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Solving Multiperiod OPF Problems using an AC-QP
Algorithm Initialized with an SOCP Relaxation

Jennifer F. Marley, Daniel K. Molzahn, and Ian A. Hiskens

Abstract—Renewable generation and energy storage are play-
ing an ever increasing role in power systems. Hence, there is
a growing need for integrating these resources into the optimal
power flow (OPF) problem. While storage devices are important
for mitigating renewable variability, they introduce temporal
coupling in the OPF constraints, resulting in a multiperiod
OPF formulation. This paper explores a solution method for
multiperiod AC OPF that combines a successive quadratic
programming approach (AC-QP) with a second-order cone
programming (SOCP) relaxation of the OPF problem. The
SOCP relaxation’s solution is used to initialize the AC-QP
OPF algorithm. Additionally, the lower bound on the objective
value obtained from the SOCP relaxation provides a measure
of solution quality. This combined method is demonstrated on
several test cases with up to 4259 nodes and a time horizon
of 8 time steps. A comparison of initialization schemes indicates
that the SOCP-based approach offers improved convergence rate,
execution time and solution quality.

Index Terms—Optimal power flow, convex relaxation, global
solution, large-scale power system optimization.

I. INTRODUCTION

THE goal of an optimal power flow (OPF) is to determine

the optimal operating point for an electric power system
relative to a specified objective, such as minimizing generation

cost, losses, or renewable spillage. In optimizing the specified
objective, the solution must satisfy engineering and physical

constraints. These consist of the nonlinear AC power flow

equations, line-flow limits, and operational limits on control
variables (including voltage magnitude limits and generator

active and reactive power output limits) [1].

Many solution methods have been applied to AC OPF
problems. These include gradient methods, Newton’s method,

successive quadratic programming methods (AC-QP), and

interior point methods [1]–[4]. Additionally, the DC OPF
formulation is often used to approximate the AC OPF problem

as a quadratic program [5]–[7]. Due to its convexity and scal-

ability to large networks, the DC OPF approximation offers
a variety of computational benefits. Under normal operating

conditions, it usually provides a reasonable approximation of

the AC OPF problem [8]. However, it does not necessarily
result in an AC feasible solution, and there are cases where

the DC power flow has non-negligible errors compared to the
AC power flow [9], [10].

The AC-QP OPF algorithm is the focus of this paper.

This algorithm uses a successive linearization procedure im-

plemented with a quadratic program (QP) [1]. The AC-QP
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algorithm has the advantage of providing an AC-feasible so-

lution, as each iteration solves an AC power flow. Additionally,

solvers for quadratic programs and AC power flow methods
scale well, making the AC-QP algorithm applicable to large

systems. However, these advantages come with some trade-
offs: this method is dependent on a converged AC power

flow and the optimal solution is sensitive to the initialization.

Depending on the proximity of the initialization to the globally
optimal solution, the AC-QP algorithm runs the risk of failing

to converge or converging to a local solution. Thus, developing

better initialization procedures is important for improving the
performance of the AC-QP algorithm. The initialization chal-

lenges of the AC-QP algorithm are particularly pronounced
following a large change in loading and/or network topology

which results in a significant change in the operating point

(e.g., contingency events) as well as for planning scenarios
which offer limited prior knowledge of the solution.

There have been many recent developments in applying
semidefinite programming (SDP) and second-order cone pro-

gramming (SOCP) methods to formulate convex relaxations
of the OPF problem. Several examples of these relaxations

can be found in [11]–[23]. Convex relaxations lower bound

the objective value, can certify problem infeasibility, and, in
many cases, provide the global solution (i.e., the relaxations

are often exact). However, there are many practical problems

for which existing relaxations fail to be exact, so the solutions
they produce are not physically realizable [24]–[26]. While

solvers for the SDP relaxations are available for moderately

sized networks, application to large networks is generally more
complicated than other solution methods [14], [18]. Thus,

further research is needed to employ these methods in real-
time applications for large networks. In contrast, the SOCP

relaxation in [13] can be quickly solved for large networks to

obtain a lower bound on the globally optimal objective value
and an initialization for the AC-QP algorithm. Providing a

procedure for combining these two methods in this manner is

the focus of this paper.

Renewable generation offers economic and environmental
benefits, but also challenges system reliability due to its

inherent variability. Storage devices provide a means of (at

least partially) mitigating this variability. Thus, OPF methods
must be adapted to incorporate both renewable generation

and storage [27]. However, the state-of-charge dynamics of

storage devices [28] introduce temporal coupling, requiring a
multiperiod OPF formulation.

Several multiperiod OPF formulations that integrate re-

newable generation and storage use a horizon of 24 hours.

However, computation time may be excessive when consid-
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ering such a long horizon, even for mid-sized systems. As

a result, formulations often rely upon the DC power flow
approximation, as in [29], or are applicable only to relatively

small networks, as in [30]. The algorithm developed in this

paper is motivated by on-line applications and so considers an
8-step time horizon in order to meet solution-time constraints.

The examples provided in Section III suggest, however, that
longer horizons are quite feasible. A 30-minute step is used

in the examples, giving a 4-hour horizon, though the choice

of time-step has negligible impact on the proposed algorithm.

Other work in multiperiod AC OPF with storage models

includes the formulations in [31] and [32]. These approaches
establish an SDP relaxation of a multiperiod OPF problem

with storage, but do not consider the SOCP relaxation, and

do not provide a mechanism for addressing cases where the
relaxation is not exact. Furthermore, [31] does not consider

storage devices that have non-ideal charge/discharge efficien-

cies, while [32] considers non-ideal efficiencies but allows
non-physical simultaneous charging and discharging.

This paper presents multiperiod versions of both an AC-QP
algorithm and an SOCP relaxation which include renewable

generation and storage devices that have non-ideal charging

and discharging efficiencies. Using the SOCP relaxation’s so-
lution to initialize the AC-QP algorithm enables consideration

of problems for which the SOCP relaxation is not exact.

