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Abstract— With high penetrations of renewable gener-
ation and variable loads, there is significant uncertainty
associated with power flows in DC networks such that sta-
bility and operational constraint satisfaction are of concern.
Most existing DC network optimal power flow (DN-OPF)
formulations assume exact knowledge of loading condi-
tions and do not provide stability guarantees. In contrast,
this paper studies a DN-OPF formulation which considers
both stability and operational constraint satisfaction under
uncertainty. The need to account for a range of uncertainty
realizations in this paper’s robust optimization formulation
results in a challenging semi-infinite program (SIP). The
proposed solution algorithm reformulates this SIP into a
computationally tractable problem by constructing a tight
convex inner approximation of the feasible region using
sufficient conditions for the existence of a feasible and
stable power flow solution. Optimal generator setpoints are
obtained by optimizing over the proposed convex stability
set. The validity and value of the proposed algorithm are
demonstrated through various DC networks adapted from
IEEE test cases.

NOMENCLATURE

Parameters
δ Composite uncertainty
C` Capacitance for loads
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Cs Capacitance for sources
Lc Inductance for power lines
n Total number of components
n` Total number of loads
ns Total number of generators
nc Total number of power lines
p∗` Nominal power injection of loads
p` Power injection of loads
R` Resistance for loads
Rc Resistance for power lines
Rs Resistance for sources
Y`` Admittance submatrix for load connectivity
Y`s Admittance submatrix for load-generator connectivity
sets
∆ Perturbation set
Ec Index set of power lines
N` Index set of loads
Ns Index set of generators
P` Set of load profiles
Vref Generator voltage set-point constraint set
V` Generator voltage set-point constraint set
Variables
Ic Power line current at equilibrium
ic(t) Current through power lines
id(t) Current flowing out of power line
io(t) Current flowing into power line
V ref Voltage set-point for generators
V` Load terminal voltage at equilibrium
Vs Generator terminal voltage at equilibrium
v`(t) Voltage across capacitor of loads
vs(t) External voltage of generators
x System states
xe System equilibrium

I. INTRODUCTION

Recent years have witnessed the growth of DC loads and
generators, such as DC fast charging facilities, photovoltaic
generation, and various electronic devices in sites like data
centers. Interconnecting DC components in a DC network is
an efficient operation method due to the reduction of DC-AC
conversion stages [1]. DC networks have thus found promising
applications in low- and medium-voltage power systems such
as community nanogrids and microgrids, shipboard power
systems, data centers, etc. [2]. Common features of DC
networks include: 1) the uncertainty in loading conditions
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is usually more significant due to the higher penetration
level of uncertain components and relatively smaller scale
compared to AC networks, and 2) many loads are controlled as
constant power loads (CPLs) that have a destabilizing negative
resistance effect that reduces the damping in a system [2].1

Similar to other power systems, a DC network should
work at a stable operating point that satisfies all operational
constraints. The classic method to compute such an operat-
ing point is to formulate and solve an optimal power flow
(OPF) problem. An OPF problem finds the optimal generation
schedule corresponding to the system operating point that
maximizes economic welfare while satisfying various physical
and operational constraints.

Solving OPF problems to optimality with an AC power
flow model is generally challenging due to the associated
nonconvexity [4]. Many research efforts have been devoted to
improve OPF tractability using approximation and relaxation
methods [5]. Recent research has also studied OPF problems
for DC networks (DN-OPF) [6]–[11]. Note that DN-OPF prob-
lems are fundamentally different from the so-called “DC-OPF”
problems [12]: 1) A DC-OPF problem is a simplified OPF
problem for an AC system where the nonlinear AC power
flow equations are linearized. Conversely, a DN-OPF problem
considers the nonlinear power flow equations that accurately
model the physics of a DC network. 2) While a DC-OPF
problem is usually convex, a general DN-OPF problem is a
nonconvex optimization problem [9].

A variety of methods have been applied to solve DN-OPF
problems. In [6], a genetic algorithm is applied to solve
the OPF problem for a DC distribution system. In [13],
linearization techniques are used to simplify the problem.
Other methods [7], [8] employ second-order cone program-
ming (SOCP) and quadratic convex programming to relax
a DN-OPF problem into a convex formulation. The existing
works demonstrate the capability to effectively solve various
deterministic DN-OPF problems.

Despite recent advances, existing DN-OPF works in the
literature have limitations in providing stability and feasibility
guarantees when significant uncertainties are present. First,
previous results primarily focus on deterministic DN-OPF
problems where the loading conditions are assumed to be fixed
and known a priori. Nevertheless, with high penetrations of
intermittent generation and variable loads, uncertainty in the
net loading conditions is a salient feature of DC networks [14].
Directly applying the OPF decisions computed using a spe-
cific scenario to an uncertain system can cause unpredictable
deviations of the system operating point from the designated
value [15], [16]. This may lead to violations of operational
constraints and possibly cause voltage collapse. For example,
unexpected DC fast charging events or loss of renewable
generation can make the system unable to accomplish the load-
supporting task, in which case the power flow equations cease
to admit a solution [17], [18].

Second, previous results do not consider stability issues
of DN-OPF solutions. A DC network has rich dynamics

1DC CPLs can be considered as a special case of AC CPLs when the CPLs
have a unity power factor. With a non-unity power factor, AC CPLs behave
as negative resistances and reactances [3].

contributed by electrical circuits and control systems [1],
which are subject to notable risks of instability associated with
the choice of operating points [19]–[22]. Many loads in a DC
network can be considered as CPLs that are known to have
harmful negative impedance effects. If the operating point is
not carefully selected, the system can be under-damped or even
become unstable [19]. It is worth mentioning that the joint
problem of existence and stability of an equilibrium has been
studied in control-theoretic work such as [23], [24]. However,
these prior works primarily focus on developing feasibility and
stability conditions. The literature still lacks a control synthesis
approach that not only ensures existence and stability of the
equilibrium but also designs the location of the equilibrium, for
example, to guarantee the satisfaction of various engineering
constraints and achieve economic goals for a DC network.

We propose a stability-constrained robust DN-OPF algo-
rithm to address these limitations. Following DC network
operation practices, we focus on a DC network with nonlinear
CPLs and controllable voltage sources. We seek to mini-
mize system operational costs by computing setpoints for the
sources which rigorously guarantee the following two proper-
ties for any loading condition within a specified uncertainty
set: 1) robust feasibility (existence of power flow solutions
satisfying operational constraints) and 2) robust stability (local
exponential stability of the operating point).

