + f)1,2. We cannot have ha = 0 since
there does not exist a direction ga that improves the objective.
Denote (2BY ∗)i = 2B>i Y

∗ = 2B1,2
i Y ∗a + 2B3,4

i Y ∗b +
2B5,6

i Y ∗c . Since Y ∗ is in a compact set D̄abc, we can find
the tight bound |(2BY ∗)i| ≤ ri = 2(ra‖B1,2

i ‖ + rb‖B3,4
i ‖ +

rc‖B5,6
i ‖). Further, if f1,2 /∈ [−r1, r1]×[−r2, r2], then ha 6= 0

for all possible Y ∗ ∈ D̄abc.
Next, since f(d, ga) is a convex quadratic function of

d with fixed second-order coefficient, we know the steep-
est descent direction is −ha/‖ha‖ (i.e., for any fixed d,
ga = −ha/‖ha‖ minimizes f(d, ga)). Hence, we fix ga =
−ha/‖ha‖ without loss of optimality. The objective is im-
proved if f(d,−ha/‖ha‖) ≤ 0, which is equivalent to d ∈
[0, ‖ha‖

2+ε2 ]. Hence, if we require ‖ha‖
2+ε2 ≥ 2ra, then there must

exists a point on ∂D̄(ra) with certain d∗ ∈ (0, ‖ha‖
2+ε2 ) that

improves the objective. Since Y ∗ can be any point in D̄abc,
our requirement becomes{

min
Y ∗∈D̄abc

‖ha‖
}
≥ 2(2 + ε2)ra

⇔
{

min
Y ∗∈D̄abc

h>a ha

}
≥ 4(2 + ε2)2r2

a. (51)

The left-hand side of (51) is a convex QCQP5 and hence can
be solved easily. Similar analyses for phases b and c complete
the proof.

Lemma 4.2: For given Cabc and rabc, if (49) has its optimal
solution on ∂D̄abc, then (48) has strong duality.

Proof: For simplicity, generalize (48) as

min f(x) s.t. gi(x) = 0, i = 1, ...,m,

which is equivalent to

v∗1 = {min f(x) s.t. gi(x) ≥ 0, gi(x) ≤ 0, i = 1, ...,m}

with optimal value v∗1 . The associated Lagrangian dual is

h∗1 = max
λ≥0,µ≥0

inf
x
f(x) + Σmi λigi(x)− Σmi µigi(x) (52)

with optimal value h∗1. Similarly, (49) can be represented as

v∗2 = {min f(x) s.t. gi(x) ≤ 0, i = 1, ...,m}

with the following Lagrangian dual problem

h∗2 = max
λ≥0

inf
x
f(x) + Σmi λigi(x) (53)

and has optimal values v∗2 (h∗2 for (53)).
Denote the optimal solution to (53) as x∗ and λ∗. Observe

that (53) is a special case of (52) with µ = 0. Hence, we have
h∗1 ≥ h∗2. Since (49) is a convex QCQP with nonempty interior,
we also have strong duality such that v∗2 = h∗2. Meanwhile,
we also have v∗1 = v∗2 (since (49) has its optimal solution on
∂D̄abc) and h∗1 ≤ v∗1 (weak duality). We conclude h∗1 = v∗1
and hence strong duality holds for (48).

Theorem 4.2 implies that when Cabc has relatively larger
magnitudes than rabc, there is a higher chance of having strong
duality between LGR and (32). Next, we start with SDR and
show that under certain conditions, even if rabc has large
magnitudes, we have exactness (i.e., the same optimal values)
between SDR and (32). First, we give a general result for a
QCQP problem whose SDR is exact.

Theorem 4.3: Consider the following QCQP problem on
xabc = (xa, xb, xc)

> ∈ R6:

max
xabc∈∂D̄abc

x>abcAxabc (54)

where A has the following structure

A =

λI2 B B>

B> λI2 B
B B> λI2

 , B =

[
b1 −b2
b2 b1

]
.

Then, the following SDP relaxation is exact for (54):

max Tr(AXabc) (55)

s.t. Xabc,11 +Xabc,22 = r2
a,

Xabc,33 +Xabc,44 = r2
b ,

Xabc,55 +Xabc,66 = r2
c ,

Xabc � 0.