The paper is organized as follows. Section II describes

two formulations of the OPF problem with storage and wind:
an SOCP relaxation and an AC-QP algorithm. Section III

presents results for several test cases in order to demonstrate

the benefits of the SOCP initialization compared to two other
methods. Section IV concludes the paper.

II. PROBLEM FORMULATION AND SOLUTION ALGORITHM

This section presents a multiperiod OPF formulation with

energy storage devices, including non-ideal charge and dis-

charge efficiencies. A convex SOCP relaxation of this problem
is then presented, followed by the AC-QP algorithm. Solution

of the SOCP relaxation provides both an initialization for

the AC-QP algorithm and a lower bound on the objective
value, with the latter forming a convenient measure of solution

quality.

A. Multiperiod OPF Problem Formulation

The OPF problem seeks to minimize generation cost while
satisfying power balance constraints and operational limits on

control variables. The formulation used in this paper includes

both storage devices and wind generation.

Consider an n-bus power system with buses in the set N =
{1, . . . , n}. Define the set of buses with traditional generators
as G, each with an associated convex quadratic cost curve

Ci(Pg,i) = c2,iP
2
g,i + c1,iPg,i + c0,i. Let S denote the set

of storage buses and W denote the set of buses with wind
generation. The slack bus is denoted by slack.

We use the line model shown in Fig. 1 with an ideal
transformer that has a specified turns ratio τije

jθshift,ij : 1
in series with a Π-circuit with series impedance Rij + jXij

and shunt admittance jbsh,ij , where j is the imaginary unit.

Lij = |Iij |
2

Iij
+

−

Vi

τije
jθshift,ij : 1

Rij
Iπ

Xij

bsh,ij

2

bsh,ij

2

+

−

Vj

Pij + jQij

Fig. 1. Line model.

The corresponding series admittance is given by gij + jbij =
1/(Rij + jXij). The active and reactive flows into the line’s

terminal i are denoted Pij and Qij respectively. The squared
current flow is given by Lij , where Iij represents the current

flow into terminal i. Similarly, Iπ gives the current flow
in the π circuit. The voltages across the i and j terminals

are represented by Vi and Vj respectively. The set of lines

is denoted by L with (i, j) ∈ L indicating that the ideal
transformer is at end i of the line. The maximum apparent

power flow on line (i, j) is Smax
ij .

The time horizon is denoted by T = {0, . . . , T − 1}, and
the time steps are indexed by t. The length of each time step

is Ts.
Upper and lower limits on active and reactive power injec-

tion at generator bus i ∈ G are denoted by Pmax
g,i , Pmin

g,i and

Qmax
g,i , Qmin

g,i , respectively. This formulation models storage at
bus i ∈ S as a sink or source of active power with charging

and discharging efficiencies ηc,i and ηd,i, respectively, and
corresponding maximum rates Rmax

c,i and Rmax
d,i . The initial

and final state of charge are einiti and etermi , respectively,
and the maximum state of charge is Ei. Wind generation at

bus i ∈ W and time t ∈ T is modeled as a source of active

power injection with maximum value Wmax
i (t), zero marginal

cost and full curtailment allowed.
The decision variables are the (complex) voltages at each

bus and each time, Vi(t) = |Vi(t)|∠θi(t), i ∈ N , t ∈ T , and
the battery state of charge ei(t) for each storage device i ∈ S
and time t ∈ T . If positive, the charging rate at time t ∈ T is
rc,i(t) = (ei(t+1)−ei(t))/(Tsηc,i). Otherwise, the discharge

rate at time t ∈ T is rd,i(t) = ηd,i(ei(t) − ei(t + 1))/Ts.

As modeled by the power flow equations, the voltages are
dependent upon power injections into the network given by

Pg,i (t), Qg,i (t), i ∈ G; Pw,i (t), i ∈ W ; rd,i (t)− rc,i (t), i ∈
S; and the active and reactive power loads Pd,i (t), Qd,i (t),
i ∈ N at all times t ∈ T . The shunt admittance at bus i ∈
N is given by gsh,i + jbsh,i. The upper and lower limits on

the voltage magnitude at bus i ∈ N are Vmax
i and V min

i ,
respectively.

With these definitions, the multiperiod OPF problem can be
expressed as:

min
∑

t∈T

∑

i∈G

Ci(Pg,i (t)) subject to (∀t ∈ T ) (1a)

Pmin
g,i ≤ Pg,i (t) ≤ Pmax

g,i ∀i ∈ G (1b)

Qmin
g,i ≤ Qg,i (t) ≤ Qmax

g,i ∀i ∈ G (1c)

0 ≤ Pw,i (t) ≤ Wmax
i (t) ∀i ∈ W (1d)

0 ≤ rc,i (t) ≤ Rmax
c,i ∀i ∈ S (1e)

0 ≤ rd,i (t) ≤ Rmax
d,i ∀i ∈ S (1f)
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0 ≤ ei (t) ≤ Ei ∀i ∈ S (1g)

ei (0) = einit
i ∀i ∈ S (1h)

ei (T ) = etermi ∀i ∈ S (1i)

Ts

(

ηc,irc,i (t)− rd,i (t)

ηd,i

)

= ei (t+ 1)− ei (t) ∀i ∈ S (1j)

rc,i (t) rd,i (t) = 0 ∀i ∈ S (1k)

V min
i ≤ |Vi (t) | ≤ V max

i ∀i ∈ N (1l)

θslack (t) = 0 (1m)

Pij(t) = |Vi(t)|2gij/τ 2
ij − |Vi(t)||Vj(t)|[gij cos(θij(t))+

bij sin(θij(t))]/τij ∀ (i, j) ∈ L (1n)

Pji(t) = |Vj(t)|2gij − |Vi(t)||Vj(t)|[gij cos(θji(t))+
bij sin(θji(t))]/τij ∀ (i, j) ∈ L (1o)

Qij(t) = −|Vi(t)|2(bij + bsh,ij
2

)/τ 2
ij + |Vi(t)||Vj(t)|·

[bij cos(θij(t))− gij sin(θij(t))]/τij ∀ (i, j) ∈ L (1p)