To provide such guarantees, we formulate a DN-OPF prob-
lem that incorporates robust feasibility and stability conditions.
Solving this problem is difficult. First, existing stability condi-
tions for DC networks are developed to study given operating
points [14]; hence, ensuring stability when operating points
are decision variables is challenging. Additionally, to ensure
robustness, the power flow equations along with the stability
conditions need to jointly hold for all uncertainty realizations.
This results in a semi-infinite programming (SIP) problem
that is generally computationally intractable [25]. Tractable
reformulations or approximations exist for robust optimization
problems when special structures of problem formulation and
data uncertainty can be exploited [26]; however, there are no
standard approaches to deal with the nonconvexity associated
with the power flow equations.

The proposed algorithm converts the SIP problem into a
tractable formulation that resembles a well-studied DN-OPF
problem. The main idea of the proposed work is illustrated in
Fig. 1, and we summarize the main technical tasks as follows:

(1) We first derive a stability set in the voltage space such
that any operating point therein is guaranteed to be stable.

(2) We then develop conditions that guarantee the existence
of a power flow solution in a feasibility set for any
loading condition. We characterize the boundaries of the
feasibility set defined by these conditions.

(3) Finally, we formulate and solve a tractable problem rem-
iniscent of a DN-OPF problem to ensure that the entirety
of the set of operating points lies in the intersection of
the stability set and the operational constraints.

The contributions of the paper are summarized as follows:

• We develop a novel algorithm to reformulate and solve a
class of otherwise intractable DN-OPF problems using a
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Fig. 1. Illustration of the proposed work.

synthesis of new DC network stability analysis and power
flow feasibility results.

• We provide a new condition regarding the solvability
of DC network power flow equations and new methods
to computing a stability set. The solvability condition
establishes an explicit bound on power flow solution (bus
voltages) as a function of load powers.

• We provide insights into DC network operations. For ex-
ample, we provide a rigorous argument for monotonicity
in power flow solutions such that the reduction of load
power at any bus leads to strictly higher load bus voltages
for all load buses.

The rest of the paper is organized as follows: First, Sec-
tion II introduces the system model and the main problem con-
sidered in this paper. Next, Section III shows the main results
of the paper, i.e., a solution algorithm for a robust DN-OPF
problem with feasibility and stability guarantees. Section IV
then demonstrates the efficacy of the proposed work using
simulation case studies. Finally, Section V concludes the paper
and discusses future research directions.

II. SYSTEM MODELING AND PROBLEM STATEMENT

A. Notation

In this paper, we use 1 and 0 to represent vectors of all 1’s
and 0’s of appropriate sizes. Recall that a square matrix A is
Hurwitz if all real parts of its eigenvalues are negative. For
a vector v, let vk represent its k-th element. Let the operator
diag{v} yield a diagonal matrix with the vector’s components
being the diagonal entries. For a real square matrix A, A−1

denotes its inverse, A � 0 (resp., A � 0) means it is symmetric
positive definite (resp., semidefinite), and A ≺ 0 (resp., A � 0)
means −A � 0 (resp., −A � 0).

B. DC Power Systems

In this paper, we focus on a DC network with ns gen-
erators, n` loads, and nc power lines. The total number of
these components is n = ns + nc + n`. Let the index sets
of generators, loads, and power lines be Ns, N`, and Ec,
respectively. Fig. 2 shows an example DC network consisting
of lumped π-equivalent models [22] where generators and
loads are interconnected via equivalent RLC circuits [1].

1) Load and Generator Models: Fig. 3 shows a zoomed-in
image of one part of the circuit. The lines are represented
using a π-equivalent model [22] with a series line resistance
and line inductance connected with shunt capacitors at both
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Fig. 2. Example DC power network.

Fig. 3. Zoomed-in image of the dynamic circuit.

ends,2 and each DC bus has a DC bus capacitor and a shunt
resistor. The shunt capacitors are in parallel with the DC bus
capacitor. For simplicity, we use one composite shunt capacitor
to model their joint effects. Suppose the circuit has the k-th
generator, p-th power line, and j-th load. Let io(t) and id(t)
represent the current flowing into and out of the circuit, and
let icp represent the current flow in power line p.

Loads are modeled as constant power injections into the
network. We let both constant power loads (CPLs) and con-
stant power sources (CPSs) be connected in parallel. These
are non-ideal components with parasitic resistances that are
represented as lumped resistors. It is well known that CPLs
are nonlinear loads with negative impedance effects. They are
the major sources of instabilities in DC networks [2], [20].

For the j-th load, let p`j represent its power injection into
the network, and let v`j represent the terminal voltage. At the
nominal condition, p`j = p∗`j , where p∗`j is a given constant.
Each p`j is considered to be a perturbation to p∗`j that is
unknown and bounded within a given uncertainty interval
[
¯
p`j , p̄`j ]. Throughout this paper, we let positive p`j represent

positive power injection (i.e., power generation) at bus j. We
also let p̄`j ≥ 0 to allow loads to be turned off completely. In
this paper, the load profile p` is modeled as an uncertain vector
bounded by element-wise interval constraints. Let P` be the
interval uncertainty set, that is, P` = {p` : p`j ∈ [

¯
p`j , p̄`j ], j ∈

N`}. This modeling choice is appropriate for typical DC
networks in conventional settings. DC networks are often used
for medium- and low-voltage power distribution systems [2].
For such systems, the passive load variability is generally

2Note that the line resistance, inductance, capacitance are evenly distributed
for an ideal power line. The π-equivalent model is a simplified power line
model commonly used for DC network stability analysis [1], [27], [28].
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spatially uncorrelated. We also note that the time-scale of the
RLC dynamics is usually milliseconds to sub-seconds, while
that of load variations usually ranges from seconds to minutes.
Hence, the load power profile is considered constant in the
dynamical model with uncorrelated interval uncertainty.

For the k-th source, let V ref
k be the controllable voltage

setpoint, vsk be the external generator voltage, and Rsk, Csk
represent the source resistance and capacitance, respectively.
We impose operational constraints on controllable voltage
setpoints such that vector V ref , which includes all voltage
setpoints, needs to lie within a given convex constraint set Vref .

Remark 1 (Generator Model): Generators are modeled as
non-ideal voltage sources [22] that are in series with equivalent
resistors. The reference voltage set-points are designed by grid
operators. We assume that proper low-level controllers [2] have
been employed to regulate the terminal voltage of a generator
to track a reference setpoint. Consequently, the generator
can automatically vary power outputs to respond to changing
loading conditions. It is worth mentioning that these generators
are different from the CPSs. The power output of a CPS is
uncertain, and its terminal voltage does not follow a reference.

