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Incorporating Squirrel-Cage Induction Machine

Models in Convex Relaxations of OPF Problems
Daniel K. Molzahn, Member, IEEE

Abstract—The optimal power flow (OPF) problem determines
a minimum cost operating point for an electric power system.
Recently developed convex relaxations are capable of globally
solving certain OPF problems. Using a semidefinite relaxation of
the OPF problem as an illustrative example, this letter presents
a method for extending convex relaxations of the OPF problem
to include steady-state squirrel-cage induction machine models.

I. INTRODUCTION

O
PERATING points for electric power systems are ob-

tained by solving optimal power flow (OPF) problems.

Equality constraints in an OPF problem are dictated by the

network physics (i.e., the power flow equations) and inequality

constraints are determined by engineering limits.

The OPF problem is non-convex and strongly NP-Hard [1].

Recent work (e.g., [2]–[4]) has developed convex relaxations

that lower bound the optimal objective value, can certify

infeasibility, and, in some cases, provide the global optimum.

Load models are a key component of OPF problems. Many

loads are appropriately represented using the “ZIP” model,

which is comprised of constant impedance, constant current,

and constant power components. An approximation of the ZIP

model can be incorporated into OPF relaxations [5].

This letter proposes a method for modeling another class

of loads in convex relaxations of OPF problems: steady-state

models of squirrel-cage induction machines with specified ac-

tive power demand.1 Induction machines are often components

of load models [6] and thus relevant to both power system

optimization and initialization of dynamic simulations [7], [8].

This letter is organized as follows. Section II presents

the OPF problem and a semidefinite programming (SDP)

relaxation. Section III describes the steady-state induction

machine model and the proposed method for incorporating it

into convex relaxations of OPF problems. Section IV presents

results for a small test case.

II. OPTIMAL POWER FLOW AND AN SDP RELAXATION

This section presents the OPF problem and an SDP relax-

ation. Consider an n-bus system, where N = {1, . . . , n} is

the set of buses, G is the set of generator buses, and L is

the set of lines. Let Y denote the network admittance matrix.

Using a constant power load model, let PDk+ jQDk represent

the active and reactive load demand at bus k ∈ N , where j

is the imaginary unit. Let Vk represent the voltage phasor at

bus k ∈ N , with the angle of V1 equal to zero to set the angle

reference. Define the rank-one matrix W = V V H ∈ H
n,

where H
n denotes the set of n × n Hermitian matrices.
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1Induction machines with specified mechanical loads are not considered.

Superscripts “max” and “min” denote specified upper and

lower limits. Buses without generators have maximum and

minimum generation set to zero. Define a convex quadratic

cost of active power generation with coefficients c2,k ≥ 0,

c1,k, and c0,k for k ∈ G.

Each line (l,m) ∈ L is modeled by an ideal transformer

with turns ratio τlmejθlm : 1 in series with a Π circuit with

mutual admittance ylm and total shunt susceptance jbsh,lm.

Define ek as the kth column of the identity matrix. Let

(·), (·)⊺, and (·)H denote the complex conjugate, transpose,

and complex conjugate transpose, respectively. Define the

matrices Hk =
YHe

k
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(
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⊺

m.
The OPF problem is

min
V ∈Cn, α∈R|G|

∑

k∈G

αk s.t. (1a)

P
min
k ≤ tr (HkW) + PDk ≤ P

max
k ∀k ∈ N (1b)

Q
min
k ≤ tr(H̃kW) +QDk ≤ Q

max
k ∀k ∈ N (1c)

(V min
k )

2
≤ tr (eke

⊺

kW) ≤ (V max
k )

2
∀k ∈ N (1d)

c2,k (tr (HkW) + PDk)
2 + c1,k (tr (HkW) + PDk)

+ c0,k ≤ αk ∀k ∈ G (1e)
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≤ 4 (Smax
lm )2 ∀ (l, m)L (1g)

W = V V
H

(1h)

where tr (·) is the trace and αk is an auxiliary variable for the

objective function of generator k ∈ G. Constraints on active

power (1b), reactive power (1c), and squared voltage magni-

tude (1d) are linear in the entries of W. Constraints associated

with quadratic generation cost (1e) and line flows (1f)–(1g)

have a convex second-order cone formulation. Thus, all the

non-convexity in (1) is contained in the rank constraint (1h).

An SDP relaxation of the OPF problem (1) is formed by

replacing (1h) with a positive semidefinite constraint [2]:

min
W∈Hn,α∈R|G|

∑

k∈G

αk s.t. (1b)–(1g), W � 0. (2)

If the condition rank (W) = 1 is satisfied, the SDP relaxation

is exact. The globally optimal voltages are V ⋆ =
√
λ η, where

λ is the non-zero eigenvalue of W with associated unit-length

eigenvector η, rotated so that the angle of η1 equals zero.

III. INCORPORATING INDUCTION MACHINES MODELS

The OPF formulation (1) uses a constant power load model.