Qji(t) = −|Vj(t)|2(bij + bsh,ij
2

) + |Vi(t)||Vj(t)|·
[bij cos(θji(t))− gij sin(θji(t))]/τij ∀ (i, j) ∈ L (1q)

Pij(t)
2 +Qij(t)

2 ≤
(

Smax
ij

)2 ∀ (i, j) ∈ L (1r)

Pji(t)
2 +Qji(t)

2 ≤
(

Smax
ij

)2 ∀ (i, j) ∈ L (1s)

Pg,i (t) + Pw,i (t) + rd,i (t)− rc,i (t)− Pd,i (t) =
∑

(i,j)∈L

Pij(t) +
∑

(j,i)∈L

Pij(t) + gsh,i|Vi(t)|2 ∀i ∈ N (1t)

Qg,i (t)−Qd,i (t) =
∑

(i,j)∈L

Qij(t) +
∑

(j,i)∈L

Qij(t) + bsh,i|Vi(t)|2 ∀i ∈ N (1u)

where the power injections equal zero when the corresponding
device does not exist at a bus (e.g., Pg,i = 0, ∀i ∈ N \G). Con-

straints (1b) and (1c) limit the active and reactive generation
at conventional generators. Constraint (1d) limits the active

power output of wind generators. Constraints (1e) and (1f)

limit the charge and discharge rates, respectively, (1g) limits
the maximum energy storage, and (1j) controls the state-

of-charge evolution with boundary conditions set by (1h)

and (1i)1. Constraint (1k) prevents simultaneous charging
and discharging of the storage devices. See [28] for further

details on this storage device model.2 The voltage magnitude
limits are enforced by (1l), and (1m) sets the reference

angle. Constraints (1n)-(1q) define the active and reactive line

flows at both ends of each branch in the network, where
for each line (i, j) ∈ L, θij = θi − θj − θshift,ij , and

θji = θj − θi + θshift,ij . These line flows are used in (1r)-

(1s) to enforce apparent power line flow limits. The power
flow equations (1t) and (1u) relate the voltages and the power

injections. Note that adding generator ramp rate limits to this

formulation is straightforward; these constraints are excluded
for simplicity.

B. SOCP Relaxation of the Multiperiod OPF Problem

The multiperiod OPF problem in (1) is a non-convex
optimization problem due to the nonlinear power flow equa-

1Without constraint (1i) on the final state-of-charge, the optimization
problem will typically use storage in a greedy manner, fully discharging the
storage device to minimize operational cost within the time horizon. More
details on the choice of e

term
i and its impact on solution quality can be

found in [33].
2Constraints (1e)-(1k) could be replaced with another storage model if

desired; the proposed framework is not limited to this modeling choice.

tions (1t) and (1u) as well as the complementarity con-

straint (1k) that prevents simultaneous charging and discharg-
ing of the storage devices. This section addresses both sources

of non-convexity to form a convex relaxation of (1).
1) SOCP Relaxation of the Power Flow Equations: Recent

research efforts have developed a diverse variety of convex
relaxations of the power flow equations, with trade-offs in

computational tractability and tightness. In order to initialize

the AC-QP algorithm, we desire a convex relaxation with fast
computational speed. We have therefore selected the “branch-

flow model” (BFM) relaxation of the power flow equations

from [34]. The BFM relaxation has beneficial numerical
characteristics relative to another SOCP relaxation based on

a “bus-injection model” [35] and is faster than other convex

relaxations based on semidefinite programming (e.g., [11],
[12], [14], [18]).

The BFM approach in [34] relaxes the DistFlow equa-
tions [36], which formulate the power flow equations in

terms of active power, reactive power, and squared current

magnitude flows, Pij (t), Qij (t), and Lij (t), respectively, out
of terminal i for each line (i, j) ∈ L as well as squared voltage

magnitudes |Vi (t)|
2

at each bus i ∈ N and time t ∈ T .

Note that we suppress the time dependence on the rest of the
equations in this section for brevity.

To derive the BFM relaxation, we begin with the relation-
ship between the active and reactive line flows and the squared

current magnitude (see Fig. 1):

Lij |Vi|
2
= (Pij)

2
+ (Qij)

2
. (2)

To form an SOCP, (2) is relaxed to an inequality constraint:

Lij |Vi|
2 ≥ (Pij)

2
+ (Qij)

2
. (3)

The current flow on the series impedance of the Π-circuit

model is:

Iπ =

(

Pij − jQij

V i

)

(

τije
−jθshift,ij

)

− j
bsh,ijVi

2τijejθshift,ij
. (4)

The relationship between the terminal voltages is:

Vi

τijejθshift,ij
− Iπ (Rij + jXij) = Vj . (5)

Taking the squared magnitude of both sides of (5) and us-
ing (2) and (4) yields:

|Vj |2 =
|Vi|2
τ 2
ij

− 2 (XijQij +RijPij)− |Vi|2 Xij

bsh,ij
τ 2
ij

+
(

R2
ij +X2

ij

)

(

Qijbsh,ij + τ 2
ijLij +

b2sh,ij |Vi|2
4τ 2

ij

)

. (6)

Active and reactive line losses are:

Ploss,ij = Rijτ
2
ijLij +

Rijb
2
sh,ij

4τ 2
ij

|Vi|2 +QijRijbsh,ij (7a)

Qloss,ij = Xijτ
2
ijLij +

(Xijb
2
sh,ij − 2bsh,ij

4τ 2
ij

)

|Vi|2. (7b)

The active and reactive injections at bus k are:

PSOCP
k =

∑

(k,j)∈L

Pkj +
∑

(i,k)∈L

(

Ploss,ik − Pik

)

+ gsh,k |Vk|2 (8a)

QSOCP
k =

∑

(k,j)∈L

Qkj +
∑

(i,k)∈L

(Qloss,ik −Qik) + bsh,k |Vk|2 . (8b)
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0

rc,i (t)

rd,i (t)

Rmax
c,i

Rmax
d,i

Fig. 2. Charging/discharging characteristic. The complementarity con-
straint (1k), with feasible space denoted by the red dashed lines, prevents
simultaneous charging and discharging. The blue region shows the convex
relaxation of the complementarity constraint (9) that is used in the SOCP
relaxation.