Remark 2 (Implication of Uncertainty Model): We elabo-
rate the implication of the uncertainty model on optimization
formulation and computation in the following. Modeling the
uncertainty as a vector with interval bounds is the only known
scenario under which the resulting uncertain SDP constraint,
which is used to ensure robust stability, admits a tractable
approximation with guaranteed tightness factor [26]. It is
worth mentioning that more general uncertainty sets can be
directly adopted in the proposed framework as long as a
tractable approximation of the uncertain SDP constraint exists,
regardless of explicit knowledge of approximation quality. For
instance, [29] shows that tractable approximations of uncertain
SDP problems can be derived for any polyhedral uncertainty
set. It then follows that the proposed approach can be applied
to problems with polyhedral uncertainty sets. Since ellipsoids
can be well approximated by polytopes, ellipsoidal uncertainty
sets, which are commonly employed for the modeling of
uncertainty set of renewable power profile, can be handled in
the proposed framework as well. However, we use the interval
uncertainty model in this paper due to its relevance for DC
networks and brevity of exposition.

2) Dynamic Network Model: Sources and loads are con-
nected to DC buses. The buses form a connected graph where
a bus is a node and an edge is a π-equivalent power line.
We exemplify the modeling approach using the RLC circuit
shown in Fig. 3. The state variables of the example circuit
are the voltages of the capacitors and the currents through
the inductors, namely, vsk(t), v`j(t), and icp(t). The design
variables are the output voltages of the sources, V ref

k , ∀k ∈ Ns.
The dynamics of the circuit are represented by the following
model using Kirchhoff’s current and voltage laws,

dicp(t)

dt
=

1

Lcp
(v`j(t)−Rcpicp(t)− vsk(t)) , (1a)

dvsk(t)

dt
=

1

Csk

(
V ref
k − vsk(t)

Rsk
− id(t) + icp(t)

)
, (1b)

dv`j(t)

dt
=

1

C`j

(
−v`j(t)

R`j
+ io(t)− icp(t) +

p`j
v`j(t)

)
. (1c)

Equations (1a) and (1b) characterize the behavior of the
power line and the source. They are linear in the state and
design variables. However, (1c) is nonlinear due to the term,
p`j/v`j(t). Recall that io(t) and id(t) represent aggregate
currents flowing from or into the rest of the network. Each
of them is a linear combination of the line currents injections
into the load bus or the generator bus.

The modeling approach can be applied to the entire sys-
tem. By dropping the subscripts indicating variable indices,
p`, v`, vs, ic, V ref represent the vectors of load powers, load
voltages, generator external voltages, power line currents,
and controllable voltage setpoints, respectively. Let x =
[i>c , v

>
s , v

>
l ]> be the vector of state variables and h(x, p`) =

[p`1/v`1, . . . , p`n`
/v`n`

]>.
With the above description and notation, the overall dynam-

ics of the DC grid can be written as follows:

ẋ(t) = Ax(t) +BV ref + Ch(x(t), p`), p` ∈ P`, (2)

where A ∈ Rn×n, B ∈ Rn×ns , and C ∈ Rn×n` are constant
matrices that are determined by the network topology and RLC
circuit parameters through similar methods to those in [14].
This is a well-accepted model for DC network stability studies
and has been applied to a variety of applications [2], [30] (e.g.,
analyses of DC transmission system dynamics [30]).

Remark 3 (Extension): The main results of this paper can
be extended to DC networks with other generator and load
models. For example, many loads are regulated as constant-
current and constant-impedance loads; in addition, recently av-
eraging proportional-integral algorithms [31], [32] have been
developed for generator control. They introduce additional
linear dynamics, and the developed results can be extended
to incorporate them as well.

Let xe(p`, V
ref) = [(Ic)>, (Vs)

>, (V`)
>]> ∈ Rn be an

equilibrium of (2). Notice that the equilibrium is a function
of the load power profile and source voltage setpoint. For
notational simplicity, we drop the arguments in Ic, Vs, and
V` here, and henceforth denote the equilibrium by xe.

When V`k 6= 0,∀k ∈ N`, the linearized Jacobian matrix of
system (2) with respect to xe is given as follows:

J(V`, p`) = A−
∑

k∈N`

p`k
V 2
`k

eke
>
k , (3)

where ek ∈ Rn is a basis vector with the (nc + ns + k)-th
element being 1/

√
C`k. The Jacobian matrix is an affine

function in each term p`k/V
2
`k. The form of this matrix shows

that the local stability of an operating point depends on both
the CPL power and the steady-state CPL voltage.

From basic control theory [33, Thm. 4.6], an equilibrium
xe of (2) is locally exponentially stable if there exists a real
n × n positive definite matrix P that satisfies the following
condition:

PJ(V`, p`) + J(V`, p`)
>P ≺ 0. (4)

If p` and V` are given, this condition is a linear matrix
inequality (LMI) constraint. However, in our problem, p` is
uncertain, V` is a variable to be determined, and the coupling
between V` and P is non-polynomial.
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3) Power Flow Model: The power flow model describes the
steady-state behavior at an operating point of a DC network.
The power flow model is obtained by setting the left-hand side
of (2) to 0 and rearranging terms as

p` = diag{V`}
(
Y``V` + Y`sV

ref
)
, (5)

where the connectivity between CPL–source and CPL–CPL
are described by two admittance matrices Y`s ∈ Rn`×ns and
Y`` ∈ Rn`×n` [34], which are submatrices of the system ad-
mittance matrix Y . Equation (5) is quadratic in state variables
V` and bilinear in design variables V ref and state variables
V`. In general, the power flow model (5) usually introduces
computational challenges owing to its nonconvexity [7].

In addition, the system at steady state needs to satisfy
operational constraints. In this paper, we require that V` ∈ V`
and V ref ∈ Vref . Both sets are convex sets that represent
system operational requirements such as upper and lower
voltage bounds. We limit our presentation to only consider
the constraints related to the load voltages and generator
setpoints, which are directly relevant to the system stability,
in order to simplify the paper’s discussion. Other variables
like the currents are linear functions of the load voltages and
generator voltage setpoints. The proposed algorithm can be
easily extended to incorporate constraints on these variables.

C. Problem Statement
From the models discussed above, a poorly designed V ref

may 1) result in violations of operational constraints; 2) cause
local instability for operating points; and 3) lead to infeasibility
of (5) or even loss of equilibrium altogether.

The goal of this work is to choose the value of V ref which
minimizes operating costs while guaranteeing that the system
is robustly feasible and stable. We make the terms robustly
feasible and robustly stable precise in Definition 1 below:

Definition 1: Given a generator voltage setpoint V ref , sys-
tem (2) is said to be robustly feasible if, for every p` ∈ P`, the
system admits an equilibrium xe which satisfies all operational
constraints. The system is said to be robustly stable if, for
every p` ∈ P`, there exists a corresponding V` such that the
Jacobian J(V`, p`) is Hurwitz.