5Strong duality holds since Slater’s condition is satisfied (i.e., pick Y ∗ ∈
Dabc). Hence, (51) can also be equivalently transformed into SDP constraints.
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Proof: We prove the exactness by rewriting (54) into a
homogeneous complex QCQP with the transformation xabc =
(xa,1 + jxa,2, xb,1 + jxb,2, xc,1 + jxc,2)>:

(54) ⇔ max xH
abcAxabc (56)

s.t. xH
abc[blkdiag(1, 02)]xabc = r2

a,

xH
abc[blkdiag(0, 1, 0)]xabc = r2

b ,

xH
abc[blkdiag(02, 1)]xabc = r2

c ,

where

A =

 λ b1 + jb2 b1 − jb2
b1 − jb2 λ b1 + jb2
b1 + jb2 b1 − jb2 λ

 .
Then, based on Theorem 3.2 in [28], [29], the SDP relax-

ation of (56) has a solution Xabc ∈ H3 with rank(Xabc) ≤
b
√
lc where l equals the number of equality constraints in

(56) (i.e., l = 3). Hence, rank(Xabc) ≤ 1 and is thus exact
for (56). Since (55) is a real-variable representation of the SDP
relaxation of (56), the proof is complete.6

To see how Theorem 4.3 is relevant to (32), we reformulate
(32) by substituting Yabc = Vabc − Cabc and ignoring the
constant to obtain

max
Yabc∈∂D̄abc

Y >abc(An − ε2Ap)Yabc + 2((An − ε2Ap)Cabc)>Yabc,

which satisfies Theorem 4.3 if (An − ε2Ap)Cabc = 0. Since
strong duality holds between LGR and SDR, Theorem 4.3 also
guarantess strong duality between LGR and (32). Further, we
see that Theorems 4.2 and 4.3 are not directly comparable (i.e.,
it is not the case that one is always stronger than the other).
Theorem 4.2 can handle cases when Cabc has large magnitude
relative to rabc. However, Theorem 4.3 works when Cabc has a
small magnitude compared to An−ε2Ap or belongs to N(An−
ε2Ap) (approximately N(An) when ε is small). Hence, each
condition has its own advantages. In practice, Theorem 4.2
is more applicable as the condition is better aligned with the
characteristics of practical distribution networks.

D. Balancibility Condition

Using the closed-form reformulations or approximations
of the voltage balance requirements from the three different
unbalance definitions, we can now obtain the full balancibility
condition by connecting the VL from the solvability condi-
tion (8) to these voltage balance requirements. We briefly
discussed this connection when we first introduced Cabc and
rabc in Section IV. Here, we give an example of the complete
balancibility condition using the polytope approximation under
the V UFn definition. Without loss of generality, assume i∗ ∈
NL is the critical node with a voltage unbalance tolerance of ε
and there is no degeneracy (i.e., minp∈{a,b,c} ξi∗,p(SL) > 0).
Then, the full balancibility condition is:

(6) and
{

max
Vabc∈Ea×Eb×Ec

V >abc(An − ε2Ap)Vabc
}
≤ 0 (57)

6Note that exactness is not guaranteed for any other QCQP formulations
(e.g., (32)) that are either non-homogeneous or involve more than three
equality constraints in complex-variable representation.

where
Ep = E2m

(
(Re(Cp), Im(Cp))

>, rp
)
,

Cp = (1−ηi∗,p(σL))Ei
∗

p v
0,i∗

L,p , and rp = r|Ei∗p v
0,i∗

L,p |ξi∗,p(SL)
for all p ∈ {a, b, c}. Note that the solvability condition can
be simultaneously combined with multiple voltage balance
requirements. Particularly for V UF definitions, since Cabc
and rabc can be determined if SL is provided, the sufficient
conditions in Theorems 4.2 and 4.3 can be evaluated to
give better guidance regarding whether we should choose a
polytope approximation or LGR.

All of the constraints in the balancibility condition are func-
tions of SL. Hence, the balancibility condition defines a secure
region of SL such that a unique and balanced power flow
solution is guaranteed to exist. There are multiple applications
of the balancibility condition, such as directly incorporating
the condition in an optimization problem. This condition then
provides a feasible set on SL that can directly replace the
power flow equations to obtain associated robust voltage bal-
ance guarantees for the power flow solutions under uncertainty.
Another application uses the balancibility condition in an
iterative/decentralized algorithm such that each step provides
an instance of SL. In this case, the balancibility condition can
be used as an effective evaluation tool on SL to provides quick
solution existence, uniqueness, and voltage balance guarantees
without solving the full power flow problem.

V. CASE STUDY

This section first provides case studies to compare the
approximations of the voltage balance requirement under the
definition of V UFn and then demonstrates the results of the
balancibility conditions using PV UR, LV UR, and V UFn.

A. Tightness of VUF Approximations

Here, we present instances of Cabc and rabc to compare
the results using approximation by bound (27), polytope ap-
proximation (38), and LGR (45). To get an estimate of the true
optimal value of (32), we randomly generate 5×105 points on
∂Vain×∂Vbin×∂Vcin and find the maximum value over the sam-
ples.7 For polytope approximation, we use m = 2, 4, 8, 16, 32.

As the first test, we select a center Ca = (2, 0)>, Cb =
(−1,−

√
3)>, and Cc = (−1,

√
3)> (a balanced center for

phases a, b, c); radius ra = rb = rc = 0.6; and tolerance
ε = 0.3. Figure 2 shows optimality gaps (i.e., the absolute
difference from the estimate using sampling method) of the
approximation by bound, LGR, and polytope approximations
using different m. When m is small, the polytope approxi-
mation has large optimality gap but the gap rapidly converges
to zero as m increases. LGR does not have strong duality
(i.e., non-zero optimality gap) and hence gradually loses its
advantage to the polytope approximation when m increases.
Approximation by bound provides an upper bound for the
other approximation techniques.