2) Relaxation of the Charging/Discharging Complementar-

ity Condition: The complementarity constraint (1k) prevents

simultaneous charging and discharging of storage devices,

which would lead to “fictitious” consumption of energy in
devices with non-ideal efficiencies (i.e., ηc,i, ηd,i < 1). There

are situations where simultaneous charging and discharging

would reduce overall operating costs. In particular, such a
cost reduction would be achieved by allowing simultaneous

charging and discharging whenever a storage device was
located at a bus with a negative “Locational Marginal Price”

(i.e., a negative-valued Lagrange multiplier associated with the

active power balance constraint (1t)). The constraint (1k) is
therefore needed to ensure realistic storage device capabilities.

The feasible region for constraint (1k) is defined by the

red dashed lines on the axes in Fig. 2. We use a convex
relaxation of this space, which is given by the blue region in

Fig. 2. Mathematically, this constraint is given by (1e) and (1f)

augmented with:

rc,i (t) ≤ −
(Rmax

c,i

Rmax
d,i

)

rd,i(t) +Rmax
c,i ∀i ∈ S, t ∈ T . (9)

While this formulation allows some degree of simultaneous
charging and discharging (i.e., points in the blue region that

are not on the red lines in Fig. 2), it is the most straightforward

way to approximate the complementarity constraint. Other
techniques for enforcing this constraint have been proposed,

including modifying the OPF objective to include a cost for

storage (dis)charging, which can be shown to strictly enforce
complementarity under certain conditions [37], [38]. Since

conditions resulting in simultaneous charging and discharging
are relatively rare, the convex relaxation typically provides

good initializations and close lower bounds, as demonstrated

by the results in Section III.3

3) Formulation of the SOCP Relaxation of the Multiperiod
OPF Problem: The SOCP relaxation of the multiperiod OPF
problem is given by combining the relaxations of the power
flow equations and the complementarity constraint:

min
∑

t∈T

∑

i∈G

ωi (t) subject to (∀t ∈ T ) (10a)

Eqns. (1b)–(1j), (1m), (3), (7)–(9)

3The complementarity constraint is enforced in the AC-QP algorithm, so
the final solution cannot have simultaneous charging and discharging.

1− c1,iPg,i (t)− c0,i + ωi (t)

≥
∥

∥

∥

∥

[

1 + c1,iPg,i(t) + c0,i − ωi(t)
2
√
c2,i Pg,i(t)

]∥

∥

∥

∥

2

∀i ∈ G (10b)

(V min
i )2 ≤ |Vi(t)|2 ≤ (V max

i )2 ∀i ∈ N (10c)

Smax
ij ≥

∥

∥

∥

∥

[

Pij(t)
Qij(t)

]
∥

∥

∥

∥

2

∀(i, j) ∈ L (10d)

Smax
ij ≥

∥

∥

∥

∥

[

Ploss,ij(t)− Pij(t)
Qloss,ij(t)−Qij(t)

]∥

∥

∥

∥

2

∀(i, j) ∈ L (10e)

Pg,i (t) + Pw,i (t) + rd,i (t)− rc,i (t)− Pd,i (t) = PSOCP
i (t)

∀i ∈ N (10f)

Qg,i (t)−Qd,i (t) = QSOCP
i (t) ∀i ∈ N (10g)

where ‖ · ‖2 denotes the two-norm. Note that the line-flow

limits (10d)–(10e) and the squared current equation (3) are im-
plemented with second-order cone constraints. The quadratic

objective is implemented with the auxiliary variables ωi (t),
i ∈ G, t ∈ T and the SOCP constraint (10b). The remainder
of the constraints are linear. Thus, (10) is an SOCP.

Without consideration of the complementarity con-

straint (1k), the SOCP relaxation is exact (i.e., yields the

globally optimal solution) for radial networks that satisfy
certain non-trivial technical conditions [34]. However, for

more general networks such as those considered in this paper,

the relaxation is usually not exact. Nevertheless, the SOCP
relaxation (10) lower bounds the optimal objective value of (1)

and, as will be shown in the following sections, often provides
a good initialization for an AC-QP algorithm in the following

manner. The SOCP solution provides the power injections

Pg(t), Qg(t), Pw(t), rc(t), rd(t) and voltage magnitudes

(implied by
√

|Vi(t)|2) that are used for the initial power flow.

Additionally, voltage angle differences across each line in the
network are calculated from the apparent power line flows

and voltage magnitudes. Based on those angle differences, a

least-squares problem then establishes a best fit for the voltage
angles at all nodes in the network. This provides an initial-

ization for voltage angles. The voltage magnitude and angle

schedules from the SOCP initialization are particularly useful
when applying the AC-QP algorithm to large systems, where

obtaining a converged AC power flow can be challenging.

C. AC-QP OPF Algorithm

We next describe the AC-QP OPF algorithm, a local solution
method adopted from [1], which is summarized in Fig. 3.

The successive linearization procedure in this method often

benefits greatly from initialization near the global optimum. In
the AC-QP algorithm, an AC power flow is first solved from an

initial approximate operating point. This provides the Jacobian

of the power flow equations, J(t), as well as the line-flow

sensitivity factors
∂Sij

∂θk
(t) and

∂Sij

∂|Vk|
(t) at each time t ∈ T . A

QP is then solved to find a generation schedule that minimizes
the generation cost while enforcing (linearized) power balance

equations. The QP solution provides new generation and
voltage schedules that are used in the next set4 of AC power

flows.
The initial (dis)charging status of each storage device i ∈ S

at each time step t ∈ T is determined by the net value of

4A separate power flow is required for each time step.
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- Set k=0
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power �ow results

(Problem 11)

Update storage device 
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No

Check linearization 

and adjust control 
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(Algorithm 1)

k = k+1

Reset control 

variable limits:

d(k) = 1

Fig. 3. Flowchart for the AC-QP OPF algorithm, (adapted from [1], [39]).