Remark 4: Despite the rich literature on robust control [35],
[36], a special feature of our problem is that the existence,
location, and local stability of the equilibrium state is depen-
dent on the interplay between the parameter uncertainty and
the control input, as opposed to a common assumption that
the equilibrium is fixed at the origin [23].

Desirable operating points for power systems are usually
computed by solving OPF problems [37]. Recently, OPF
problems for DC networks (DN-OPF) have been a particular
research focus [7], [8], [13]. The formulation of existing
DN-OPF problems can be summarized as follows:

DN-OPF∗: min
V ref∈Vref

f(V ref , V ∗` ), (6a)

s.t. p∗` =diag{V ∗` }
(
Y``V

∗
` +Y`sV

ref
)
, (6b)

V ∗` ∈ V`, (6c)

where p∗` ∈ Rn` is the nominal CPL power profile, V ∗` is
the steady-state load voltage at the nominal load condition,

and f : Rns × Rn` → R is a possibly nonconvex cost function
that usually represents the operating cost (e.g., power loss or
generation cost).

Since our main results do not depend on the structure of the
cost function, we do not explicitly specify the cost functions
in this paper in order to simplify our discussion. Our approach
can easily accommodate typical OPF cost functions. For
example, the case studies in Section IV exemplify generation
cost minimizations. The total generation cost is formulated
by summing the products of each generator’s cost coefficient
with its power output. Since the generator power outputs can
be found using power flow equations, this choice of objective
f can be written in terms of the voltages.

Recently, effective methods have been developed to solve
the DN-OPF problem (6) using approximation and convex
relaxation techniques [7], [8], [13]. However, problem (6) only
considers a fixed loading condition and does not explicitly
consider system stability. If the actual load is different from the
nominal load, the system’s operating point may be unexpected
and possibly even unstable.

To address these limitations, we focus on the following
problem with explicit constraints guaranteeing robust feasi-
bility and robust stability:

R. DN-OPF SIP:
min

V ref∈Vref

P�0

f(V ref , V ∗` ), (7a)

s.t. (∀p` ∈ P`)
PJ(V`(p`), p`) + J(V`(p`), p`)

>P ≺ 0, (7b)

p` = diag{V`(p`)}
(
Y``V`(p`) + Y`sV

ref
)
, (7c)

V`(p`) ∈ V`, (6b), (6c). (7d)

Compared to problem (6), we add the sufficient stability
condition from (4) in order to ensure robust stability. We also
require all constraints to hold for all p` ∈ P` in order to
ensure robust feasibility in the presence of uncertainty. Note
that V`(p`) is an implicit variable; with given V ref , V`(p`) is
a function of p`.

Problem (7) is a robust optimization problem involving an
LMI constraint with structured uncertainty as in (7b) and non-
convex constraints as in (7c). While tractable reformulations or
safe approximations have been identified for some robust conic
programming problems with special uncertainty sets [26],
there are no known general tractable reformulations or safe
approximations for robust nonconvex optimization problems
in the form of (7). In fact, it has been shown in [4] that the
AC-OPF problem is NP-hard even in the deterministic case.
Although DN-OPF is simpler than its AC counterpart, there
is no efficient solver with global optimality guarantee as far
as we know. Even though standard OPF problems can often
be solved with high quality by modern interior point-based
solvers despite their theoretical computational complexity, the
lack of tractable reformulations and approximations makes
solving its robust counterpart difficult. As a result, existing
robust OPF formulations almost exclusively adopt power flow
models that employ convex relaxation techniques instead of
the original nonconvex formulation [15], [38], [39]. To find a
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tractable way to search for a feasible solution to (7), we derive
an efficient convex inner approximation of the feasible region
of problem (7) in the next section.

III. TRACTABLE DN-OPF WITH ROBUST FEASIBILITY
AND STABILITY GUARANTEES

In this section, we derive a computationally tractable opti-
mization problem whose feasible region is a convex inner ap-
proximation to that of the original problem (7). As illustrated
in Fig. 1, the development of the inner approximation consists
of three main steps. First, we solve a series of tractable SDPs
to find a stability set in V` such that for any load in P`, the
corresponding equilibrium is locally exponentially stable if its
load voltages lie in the stability set. Second, based on a power
flow solvability technique, we derive a sufficient condition
on voltage setpoints V ref such that a feasible power flow
solution within operational constraints and stability set exists
for every p` ∈ P`. Third, we formulate a DN-OPF problem
which optimizes V ref over Vref while satisfying the sufficient
condition derived in the second step.

A. Robust Stability Set
The stability set is the feasibility region of the stability

condition (4). Due to the infinite number of constraints and
the non-polynomial structure, this region is difficult to char-
acterize. Motivated by power system operational constraints,
this section describes an interval set which inner approximates
this region.

Let
¯
V s`j and V̄ s`j ∈ Rn`

+ represent the lower and up-
per bounds of an interval set of V`, denoted as Vs` ={
V` :

¯
V s`j ≤ V`j ≤ V̄ s`j ,∀j ∈ N`

}
. We term Vs` a “robust sta-

bility set” when the following definition applies:
Definition 2: A set Vs` is called a robust stability set if there

exists a positive definite matrix P such that the following
inequality is satisfied for all V` ∈ Vs` and all p` ∈ P`:

PJ (V`, p`) + J (V`, p`)
>
P ≺ 0. (8)

From this definition, if an operating point lies in a robust
stability set under load uncertainty set P`, it is locally expo-
nentially stable regardless of specific realization p` ∈ P`. As
shown below, this provides us with the flexibility to remove
the coupling between equilibrium and load profiles.

The interval robust stability set facilitates efficient opti-
mization formulation to solve problem (7). In the following
subsections, we develop rigorous upper and lower bounds on
the load bus voltages under any load uncertainty realization
given the generator voltage setpoints V ref . To certify robust
stability, one only needs to check that the load bus interval
is included in the interval robust stability set, which can be
performed in a computationally efficient manner.

1) Superposition: The matrix J(V`, p`) has the following
two special features: first, the variable V`k and the uncertain
parameter p`k only exist in pairs on the diagonal entries in
the form −p`k/V 2

`k; second, each composite term −p`k/V 2
`k

only appears once in the matrix. This provides the possibility
of applying a superposition method to replace each −p`k/V 2

`k

with a new variable.