7The sampling method is unsecure to directly use in the balancibility
condition since it is a relaxation to (32) and hence underestimates the voltage
unbalance level.
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Fig. 2. Optimality Gaps of Approximation by Bound, Polytope Approxima-
tion, and LGR without Strong Duality
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Fig. 3. Optimality Gaps of Approximation by Bound, Polytope Approxima-
tion, and LGR with Strong Duality

As the second test, we select center Ca = (3, 0)>, Cb =
(−1,−

√
3)>, and Cc = (−1,

√
3)>; radius ra = rb =

rc = 0.1; and tolerance ε = 0.1, which satisfy the sufficient
conditions in Theorem 4.2. We then show the same groups of
optimality gaps in Figure 3. Since strong duality holds between
LGR and (32), we clearly see zero optimality gap in LGR.
Meanwhile, the polytope approximation gradually converges
to zero optimality gap as m increases and the approximation
by bound gives an upper bound.

In practice, the tolerance ε is small (. 5%). Thus, when
the set Uin (or, equivalently, Vin) is small (i.e., the radius
rabc is small), LGR has a higher chance of having a smaller
optimality gap compared to the polytope approximation since
Theorem 4.2 is easier to satisfy.

B. Balancibility Conditions

To test the balancibility condition, we use a five-bus ex-
ample system adopted from [30] by only considering wye-
connected PQ loads. As the nominal point S0

L, we choose
a group of balanced loads on bus 4 (10 kW) and bus 5
(50 kW) and consider unbalanced loading at bus 5 via σL
(i.e., incremental loads SL − S0

L). For LV UR and V UFn,
we use the method of line-to-line voltage bounds (21) and
LGR (45) respectively. For the set up, we select σ5

L =
(10k,−5k,−5k) kW with k = 1, 2, ..., 10 and choose bus 4
as the critical node with respect to voltage balance.

To compare the quality of the balancibility condition, we
first seek the smallest tolerance ε such that the voltage balance
requirements are satisfied over the VL that results from the
solvability condition (6). Then, we find the true unbalance by
solving the power flow equations with SL and plugging the
results into the unbalance definitions.

Figures 4, 5, and 6 show the true unbalance level and the
smallest tolerance level ε under different unbalance definitions.
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Fig. 4. Smallest Tolerance ε vs. “True” PVUR under SL for different k

1 2 3 4 5 6 7 8 9 10
k

0

0.5

1

1.5

2

U
n

b
al

an
ce

 (
%

)

LVUR
 (Smallest Tolerance)

Fig. 5. Smallest Tolerance ε vs. “True” LVUR under SL for different k

1 2 3 4 5 6 7 8 9 10
k

0

0.5

1

1.5

U
n

b
al

an
ce

 (
%

)

VUFn

 (Smallest Tolerance)

Fig. 6. Smallest Tolerance ε vs. “True” VUF under SL for different k

As k increases, the load at bus 5 becomes more unbalanced
and hence induces a larger voltage unbalance level. We also
see that there is a gap between ε and the true voltage unbalance
level. The gap results from the fact that the balancibility
condition provides voltage balance guarantees over VL, which
contains the true solution VL and hence a safe approximation.
Since the gap is small, we conclude that the balancibility
condition closely characterizes the system unbalance levels
with the information of VL without relying on the exact power
flow solution VL. As k increases, VL gets larger and hence
results in a larger absolute gap. However, the ratio between ε
and true unbalance level is approximately decreasing, which
indicates reduced conservativeness. Further, we note that this
conservativeness is system-dependent and can be improved if
the solvability conditions (or general sets Uin) are tighter.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a concept called a bal-
ancibility condition which combines the existing power flow
solution tools (e.g., solvability conditions) with voltage bal-
ance requirements. The balancibility condition quantifies a
power injection region which is guaranteed to have a unique
and balanced power flow solution. We considered unbalance
definitions from multiple organizations and derived closed-
form reformulations or approximations to quantify the voltage
unbalance level. We used a general model to describe the sets
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that contain the power flow solutions under uncertain power
injections and gave theoretical guarantees on the quality of
the approaches. We numerically compared these approaches
and demonstrated the benefits from the theoretical guarantees.
We also compared the balancibility conditions associated
with different unbalance definitions and demonstrated that the
balancibility condition closely reflects the voltage unbalance
level without excessive conservativeness.

Relevant future work includes testing all of the balancibility
conditions and approaches on more general and realistic dis-
tribution network models (e.g., systems with delta-connected
loads and ZIP loads). Other future work includes improving
the quality of the balancibility condition by optimizing the
solvability condition together with the voltage balance require-
ments. Finally, we will consider relevant applications of the
balancibility conditions, including robust ACOPF problems.
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