charging/discharging given by the SOCP. When in charging
mode, the status is enforced in the QP by setting the discharg-

ing limit Rmax
d,i (t) to zero, with Rmax

c,i (t) taking its proper

value. If the QP solves to a non-zero value of rc,i(t), the status
remains unchanged for the next AC-QP iteration. If, however,

the QP solves to the zero limit rc,i(t) = 0 and the Lagrangian

multiplier corresponding to that lower inequality constraint is
positive5 then the status is changed to discharging for the next

iteration of the AC-QP algorithm. Likewise for transitioning
from discharging to charging. Thus, constraint (1k) is enforced

in a iterative manner. A more detailed discussion of this

process can be found in [40].
The QP–(power flow) iterations continue until the difference

between the QP and power flow solutions agrees to within a
specified tolerance (10−3 pu provides sufficient accuracy). At

that point, the inner loop of the method is terminated.
In the QP, the notation ∆ is used to denote a change in the

corresponding variable at the current iteration of the AC-QP

algorithm. The superscript ‘◦’ denotes values obtained from

the AC power flow. These are updated after each QP–(power
flow) iteration. The QP solved at each iteration makes use of

the power flow linearization:

J(t) =

[

∂P
∂θ

(t) ∂P
∂|V | (t)

∂Q
∂θ

(t) ∂Q
∂|V | (t)

]

, ∆x(t) =

[

∆θ(t)
∆|V (t)|

]

∆S(t) =

[

∆Pg(t)−∆rc(t) + ∆rd(t) + ∆Pw(t)
∆Qg(t)

]

and is formulated as:

min
∑

t∈T

∑

i∈G

Ci

(

P ◦
g,i(t) + ∆Pg,i(t)

)

subject to (∀t ∈ T ) (11a)

5A positive Lagrangian multiplier indicates that the cost would be reduced
by moving beyond the limit.

J(t)∆x(t) = ∆S(t) (11b)

Pmin
g,i ≤ P ◦

g,i(t) + ∆Pg,i(t) ≤ Pmax
g,i ∀i ∈ G (11c)

Qmin
g,i ≤ Q◦

g,i(t) + ∆Qg,i(t) ≤ Qmax
g,i ∀i ∈ G (11d)

∆θslack(t) = 0 (11e)

− π ≤ θ◦i (t) + ∆θi(t) ≤ π ∀i ∈ N\slack (11f)

V min
i ≤ |V ◦

i (t)|+∆|Vi(t)| ≤ V max
i ∀i ∈ N (11g)

0 ≤ P ◦
w,i(t) + ∆Pw,i(t) ≤ Wmax

i (t) ∀i ∈ W (11h)

Ts

(

ηc
(

r◦c,i(t) + ∆rc,i(t)
)

−
(

r◦d,i(t) + ∆rd,i(t)
)

/ηd,i
)

= ei(t+ 1) − ei(t) ∀i ∈ S (11i)

ei(0) = einit
i ∀i ∈ S (11j)

ei(T ) = etermi ∀i ∈ S (11k)

0 ≤ r◦c,i(t) + ∆rc,i(t) ≤ Rmax
c,i (t) ∀i ∈ S (11l)

0 ≤ r◦d,i(t) + ∆rd,i(t) ≤ Rmax
d,i (t) ∀i ∈ S (11m)

0 ≤ ei(t) ≤ Ei ∀i ∈ S (11n)

S◦
ij(t) +

∑

k∈N

∂Sij

∂θk
(t)∆θk(t) +

∑

k∈N

∂Sij

∂|Vk(t)|
∆|Vk(t)| ≤ Smax

ij

∀ (i, j) ∈ L∗
(11o)

S◦
ji(t) +

∑

k∈N

∂Sji

∂θk
(t)∆θk(t) +

∑

k∈N

∂Sji

∂|Vk(t)|
∆|Vk(t)| ≤ Smax

ij

∀ (i, j) ∈ L∗
(11p)

where the linearized line-flow constraints (11o)-(11p) are

enforced for all lines that are at or above 95% of their line-flow

limit, the set of which is denoted L∗. This set is updated at the
beginning of each outer loop of the AC-QP algorithm (bolded

in Fig. 3). Constraints (11i)–(11n) model the storage state-

of-charge dynamics with non-ideal charging and discharging
efficiencies.

The convergence of this method depends on the accuracy of

the linearization at each iteration. To improve convergence, a
“trust-region” step, based on the formulation in [39], is added

to check the accuracy of the linearization before the next

QP is solved. The implementation of the trust-region step is
summarized in Algorithm 1.

The actual change in the total losses,

∆P k
loss act(t) = P k

loss(t)− P k−1

loss (t), ∀t ∈ T , (12)

is computed after the power flow step, where superscript k
indicates the kth iteration of the AC-QP algorithm. The actual
change in losses is compared with that predicted from the QP
solution,

∆P k
loss pred(t) =
∑

i∈N

∑

j∈N

[

(∂Pi

∂θj
(t)

)k−1

∆θkj (t) +
( ∂Pi

∂|Vj | (t)
)k−1

∆|Vj(t)|k
]

.

(13)

If the difference between the predicted and actual losses at

each time t ∈ T is within a specified tolerance (a suitable
value being 10%), the linearization is considered sufficiently

accurate. Otherwise, the linearization is of questionable accu-

racy, and all control variable limits in the QP at the next itera-
tion are reduced by a scaling factor, denoted d(k) for iteration

k. If after the next QP–(power flow) iteration the linearization
is again insufficiently accurate, the scaling factor d(k) is

further reduced by a constant, denoted Sc in Algorithm 1.

(A value of Sc = 0.5 was used in our implementation.) If
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Algorithm 1 Trust-region step of the AC-QP OPF algorithm

1: Calculate the predicted change in system losses from the

QP solution at each time t ∈ T according to (13).
2: Calculate the actual change in system losses from the

power flow solution at each time t ∈ T according to (12).
3: Update QP control variable limits at the next iteration:

4: if maxt∈T |∆P k
loss act(t)−∆P k

loss pred(t)| < tolerance

5: The linearization is considered accurate.
6: Increase control variable limits at next iteration by a

scaling factor: d(k + 1) = min(2× d(k), 1).
7: else
8: The linearization is considered inaccurate.