Let δk = −p`k/V 2
`k and δ = [δ1, · · · , δn`

]>. When p`k and
V`k are subject to box constraints, the vector δ is contained in
an interval set as well. Let ∆ , {δ :

¯
δk ≤ δk ≤ δ̄k}. We call

δ the diagonal perturbation to the system Jacobian and call
∆ the diagonal perturbation set. Since p`k can be positive or
negative, we let

¯
δk < 0 and δ̄k > 0.

With the above discussed definition, substituting δk =
−p`k/V 2

`k into (3) yields a new expression for the system
Jacobian, J(δ) = A +

∑
k∈N`

δkeke
>
k . Hence, the linearized

system matrix is now subject to an affine interval parameter
uncertainty. In the following, we denote this matrix as J(δ).
We are interested in finding a diagonal perturbation set whose
every element makes the matrix Hurwitz stable, i.e., satisfy
the following inequalities:

PJ(δ) + J>(δ)P � 0, ∀δ ∈ ∆. (9)

Notice that once this ∆ can be found, we can translate it into
the desired robust stability set.

For a given ∆, there exist multiple methods to certify
whether (9) is satisfied [1], [14]. Most existing methods check
multiple “critical scenarios” to certify constraint satisfaction
for all scenarios. The existing methods have issues with
conservativeness or computational tractability. For example,
the condition in [1] tests whether all diagonal elements of
the Jacobian matrix are negative, which cannot be satisfied
in our case when δk is positive. A sufficient condition based
on LMI feasibility testing is proposed in [14] that involves
2n` LMI constraints. While numerical tests reveal that the
condition in [14] has advantages with respect to limited
conservativeness, practical applicability of this condition is
challenging since the number of LMI constraints is exponen-
tially dependent on the dimension of the uncertainty.

Since (9) is a robust semidefinite programming problem with
interval uncertainty set,3 Theorem 9.1.2 of [26] can be applied
to develop a new condition for DC network stability analysis:

Lemma 1: Given ∆, if there exists P � 0, N ≺ 0, and
n` positive scalars λ1, · · · , λn`

that satisfy the following LMI
conditions, J(δ) is always Hurwitz stable for all δ ∈ ∆:

N+
∑n`

k=1 λkeke
>
k

(
δ̄k−

¯
δk

2

)2

Pe1 · · · Pen`

e>1 P −λ1

...
. . .

e>n`
P −λn`

 � 0,

(10a)

N � P (A+

n∑̀
k=1

eke
>
k

δ̄k +
¯
δk

2
) + (A+

n∑̀
k=1

eke
>
k

δ̄k +
¯
δk

2
)>P.

(10b)
The condition in Lemma 1 only involves two LMIs. The
decision variables are two n×n matrices, P and N , as well as
n` scalars λj . In total, the condition has 2n2 + n` free scalar
variables. Since this number is polynomially dependent on n
and n`, the condition has reasonable scalability.

The reduction in computational complexity may induce
concerns regarding conservativeness. One method to evaluate

3In a robust semidefinite programming problem, the constraint is bilinear
in the uncertainty and the decision variable while it is an LMI in the decision
variable if the uncertainties are known constants.



LIU et al.: OPTIMAL POWER FLOW IN DC NETWORKS WITH ROBUST FEASIBILITY AND STABILITY GUARANTEES 7

the conservativeness is to compare the volume of the largest
sets that the conditions can certify. Compared to Lemma 1
of [14] where the number of LMIs is exponential in the number
of loads, numerical tests show that the proposed conditions
can certify a set with a volume above 95% of the largest set
certifiable by exponentially many constraints. For example,
we apply our results to the example DC microgrid detailed
in Case Study 2 of [14]. The simulation results are shown in
Table I. Notice that in the case study, we consider all pure-
load buses and fix the voltage lower bounds, hence the volume
of the stability set is indexed by the load power. Higher loads
correspond to larger sets and a reduction in the condition’s
conservativeness. Note that the proposed results can certify
a set with a volume over 99.5% relative to the condition
with exponentially many LMIs in [14] and shows significant
improvements compared to the condition with polynominally
many LMIs in Proposition 1 of [14].

TABLE I
VOLUME OF LARGEST CERTIFIABLE ROBUST STABILITY SET

Lemma 1 Expo. LMIs [14] Poly. LMIs [14]
Highest Load (kW) −19.87 −19.96 −18.23

2) Computing the Robust Stability Set: With the proposed
stability condition, we are equipped with a tractable method
to check whether a given ∆ satisfies (9). We would like to find
a set ∆ with a larger volume to find a larger robust stability
set. This essentially involves adjusting the vertices of ∆. We
use a line search method to accomplish this goal.

A subsequent question concerns selecting an initial guess
for ∆ that reduces computational efforts in finding a larger
stability set. Rather than arbitrarily choosing an initial guess,
we make one suggestion of the initial guess that may find the
largest interval stability set in a single shot. This guess covers
the entire domain of δ with respect to all possible power flow
solutions. The details are provided in Appendix A.

Let the initial guess set be denoted as ∆0. The volume of
∆ can be adjusted by introducing a positive scaling factor
α to all the vertices. We denote the set after adjustment as
∆ = α∆0. We want to find the largest α that satisfies the
condition of Lemma 1. This value is found by solving the
following generalized eigenvalue problem (GEVP):

GEVP: max
α>0,P�0,N≺0,λ>0

α s. t. (11a)
N+α2

∑n`

k=1 λkeke
>
k

(
δ̄k−

¯
δk

2

)2

Pe1 · · · Pen`

e>1 P −λ1

...
. . .

e>n`
P −λn`

� 0,

(11b)

N � P (A+

n∑̀
k=1

eke
>
k

δ̄k +
¯
δk

2
) + (A+

n∑̀
k=1

eke
>
k

δ̄k +
¯
δk

2
)>P.

(11c)

where δ̄k and
¯
δk represent the upper and lower bounds of

elements in ∆0 to simplify our discussion.

A solution that is arbitrarily close to the global optimum can
be found for the GEVP problem (11) since it is a quasi-convex
problem [40]. For a solution α of (11), we are endowed with
a robust stability set as described below.

Proposition 1: Given ∆0, if α is a solution of (11), Vs`
defined in the following is a robust stability set:

Vs
` = {V` : V`k ≥ V s

`k,∀k ∈ N`} ,

where (V s
`k)2 = max{−p̄`k/(α

¯
δk), −

¯
p`k/(αδ̄k)}.

Proof: Available in Appendix B
In Proposition 1, we find the lower bound for the steady-state
voltage to ensure robust stability. This bound is in line with
engineering observations for DC grid stability: with larger load
power, the system should be operated at higher voltage levels
to reduce the risks of instability.