The steady-state equivalent circuit of a single-cage induction
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Fig. 1. Induction Machine Steady-State Equivalent Circuit at Bus k

machine, shown in Fig. 1, does not exhibit a constant power

characteristic. Rather, the active and reactive demands and

voltage magnitude are coupled through a non-linear circuit

that depends on the induction machine’s slip s. Typically,

a specified percentage (here denoted (1− γPk)) of the total

active power demand PDk is attributed to induction machine

load at bus k and a terminal voltage magnitude |Vk| is

specified. Algorithms for solving non-linear equations are

used to compute the slip, reactive power demand, and in-

ternal currents corresponding to the specified active power

and voltage magnitude [7], [8]. This approach is difficult to

directly implement in optimization algorithms where voltage

magnitudes are decision variables.

This section proposes a method for incorporating the in-

duction machine model in Fig. 1 into the SDP relaxation of

the OPF problem (2).2 For an induction machine at bus k, add

two internal buses, µk and ρk, to the network with new voltage

variables Vµk
and Vρk

. Bus k is connected to bus µk through

the machine’s stator resistance Rs,k and leakage reactance

Xls,k. Bus µk is connected to bus ρk through the rotor leakage

reactance Xlr,k. All values are in per unit on the system base.

The induction machine’s active power demand, Pk,µk
, is a

specified quantity (1− γPk)PDk. This constrains the active

power flowing from bus k to bus µk:

Pk,µk
= tr

[

1

2

(

Fk,µk
+ FH

k,µk

)

W

]

= (1− γPk)PDk. (3)

The demand at bus k is determined by the load not attributed

to the induction machine (i.e., P̃Dk + jQ̃Dk = γPkPDk +
jγQkQDk, where γQk is the percent of QDk not attributed

to the induction machine, and Pmax
k = Pmin

k = Qmax
k =

Qmin
k = 0).3 Thus, the total active power flow into bus k,

Pin,k, is equal to the originally specified active power demand

PDk, while the total reactive power flow into bus k, Qin,k,

is a function of the induction machine’s reactive demand.

Bus µk has zero power demand (i.e., Pmax
µk

= Pmin
µk

=
Qmax

µk
= Qmin

µk
= PD,µk

= QD,µk
= 0) and the induction

machine’s mutual reactance Xm as a shunt, which modifies

the admittance matrix entry Yµk,µk
. No reactive power is

consumed at bus ρk, so Qmax
ρk

= Qmin
ρk

= QD,ρk
= 0.

The active power flowing into ρk is allowed to vary such

that the terminal active power constraint (3) is satisfied (i.e.,

Pmax
ρk

= ∞ and Pmin
ρk

= −∞); no shunt elements or loads

are explicitly modeled at bus ρk. The internal buses have no

voltage magnitude limits (i.e.,
(

V min
µk

)

=
(

V min
ρk

)

= 0 and
(

V max
µk

)

=
(

V max
ρk

)

= ∞).

If the SDP relaxation (2) for the modified OPF problem

has a solution that satisfies rank (W) = 1, globally optimal

2The proposed induction machine modeling approach is also applicable
to other relaxations (e.g., [3], [4]) and can be extended to double-cage models.

3Other load models, e.g., ZIP, can alternatively be used for this demand.

values for the induction machine’s internal variables can be

recovered using V ⋆ =
√
λ η. The stator and rotor currents for

the induction machine at bus k, I⋆s,k and I⋆r,k, are

I⋆s,k =
V ⋆
k − V ⋆

µk

Rs,k + jXls,k

, I⋆r,k =
V ⋆
µk

− V ⋆
ρk

jXlr,k

. (4)

The induction machine’s slip is

s⋆k = Rr,k

V ⋆
ρk
I⋆r,k + V ⋆

ρk
I⋆r,k

2
∣

∣V ⋆
ρk

∣

∣

2
. (5)

Incorporating induction machine models can affect a relax-

ation’s exactness. Tighter relaxations, such as higher-order

“moment” relaxations [4], may be applied if rank (W) > 1.

Note that the proposed approach can also be applied to

power flow problems by appropriate choice of the OPF limits.

IV. NUMERICAL TEST CASE

The proposed approach is illustrated using the IEEE 14-bus

OPF problem [9], modified to include two aggregate induction

machine models with the parameters in Table I.

TABLE I
INDUCTION MACHINE PARAMETERS (PER UNIT)

Bus γPk γQk Xls Xlr Xm Rs Rr

4 0.0 0.0 0.07 0.17 3.5 0.012 0.010

9 0.0 0.0 0.23 0.23 5.8 0.001 0.015

The SDP relaxation is exact for this problem (rank (W) =
1) which enables computation of V ⋆ using an eigendecompo-

sition and I⋆s , I⋆r and s⋆ using (4) and (5) as given in Table II.

TABLE II
GLOBAL OPTIMUM FOR INDUCTION MACHINE VARIABLES (PER UNIT)

Bus V ⋆
k

V ⋆
µk

V ⋆
ρk

I⋆
s,k

I⋆
r,k

s⋆
k

13
0.998 0.969 0.966 0.584 0.491

0.0051
∠-8.4◦ ∠-10.2◦ ∠-15.1◦ ∠-43.3◦ ∠-15.1◦

14
1.031 0.985 0.983 0.355 0.300

0.0046
∠-12.8◦ ∠-16.6◦ ∠-20.6◦ ∠-49.1◦ ∠-20.6◦
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