9: Reduce control variable limits at next iteration by a

scaling factor: d(k + 1) = Sc× d(k).
10: end if

the linearization provides acceptable accuracy though, d(k) is
increased according to d(k + 1) = min(2 × d(k), 1).

This process reduces the magnitude of the changes from the

previous AC power flow solution that can be scheduled by the

QP. As the control variable step size at each iteration shrinks
until the linearization is sufficiently accurate, this improves

the convergence of the inner loop of the method. If the outer
loop is required because new lines become overloaded, control

variable limits are reset to their original values (i.e. d(k) = 1)

and the process repeats.

Often convergence can be further improved by reducing the
range of values that appear in the admittance matrix. This is

achieved by removing low-impedance lines (i.e., lines with
impedance less than 1× 10−3 pu) by merging the connected

buses using the method described in [41]. This is similar to

the preprocessing steps used in many commercial software
packages, for example [42].

III. RESULTS AND DISCUSSION

Both the SOCP relaxation and AC-QP algorithm have been

applied to a variety of test cases. This section presents detailed

results for two of these test cases: modified versions of the
Polish 3012wp test case [43] and a 30-bus loop network [44].

The scalability of these methods is further demonstrated using
five other large test cases (the Polish 2383wp, 2737sop and

3120sp cases [43], the 2869-bus PEGASE network represent-

ing portions of the European power system [45], and a 4259-
bus model of the Californian region of WECC). A summary

of the test case details is provided in Table I.

It has been observed that for large-scale networks and a time
horizon exceeding 16 time steps, the AC-QP OPF is likely

to require solution times longer than 5 minutes, which is a

reasonable time limit for on-line applications. Moreover, it
was shown in [33] that a moderate horizon of 4 hours (8 step

with Ts = 30 minutes) was sufficient to obtain the economic

benefits of operating storage with renewable generation. All
test cases therefore consider a horizon of 4 hours with a time-

step of Ts = 30 minutes, for a total of 8 time steps. Because
renewable generation may change more rapidly than this 30-

minute time step, in an operational setting this algorithm could

be re-run frequently (every 5 to 10 minutes) using a receding

TABLE I
DESCRIPTIONS OF TEST CASES

Test Number Number Number Renewable
Network of Wind Storage Penetration

Buses, Lines Buses Buses (%)
PL-3012wp 2292, 2851 70 300 8.4
30-bus loop 30, 30 5 3 0.0049
PL-2383wp 2177, 2690 60 238 7.3

PEGASE-2869 2487, 4164 70 287 1.3
PL-3120sp 2314, 2886 70 312 10.0

PL-2737sop 2183, 2715 35 274 12.2
WECC 4259, 5868 531 10 45.2

horizon strategy [46] to account for deviations in measured

and forecast generation.
Storage and wind generation were added to each test net-

work at randomly chosen buses. As the focus of this work

is to provide an improved initialization for the AC-QP OPF
method, the purpose of adding storage and wind in these

cases is to exercise the multiperiod OPF formulation. The

available wind Wmax
i (t) at each wind bus was chosen from

a uniform random distribution over the range 1 to 100 MW.

The corresponding renewable penetration of each test case,

which is calculated as the total available wind generation as a
percentage of total conventional generation capacity, is given

in the final column of Table I. This forecast of available wind
at each location is assumed to be perfect, as this work relies

upon a deterministic OPF formulation.6 Storage device power

ratings were chosen from a uniform distribution of 1–5 MW,
and storage device energy ratings were chosen from a uniform

distribution of 1–20 MWh. Table I provides additional details

for these test cases.
Three initialization approaches for the AC-QP algorithm

were tested. The first used the generation and voltage sched-

ules provided in the test case description. With this method,
storage and wind are unused in the initialization (i.e., no

charging or discharging and full wind curtailment). The second

is a DC OPF that approximates total system losses as 3% of
total load (i.e., the DC power balance constraint at each bus

is modified to include an additional 3% of the demand and

storage charging at that bus to account for system losses).
The final initialization method is the SOCP relaxation.7

The formulations were implemented in MATLAB R2012a

and solved on a MacBook Pro with a quad-core Intel i7
2.3 GHz processor with 16 GB of 1600 MHz DDR3 RAM

using MOSEK version 7.0 to solve the SOCP programs and

Gurobi version 5.6.3 to solve the quadratic programs. A
Newton algorithm was used to solve the power flows.

6As mentioned earlier, the deterministic OPF can be embedded in a receding
horizon strategy to account for variability and uncertainty. Furthermore,
such deterministic OPF problems form the basis of many stochastic OPF
formulations. Integrating the proposed approach into stochastic OPF methods
is discussed as future work in Section IV.

7In an on-line environment, the state estimator solution would be available
to initialize the OPF. As a surrogate, we also considered an initialization
based on the single-time-step OPF solution at t = 0, copied to each later
time step. The results indicated that this approach was generally inferior to
the initialization from the SOCP relaxation in both computation time and
solution quality. Inferiority of the single-step initialization is attributable to
the fact that it does not consider the forecast of future wind availability and
the corresponding changes in storage utilization, both of which are available
to other initialization methods.
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TABLE II
PL-3012WP: EXPLICITLY ENFORCED LINE-FLOW CONSTRAINTS

Initialization Initial Lines Line Limits
Method (Additional Lines) Binding at Soln.

Case description 324, 331, 529, 813, 231, 495, 529,
1411, 1412, 1436, 1833, 1367, 1388, 1519,

2225, (231), (495), (1367), (2829)
(1388), (1519), (2829)

DC OPF 231, 495, 542, 813, 231, 495, (529),
1367, 1388, 1519, 1718, 1367, 1388, 1519,
1833, 1878, 2233, 2473, 2829

2608, 2829, (529)
SOCP 231, 495, 529, 542, 231, 495, 529,

813, 1367, 1388, 1519, 1367, 1388, 1519,
1833, 2233, 2473, 2829 2829

The results in this section demonstrate the computational
tractability and solution quality for the proposed approach of

using the SOCP initialization with the AC-QP algorithm.