Remark 5: The value of α is critical for determining the
robust stability set. If the initial set discussed in Appendix A is
used, the value of α is upper bounded by 1 since the set outer
approximates the variation range of the uncertainty. When
the solution is obtained as 1, the largest interval stability set
can be directly found. Otherwise, a line search algorithm can
be developed to approximately solve (11). In the line search
process, a finite sequence of semidefinite programming (SDP)
problems need to be solved. There exist numerically efficient
algorithms to solve SDP problems [40].

B. Solvability Condition

As shown in Fig. 1, after the robust stability set is found, our
next task is to ensure: a) the system operates in this set and b)
the system complies with all other operational constraints. This
task is equivalent to the following robust feasibility problem:
we need to compute a voltage setpoint V ref ∈ V ref that
guarantees the existence of power flow solutions (i.e., solutions
to (5)) that are in Vs` ∩ V` for all p` ∈ P`.

The problem of certifying the existence and characterizing
the range of power flow solutions under uncertain power injec-
tions has been studied for the AC power flow model through
convex restriction [41]. Due to the intrinsic nonconvexity of
AC power flow model, the convexification approach may be
conservative. On the other hand, the geometry of DC power
flow equations is considerably simpler than its AC counterpart
(cf. [42]) so better results may be expected. In fact, we show
in this section that for the given interval uncertainty set of
power injections, there is an efficient way to exactly certify
solution existence and characterize their bounds.

We first introduce the following Lemma from [43].
Lemma 2 ([43, Thm. 3]): Given p` and V ref > 0, if (5) is

solvable, then there exists a high-voltage solution V ∗` > 0 to
(5) such that V ∗` ≥ V` for all other solutions V` to (5).

The next Lemma shows the existence and bounds of power
flow solutions for any loading condition when the high-voltage
solutions for the extreme loading conditions are known.

Lemma 3: Let V`− be the high-voltage solution for p` =

¯
p`, then (5) is solvable for all p` ∈ P` and the high-voltage
solution for any p` ∈ P` satisfies V`(p`) ∈ [V`−, V`+] where
V`+ is the high-voltage solution for p` = p̄`.

Proof: Available in Appendix C.
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Lemma 3 describes a power flow solution existence condi-
tion. It states that operating points exist for all p` ∈ [

¯
p`, p̄`]

if an operating point exists for the high-loading condition.
Further, this lemma shows that the high-voltage solutions for
any p` ∈ P are bounded by those for

¯
p` and p̄`. The next result

derives a simple certificate to check if the power flow solution
is the high-voltage one under nonnegative power injections.

To facilitate subsequent discussion, we rearrange (5) into
the following fixed-point form:

V` = Gp`(V`) , E + Z`` diag{p`}r(V`), (12)

where we denote Z`` = Y −1
`` , E = −Y −1

`` Y`sV
ref , and

r(V`) = [1/V`1, · · · , 1/V`n`
]> yields the element-wise recip-

rocal of vector V`.
Proposition 2: Let the power injection p` = p̄` ≥ 0 and

source voltage V ref > 0 be given. When

||Z`` diag−2{E}p̄`||∞ < 1,

there exists a unique solution to (5) in [E,+∞).
Proof: Available in Appendix D.

Lemma 3 provides the following two implications that align
with engineering observations:

1. (“Monotonicity” with respect to solution existence) We
only need to verify that the system is solvable at the
high-loading condition

¯
p` to ascertain the existence of

power flow solution at any loading condition p` ≥
¯
p`.

2. (Monotonicity with respect to voltage) The high- and low-
loading solutions jointly define solution bounds for power
flow solutions under all loading conditions in between,
where the high-loading solution provides the lower bound
and low-loading solution provides the upper bound.

These implications help reduce computational efforts in DC
network operations. For example, one only needs to examine
whether the system has an operating point in the high-
loading condition to certify all the other cases. Moreover, these
conditions are key for developing a solution algorithm for (7).

C. Robust DN-OPF

As we have characterized a cluster of operating points with
respect to given generator setpoints, the remaining task is to
design the setpoints to steer the cluster into the desired set
(i.e., Vs` ∩ V`) and to reduce system operational costs.

To accomplish these two objectives, an optimization prob-
lem can be formulated as

R. DN-OPF*:
min

V ref∈Vref ,s>0
f(V ref , V ∗` ), (13a)

s.t.
¯
p` = diag{V`−}

(
Y`` V`− + Y`s V

ref
)
, (13b)

p̄` = diag{V`+}
(
Y`` V`+ + Y`s V

ref
)
, (13c)

E = −Z`` Y`s V ref , E ≤ V`+, (13d)

1 s ≤ E, Z`` p̄` ≤ 1 s2, (13e)
V`− ∈ Vs` ∩ V`, V`+ ∈ Vs` ∩ V`, (13f)
(6b), (6c). (13g)

Constraints (13b) and (13c) represent the DN power flow
equations for the high- and low-loading conditions, con-
straints (13d)–(13e) enforce the condition of Proposition 2,
and constraints (13f) and V ref ∈ Vref ensure the operating
points are steered into the desired set.

A solution of (13) yields generator setpoints which ensure
robust stability and feasibility, as stated by the following result:

Theorem 1: Any solution of (13) is a feasible point of (7).
Proof: Available in Appendix E.

Theorem 1 shows that the feasibility of (13) implies the
feasibility of (7). Problem (13) only contains linear and
quadratic constraints whose structure resembles that of a clas-
sic DN-OPF problem (6). Thus, existing DN-OPF algorithms
can be leveraged to solve (13). We use the following algorithm
to summarize the main result of the paper:

Algorithm 1 Find V ref for SIP (7)
Input: System matrices A, B, C, D, load uncertainty set P`,
constraint sets V` and Vref .
Output: A solution V ref .
Step 1: Construct ∆0 (e.g., use the suggested set detailed in

Appendix A).
Step 2: Solve GEVP (11) to find α and all V s

`k, k ∈ N`.
Step 3: Find robust stability set Vs` .
Step 4: Solve problem (13) to find V ref.

Using Algorithm 1, we can compute generator setpoints that
ensure robust stability and feasibility. As previously discussed,
the algorithm can be executed efficiently with existing tools.

Remark 6 (Actual Operating Points): Our work can ensure
the robust stability and feasibility of the actual operating
points. Like a general power system, a DC network usually
operates at a high-voltage power flow solution [44]. As dis-
cussed in Appendix D, all high-voltage solutions are bounded
from above by that of the low-loading condition and from
below by that of the high-loading condition. Note that V`+ is
the high-voltage solution at the low-loading condition, hence it
is a tight upper bound for the system’s high-voltage solutions.
In addition, V`− is a solution at the high-loading condition,
which is element-wise less than or equal to the high-voltage
solution. Hence, any high-voltage solution must reside in the
range [V`−, V`+], which is entirely steered into the desired set.

Remark 7 (Conservativeness): Numerical studies show that
the proposed approach has limited conservativeness. As shown
in Section IV, the interval bound [V`−, V`+] found through
solving (13) usually has no gap with respect to the actual
operating point variation range.

Remark 8 (Computational Tractability): Algorithm 1 has
limited computational difficulty. Specifically, Step 1 can be
approximated by SOCPs as shown in Appendix A. Step 2 in-
volves solving a series of SDPs. There exists computationally
efficient algorithms to solve both problems [40]. As discussed
in Section III-A, Steps 3 only involves simple algebraic
calculations that pose trivial computational burdens. As for
Step 4, since problem (13) resembles a standard deterministic
DN-OPF problem, we can leverage many existing optimization
solvers like IPOPT [45] that have been shown to be effective
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for solving OPF problems.

IV. CASE STUDIES

This section demonstrates the validity of the proposed
algorithm using simulation case studies. The optimization
problems are solved using IPOPT [45], and the simulations
are performed in Matlab/Simulink.

A. Efficacy
We first focus on an example DC network whose topology

and bus types are the same as the IEEE 14-bus system. The
parameters of the DC network given in Table II are chosen
according to existing DC network case studies [2], [34]. We
let the CPLs vary in [-50kW,0], and impose operational bounds
of [450 V, 550 V] on the generator and CPL voltages, which
allows a ±0.1 p.u. deviation when 500 V is set as base voltage.
The objective function minimizes the generation costs at the
nominal operating condition, which is set to be −25 kW.

TABLE II
PARAMETERS FOR THE 14-BUS DC NETWORK CASE STUDY

Rsk 0.05 Ω Rlj 5 Ω Rcp 0.05 Ω
Lcp 3mH Csk 0.75mF Clj 0.9mF

When we ignore the range of possible uncertainty realiza-
tions, the solution to the DN-OPF problem (6) yields setpoints
of the five generators as [481.8, 489.7, 481.2, 480.6, 486.5] V.
We apply these setpoints and consider a uniform increase in
load demands of 2.5 kW every 2.5 seconds. As shown in the
middle subfigure of Fig. 4, the system becomes unstable at
approximately 38 seconds when the load is 45 kW. This shows
the need to consider stability properties for operating point
design, especially in systems with significant uncertainties.

In comparison, we formulate the optimization problem (13)
using our algorithm. Applying the stability analysis approach
developed in Section III-A shows that the system is always
robustly stable if the steady-state CPL voltage is higher
than 500 V. Problem (13) yields the following setpoints:
[543.5, 550.0, 542.8, 542.1, 549.3] V. Using these setpoints re-
sults in robust stability for the entire range of load demands,
as empirically corroborated by Fig. 4. Observe that the system
remains stable when the loads are increased at the same rate
as in the previous test. In addition, we test the stability of
the system after large load step changes, where all the loads
increase from 0 kW to 50 kW in five steps. The simulation
results are shown in Fig. 5. The system is still stable despite
the large load increases.

B. Conservativeness
Moreover, we show that our approach can recover the exact

power flow solution variation range. Aside from the previous
scenario with all loads, we further consider the scenarios:
all generation case, where power outputs of each constant
power component varies in [0, 50 kW]; all mixed case, where
each constant power component varies in [−50 kW, 50 kW].

Revision 2

Fig. 4. DC network performance w/ and w/o proposed workRevision 2

Fig. 5. DC microgrid remains stable with large load variations

Table III presents the difference of the obtained [V`−, V`+]
relative to the actual lower and upper bounds observed in the
simulation for the three scenarios. Observe that we find the
exact variation range of the system’s actual operating points.

TABLE III
RECOVERING EXACT OPERATING POINT VARIATION RANGE

All gen. All loads All mixed
Gap for upper bound 0 0 0
Gap for lower bound 0 0 0

C. Computational Efficiency

We have tested the computational tractability of DN-OPF
problem (13) on DC networks with the same topology and
bus types as the IEEE 9-, 39-, 118-, 300-, and 2383-bus
systems. To summarize the results, Table IV compares the
average CPU time in IPOPT for solving problem (13) and the
traditional DN-OPF problem (6), averaged over 10 tests for
each system. Observe that the proposed optimization problem
has a similar computational complexity as the traditional
DN-OPF problem for systems with moderate sizes, and is
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still reasonably tractable for large-scale systems like 2383-bus
system. This verifies the tractability of our algorithm.

TABLE IV
COMPARISON OF COMPUTATION TIME (IN SEC.) FOR SOLVING (6)

AND (13)

9-bus 39-bus 118-bus 300-bus 2383-bus
DN-OPF (6) 0.04 0.09 0.17 0.26 0.87
Problem (13) 0.08 0.16 0.50 1.77 196.21

V. CONCLUSION

This paper has developed an algorithm for solving stability-
constrained OPF problems in DC networks under uncertainty.
Such problems are usually intractable due to infinitely many
constraints. Our algorithm uses computationally efficient ap-
proaches to transform the problem into a tractable counter-
part that resembles a traditional DN-OPF problem such that
existing tools can be employed. We first derive a robust
stability set within which any operating point is guaranteed
to be robustly stable. We then use a sufficient condition which
ensures the existence of feasible operating points in this set
for all uncertainty realizations in the specified uncertainty set.
Low conservativeness and high computational efficiency of the
proposed algorithm are demonstrated using various test cases.
In future research, we will investigate the application of the
algorithm to DN-OPF problems with contingency constraints.

APPENDIX

A. Initial Guess for Robust Stability Set
The suggested set is motivated by the outer convex

approximation of an OPF problem. Here we find an outer
approximation of the domain of δ. The coupling between p`
and V 2

` is leveraged to ensure a tight approximation. Let V 2
`k+

and V 2
`k− be a pair of upper and lower bounds of V 2

` for any
feasible power flow solution, and let δk+ and δk− be the outer
approximation boundaries for δk with respect to V 2

`k+ and
V 2
`k−. Notice that there are three types of loading conditions:

1) pure-load condition, i.e. p̄` = 0 ≥
¯
p` (as discussed in

Section II-B, p̄` = 0 is to allow load to completely turn off);
2) pure-generation condition, i.e. 0 ≤

¯
p` ≤ p̄`; and 3) mixed

condition, i.e.
¯
p` ≤ 0 ≤ p̄`. We exemplify the choice of the

initial guess for the mixed condition here for brevity. Under
this condition, δ`j+ = −

¯
p`j/V

2
`j− and δ`j− = −p̄`j/V 2

`j−. We
only need to find V 2

`k− in order to obtain δk+ and δk−. Such
a bound can be found through solving the following problem:

Lower Bound: min
p`∈P`,V ref∈Vref

V 2
`k, s. t. (5), V` ∈ V`. (14)

Notice that (14) is a conventional optimal power flow problem
with a QCQP formulation. Even though there exist efficient
numerical solvers for such problems, the nonconvexity of (14)
may still raise concerns regarding the solution of n` of these
problems. Since we only need to find a lower bound on the
steady-state voltage, one could instead apply a second-order
cone programming (SOCP) relaxation method to find a lower
bound of the global optimum of (14).4

4With certain conditions on the problem structure, the SOCP relaxation
of (14) is exact. Detailed discussion can be found in [7], [8].