A. Case 1: Polish 3012wp Network

The convergence and computation time of the AC-QP
algorithm are substantially improved by accurately predicting

which line-flow constraints need to be explicitly enforced in

the QP (i.e., determining the set L∗). The initial set of line-flow
constraints is highly dependent on the choice of initialization.

This first test case emphasizes an important benefit of the
SOCP initialization method: compared to the other initial-

izations, the power flow solution resulting from the SOCP

initialization more accurately predicts the set of line-flow
constraints that must be included in the QP. Consequently,

fewer outer loops of the AC-QP algorithm (the bold path in

Fig. 3) are required, reducing the number of QP–(power flow)
iterations and hence the computation time.

The results of the Polish 3012wp test case are summarized

in Tables II–III. For each initialization method, the second

column of Table II gives the line index for line-flow constraints
that are added to the QP. The lines shown in parentheses were

not identified from the initial power flow, but were added

through additional outer loops as they became overloaded
in subsequent iterations of the AC-QP algorithm. Compared

with the other methods, the SOCP initialization performs
better in two aspects: 1) it requires the fewest number of

explicitly enforced line-flow constraints, which reduces the

time required to solve the QP at each iteration, and 2) the
initial set of line-flow constraints is sufficient throughout

the AC-QP iterations (i.e., no additional outer loops of the

AC-QP algorithm are required). The third column of Table II
demonstrates that regardless of the initialization procedure, the

same line constraints are binding in the final solution for this

test case. Only the SOCP initialization yields a superset of the
binding line-flow constraints.

Table III indicates that the SOCP initialization offers ap-

preciable performance improvements over the other forms

of initialization. The SOCP method eliminates the need for
additional outer loops to add line-flow constraints not ini-

tially identified, thus reducing the total number of iterations,
as shown in the second column. Explicitly enforcing fewer

inequality constraints reduces the QP’s solution time at each

iteration. These two factors greatly reduce the solution time of

TABLE III
PL-3012WP: CONVERGENCE AND EXECUTION TIME

Initialization Number of Init. AC-QP Total
Method QP–(power flow) Time Time Time

iterations (sec) (sec) (sec)
Case Description 7 – 111 111

DC OPF 7 18 107 124
SOCP 4 19 58 77

the AC-QP algorithm, as demonstrated in the fourth column

of this table. The fifth column shows that SOCP initialization
results in a total computation time that is substantially less

than the other methods. These timing results also highlight
the scalability of these methods for large networks.

The objective value of the SOCP relaxation lower bounds
the generation cost, thus providing a useful metric for as-

sessing the quality of the solution obtained from the AC-QP
algorithm. For this example, the SOCP gave a lower bound of

13.602 M$ on the cost of generation. All three initialization

processes resulted in convergence to the same total cost of
generation of 13.618 M$, implying a relaxation gap of at most

0.12%. Thus, the AC-QP solution is at least very close to being

globally optimal, and may, in fact, be the global optimum.8

Even though all initialization methods resulted in equivalent

dispatches, the choice of initialization process significantly

affected the solution time and the number of iterations required
to reach that solution.

B. Case 2: 30-Bus Loop Network

The SOCP initialization is also useful for cases where the

AC-QP algorithm finds a local solution rather than the global
optimum. The AC-QP algorithm provides neither a guarantee

of finding a global solution nor a metric for assessing solution

quality. As shown in [44], OPF problems may have multiple
locally optimal solutions. Tables IV–V provide results for a

modified multiperiod version of the 30-bus loop test case from

[44] that demonstrate the utility of the SOCP initialization
for both finding a global solution and providing a metric of

solution quality.
As shown in Table IV, initializing the AC-QP algorithm

using the case description or the DC OPF results in solution
costs that are significantly higher than the SOCP lower bound,

while the SOCP initialization gives a cost that is within
0.0011% of the lower bound.9 Using the lower bound from

the SOCP relaxation as an indicator of solution quality, it is

reasonable to assert that the solution resulting from the SOCP
initialization is sufficiently close to the global optimum, while

the other two solutions are locally optimal solutions.
In this example, the suboptimal solutions resulting from

the DC OPF and case description initializations have power
circulating around the loop while the global solution does not.

As shown in Table V, this circulating power results in greatly

8This gap can be at least partially attributed to relaxations of the power
flow equations (10f),(10g) and the simultaneous charging/discharging con-
straint (9). For several test cases, solutions to the relaxation (10) exhibited
simultaneous charging and discharging at some buses.

9The SOCP relaxation does not always yield a lower bound that is close to
the global optimum (e.g., the lower bound from the SOCP relaxation of the
nine-bus system in [44] is 11% below the global optimum identified in [15]).
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TABLE IV
30-BUS LOOP: GENERATION COST

Initialization SOCP Lower AC-QP % Cost
Method Bound ($) Cost ($) Difference

Case description 23,840 31,577 32.5 %
DC OPF 23,840 26,759 12.2 %

SOCP 23,840 23,840 0.0011 %

TABLE V
30-BUS LOOP: TOTAL GENERATION AND LOSSES

Initialization AC-QP Total AC-QP Total
Method Generation (MW) Losses (MW)

Case description 15,788 3,937.5
DC OPF 13,380 1,526.5

SOCP 11,920 69.3

increased losses. Substantially more generation is required,
incurring higher cost. Moreover, as each branch has a relatively

small angle difference, identifying such local optima may be
difficult in more general problems. Similar phenomena have

been observed in actual systems, as described in [47].

The example demonstrates the value of the SOCP relax-
ation: 1) it provides a sufficient condition for quickly assessing

whether a solution to the AC-QP algorithm has an objective

value that is close to the globally optimal value, and 2) SOCP
initialization results in a globally optimal solution for this case.

C. Other Large Test Cases

The AC-QP algorithm with its various initializations was

also applied to other large test cases, including a 4259-bus

model of the WECC system, to assess performance on net-
works of various sizes and topologies. An 8-step time horizon

was used in all cases. The details of these test cases are given
in Table I, and the results are summarized in Tables VI–IX.

Tables VI and VII show the convergence results of each test

case and each initialization method. In each case, the SOCP
initialization method improves the convergence rate of the

AC-QP algorithm, requiring a smaller number of iterations and

achieving the fastest total execution time. The computational
improvement is particularly significant for the PEGASE-2869

and PL-3120sp test cases. It is important to note that these
execution time improvements are achieved by changing only

the initialization procedure.

Initialization of the WECC case is particularly challenging.
The initial power flow of the AC-QP algorithm did not

converge when initialized using the case description or the

DC OPF. This resulted in failure of the AC-QP algorithm. In
contrast, SOCP initialization provides close-to-feasible initial

conditions that result in convergence of the initial power flow

(and subsequently of the AC-QP algorithm). Note that the
execution time for the WECC case is fast enough for use in

a practical on-line setting, although including other features,
such as contingency constraints, requires further work.

Table VIII gives the total cost of generation while Table IX

provides the corresponding percent difference in generation
cost between the lower bound of the SOCP relaxation and the

AC-QP solution. In all cases, the SOCP initialization yields

the AC-QP solution with generation cost closest to the SOCP

TABLE VI
NUMBER OF ITERATIONS FOR TEST CASES

Test Case DC-OPF SOCP
Network Description Init. Init.

Init.
PL-2383wp 8 5 5

PEGASE-2869 8 8 4
PL-3120sp 11 7 5

PL-2737sop 6 6 3
WECC – – 4

TABLE VII
TOTAL EXECUTION TIME (SECONDS) FOR TEST CASES

Test Case DC-OPF SOCP
Network Description Init. Init.

Init.
PL-2383wp 97 77 78

PEGASE-2869 127 149 87
PL-3120sp 159 126 98

PL-2737sop 81 94 62
WECC – – 128

TABLE VIII
TOTAL COST OF GENERATION FOR TEST CASES

Test SOCP Case DC-OPF SOCP
Network Lower Description Init. Init.

Bound (M$) Init. (M$) (M$) (M$)
PL-2383wp 8.58 8.61 8.65 8.60

PEGASE-2869 0.875 0.882 0.879 0.878
PL-3120sp 11.2 11.2 11.2 11.2

PL-2737sop 6.44 6.47 6.47 6.47
WECC 0.208 – – 0.208

lower bound. It therefore provides a more economic operating
point than those resulting from the other two initializations.

We note, however, that the small differences in Table IX may

be due in part to the termination criterion used in the AC-QP
algorithm.

The case PL-2383wp is of particular interest due to larger

cost variations among the different initialization methods.

Fig. 4 shows the total storage (dis)charging across all storage
devices, as well as the total wind generation across all wind

nodes at each time step in the OPF horizon. Taking the

AC-QP solution initialized with the SOCP as a reference, the
results presented are normalized to show the difference in each

solution for the various initialization algorithms. Looking at

the storage (dis)charging results over the 8-step horizon, the
solution from the DC OPF initialization generally makes less

use of storage. As a consequence, less wind generation can
be used to meet demand, resulting in higher cost of operation.

This highlights the economic value of optimally scheduling

storage in conjunction with renewable generation.

IV. CONCLUSIONS

The paper presents an OPF solution process that uses an

SOCP relaxation to initialize an AC-QP successive lineariza-
tion algorithm. The SOCP provides initial values for the

decision variables (traditional and renewable generation, and
energy storage charge/discharge values) along with approxi-

mate values for all voltage magnitudes and angles across the

network. These values are particularly useful for achieving
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TABLE IX
PERCENT COST DIFFERENCE (%) FOR TEST CASES

Test Case DC-OPF SOCP
Network Description Init. Init.

Init.
PL-2383wp 0.40 0.82 0.23

PEGASE-2869 0.72 0.43 0.27
PL-3120sp 0.30 0.30 0.30
PL-2737sop 0.37 0.37 0.37

WECC – – 0.03
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Fig. 4. An example of differing use of storage and wind resulting in local
minima.

convergence of the initial power flow in the AC-QP algorithm.

The resulting initial solution often lies in the vicinity of the

globally optimal solution.

SOCP initialization offers several benefits over other ap-
proaches. The SOCP relaxation often provides an accurate

prediction of the subset of line-flow constraints that require
explicit representation in the QP. This reduces both the total

number of iterations needed in the AC-QP algorithm as well as

the number of inequality constraints in the QP. These factors
improve the solution time of the AC-QP algorithm. The SOCP

initialization reduces the likelihood of the AC-QP algorithm

converging to a local optimum that is far from the global
solution. Furthermore, the lower bound on the OPF objective

given by the SOCP relaxation provides an indication of the
quality of the AC-QP solution. A small “gap” between the

SOCP lower bound and the AC-QP solution indicates that a

nearly globally optimal outcome has been achieved.

The algorithm has been applied to a variety of multi-
period OPF test cases that incorporate wind and storage

resources. The results indicate that this approach scales well,
with tractability demonstrated for large-scale test cases up to

4259 buses and 8 time-steps.

The proposed method motivates several research directions.

The first is to explore initializing multiperiod OPF problems
using other recently developed linear and SOCP relaxations

and approximations of the power flow equations, such as those

in [19], [20], [35], [48], [49]. Another direction is to include
wind and/or demand uncertainty into the OPF problem. Some

recent techniques for addressing uncertainty include adding
a heuristically chosen set of scenarios to the OPF problem

[50]–[52], assuming a closed-form uncertainty distribution

to analytically reformulate the OPF problem [53], [54], and

scenario approaches that offer performance guarantees [55],

[56]. These methods rely upon solving modified determin-
istic OPF subproblems so the proposed AC-QP method is

directly applicable. Furthermore, this work demonstrates that

the SOCP relaxation provides useful results when applied
to several meshed networks, though no theoretical guarantee

as to its exactness exists. This observation merits further
investigation. Finally, the computational performance of the

SOCP-initialized AC-QP method enables thorough evaluation

of the economic impact of renewable generation and energy
storage in large-scale systems.
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