B. Proof of Proposition 1

Proof: From the definition of ∆, we have
¯
δk < 0 < δ̄k

for all k = 1, . . . , n`. Suppose that α > 0 and P � 0
are solutions of GEVP (11). From Lemma 1, any δ ∈ α∆0

satisfies PJ(δ)+J>(δ)P � 0. Suppose V` and p` are arbitrary
elements of Vs

` and P`, respectively. With a slight abuse of
notation, let δ = [−p`1/V 2

`1, · · · ,−p`n`
/V 2

`n`
]>. It suffices

to demonstrate that δ ∈ α∆ to show the validity of the
proposition. For each entry of δ, there are three types of
cases to consider: 1) p`k = 0; 2) p`k > 0; and 3) p`k < 0.
For case 1), the proof is trivial as δk = 0 and it must lie
in [α

¯
δk, αδ̄k]. For case 2), we have the following derivation,

α
¯
δk ≤ −p̄`k

(V s
`k)2 ≤ δk = −p`k

V 2
`k

< 0 < αδ̄k, where we have used
1) (V s

`k)2 ≥ −p̄`k/(α
¯
δk); 2)

¯
δk < 0 < δ̄k; 3) 0 < p`k ≤ p̄`k;

and 4) 0 < (V s
`k)2 ≤ V 2

`k. The proof in regards to case 3) is
similar and is omitted for brevity.

C. Proof of Lemma 3

Proof: To facilitate our discussion, we write Y`` =
Y d
`` + Y off

`` where Y d
`` and Y off

`` are the diagonal and off-
diagonal parts of Y``. The power flow equation (5) can then
be rearranged as

diag{V`}Y d
``V` = p` − diag{V`}Y off

`` V` − diag{V`}Y`sV ref .
(15)

Since Y d
`` � 0, we can left-multiply both sides of (15) by(

Y d
``

)−1
to obtain the following reformulation of (5):

diag{V`}V` =
(
Y d
``

)−1 (
p` − diag{V`}Y off

`` V`

− diag{V`}Y`sV ref
)
. (16)

Define W , diag{V`}V`, then (16) represents a fixed-point
mapping of W which can be written more compactly as

W = Fp`(W ). (17)

We know from [43, Lemma 2] that for any p` there exists
a Wmax such that Wmax ≥ W for any W satisfying W ≤
Fp`(W ). In addition, we have Wmax ≥ Fp`(Wmax). Since
(Y d
``)
−1,−Y off

`` ,−Y`s are all positive matrices, Fp`(·) is an
increasing function: X ≥ Y implies Fp`(X) ≥ Fp`(Y ).
Similarly, Fp`(W ) is an increasing function with respect to p`.
Let V`− be the high-voltage solution for p` =

¯
p` and denote

diag{V`−}V`− by W−. Let p` ≥
¯
p` be given. By monotonicity

of F with respect to p` we know Fp`(W−) ≥ F
¯
p`(W−) =

W−. By definition of Wmax, we have Wmax ≥ Fp`(Wmax).
Furthermore, Fp`(W−) ≤ Fp`(W ) ≤ Fp`(Wmax) holds for
any W ∈ [W−,Wmax] by monotonicity of Fp`(W ). It follows
from the inequalities above that W− ≤ Fp`(W ) ≤ Wmax for
any W ∈ [W−,Wmax]. In other words, [W−,Wmax] is an
invariant set for (17). It follows from Brouwer’s fixed-point
theorem that (17) admits a fixed point in [W−,Wmax]. By
definition of Wmax, the high-voltage solution lies in the set
too. We have thus shown that the high-voltage solution exists
for all p` ∈ P as long as V`− exists and it is increasing with
respect to load power p`. The last statement follows.
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D. Proof of Proposition 2

Proof: Banach’s fixed-point theorem is used to establish
the proof. It states that for any contraction mapping G on a
complete metric space mapping a set to itself, there is a unique
point x0 in the set such that G(x0) = x0.

We show that Gp̄`(·) is a self map on [E,+∞). Notice that
E > 0, and Gp̄`(·) = E + Z`` diag{p̄`}r(V`) with positive
matrix Z`` and nonnegative p̄`. Hence, the second term on
the right-hand side must be nonnegative. Thus, for all V` ∈
[E,+∞) we have Gp̄`(V`) ≥ E.

Next, we show that Gp̄`(·) is a contraction mapping on
[E,+∞). For any V a, V b ∈ [E,+∞) , the infinity norm of
Gp̄`(V

a)−Gp̄`(V b) is upper bounded as follows:

||Gp̄`(V a)−Gp̄`(V b)||∞
= ||Z`` diag{p̄`}

(
r(V a)− r(V b)

)
||∞

≤ ||Z`` diag−2{E}p̄`||∞ · ||V a − V b||∞, (18)

where ||Z`` diag−2{E}p̄`||∞ is a positive constant less than
1. Hence, Gp̄`(·) is a contraction mapping on [E,+∞).

From the Banach fixed-point theorem, Gp̄`(·) has a unique
fixed point in [E,+∞), which is clearly the high-voltage
solution.

E. Proof of Theorem 1

Proof: Suppose V ref , V`−, V`+, and s are solutions
of (13). We only need to show V ref ensures robust stability
and robust feasibility as defined in Definition 1.

First, when (13) is feasible, the condition of Proposition 2 is
satisfied with infinity-norm since constraints (13b)–(13e) hold.
Lemma 3 says that there must exist a power flow solution V`
in [V`−, V`+] for any p` ∈ [

¯
p`, p̄`].

Second, from (13f) the interval [V`−, V`+] belongs to Vs` ∩
V`. Hence, the power flow solution V` ∈ Vs` ∩V` as well. Thus,
the system power flow solution satisfies both the operational
constraints and the stability constraints.

Since V` ∈ V` and V ref ∈ Vref , the system is robustly
feasible. Since V` ∈ Vs` , by Proposition 1 the system is also
robustly stable. Thus, the proof is complete.
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