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ABSTRACT

Eigenvalue problems incorporate multiplicative nonlinearities in otherwise linear equa-

tions. Two power systems models with multiplicative nonlinearities are reformulated as eigen-

value problems. Reformulation allows for the application of eigenvalue theory and solution

techniques to these models.

The first model involves determination of the initial conditions for induction machine in-

ternal variables in a non-linear dynamic power system analysis. The internal variables of stator

and rotor currents, rotor speed, and mechanical torque must be determined from the given val-

ues of input real power, stator voltage magnitude, and stator voltage angle. This problem is

posed in an eigenvalue formulation that can be solved using standard linear algebra techniques.

The eigenvalue formulation allows for determination of all possible solutions for the internal

variables rather than the single solution obtained from traditional iterative methods. Addition-

ally, the absence of non-zero real eigenvalues indicates that the problem has no solution. Both

single-cage and double-cage induction machines are considered, and numeric examples are

presented.

The second model involves reformulation of the power flow equations as a multiparameter

eigenvalue problem. In this formulation, both the eigenvalues and the eigenvectors are com-

posed of the d and q orthogonal components of the bus voltages. The two parameter formula-

tion of the power flow equations for two bus systems can be solved directly by decomposing

the problem into two generalized eigenvalue problems that must be simultaneously satisfied.

Since n bus systems require 2 (n− 1) parameter eigenvalue problems, which do not yet have

a general solution method for n > 2, systems with more than two buses are not yet directly

solvable from the multiparameter eigenvalue formulation.
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In addition to direct solution, two other research avenues for the multiparameter eigenvalue

formulation of the power flow equations are pursued. First, motivated by eigenvalue problem

structure, a reformulation of the multiparameter eigenvalue form of the power flow equations

is presented. Although it is without known practical applications, this reformulation and the

intermediate results in its derivation are interesting from a theoretical standpoint. Second, an

eigenvalue sensitivity analysis is performed on the multiparameter eigenvalue formulation of

the power flow equations. The linearization obtained from the eigenvalue sensitivity analysis

is equivalent to the linearization obtained from the power flow Jacobian.

Future developments in multiparameter eigenvalue theory may provide additional insights

into solutions of the power flow equations. General solution techniques for multiparameter

eigenvalue problems with more than two parameters may enable direct solution of the power

flow equations. A method for determining the number of solutions to multiparameter eigen-

value problems would be useful as a stopping condition for continuation power flows. Condi-

tions for the existence of any solutions to multiparameter eigenvalue problems would be useful

for finding the point of voltage collapse and for analyzing power systems in heavily loaded

conditions.
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Chapter 1

Introduction

Eigenvalue problems incorporate multiplicative nonlinearities in otherwise linear equa-

tions. The standard eigenvalue problem, Ax = �x, has a single multiplicative nonlinearity,

namely, multiplication of the eigenvector x by the eigenvalue �. A multiparameter eigenvalue

problem with n parameters incorporates n multiplicative nonlinearities. Eigenvalue formula-

tions of engineering problems are theoretically interesting and can also be practically useful.

Eigenvalue formulations have significant advantages due to the large established body of eigen-

value research and the potential application of future mathematical developments in eigenvalue

theory.

This thesis investigates eigenvalue formulations of two models used in the field of electrical

power systems: the inductionmachine initial conditions problem and the power flow equations.

This introduction provides a discussion of relevant eigenvalue theory and literature as well as

an overview of the two power systems models that are investigated in this thesis.

1.1 Eigenvalue Problems

There are three eigenvalue problems that will be used in the rest of this thesis: the standard

eigenvalue problem, the generalized eigenvalue problem, and the multiparameter eigenvalue

problem. The standard and generalized eigenvalue problems will be used in the induction
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machine initial conditions chapter and all three types of eigenvalue problems will be used in

the power flow equations chapter.

This section provides a brief overview of each eigenvalue problem. For a more detailed

treatment of the standard and generalized eigenvalue problems, see [10].

1.1.1 The Standard Eigenvalue Problem

The standard eigenvalue problem is commonly used in engineering and mathematics. It

describes a scalar known as the eigenvalue and a vector known as the eigenvector that are

associated with a matrix. Two types of standard eigenvalue problems are possible: right and

left. A right eigenvalue problem is defined in (1.1), where � is the eigenvalue, x is a right

eigenvector, andA is a matrix.

Ax = �x (1.1)

A left eigenvalue problem is defined in (1.2), where � is the eigenvalue, y is a left eigen-

vector, superscript T indicates the transpose operation, andA is a matrix.

yTA = �yT (1.2)

Matrix A represents a linear map from one vector space (the domain) to another vector

space (the range). While a general vector in the domain is both scaled and rotated when

mapped to the range vector space, eigenvectors are only scaled. The amount of the scaling

is determined by the eigenvalue associated with that eigenvector. For example, if the matrix

A has an eigenvector x associated with eigenvalue �, then mapping the eigenvector from the

domain vector space to the range vector space (Ax) will yield a parallel vector that is scaled

by the eigenvalue (�x).

The standard eigenvalue problem can solved by finding the roots of the associated charac-

teristic polynomial. The eigenvalue problem can be rearranged as (A− �I)x = 0, where I is

the suitably sized identity matrix. If (A− �I) were invertible, the eigenvector x would be the
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trivial solution of the zero vector. To obtain a non-trivial x, (A− �I) must not be invertible,

and thus have zero determinant. This gives the characteristic equation

det (A− �I) = 0 (1.3)

Finding all solutions to (1.3) yields all of the eigenvalues �. Since the characteristic poly-

nomial can have a high order, practical eigenvalue codes such as [1] use iterative solution

techniques. However, matrices with rank less than or equal to four have characteristic poly-

nomials of order less than or equal to four. Since roots of quartic, cubic, quadratic, and linear

polynomials can be directly solved without iteration, eigenvalue problems for matrices of rank

four or less do not require iterative solution techniques. See [20] for the methods of finding the

roots of quartic, cubic, and quadratic polynomials.

An eigenvector associated with a given eigenvalue � can then be found as a vector in the

nullspace of (A− �I). Eigenvectors have one degree of freedom in their magnitude. In other

words, if x is an eigenvector, then ax is also an eigenvector for any non-zero scalar a. There-

fore, assuming no repeated eigenvalues, solution of one eigenvector associated with a given

eigenvalue allows for easy identification of all possible eigenvectors associated with that eigen-

value.

1.1.2 The Generalized Eigenvalue Problem

The generalized eigenvalue problem introduces a second matrix to the standard eigenvalue

problem. (1.4) shows the right generalized eigenvalue problem, where A and B are matrices,

� is the eigenvalue and x is a right eigenvector. (1.5) shows the left generalized eigenvalue

problem, whereA and B are matrices, � is the eigenvalue, and y is a left eigenvector.

Ax = �Bx (1.4)

yTA = �yTB (1.5)
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If the matrix B is invertible, generalized eigenvalue problems can be converted to standard

eigenvalue problems. Assuming a non-singularB, (1.4) can be rearranged in the form of (1.1):

B
−1
Ax = �x (1.6)

If the matrix B is not invertible, the generalized eigenvalue problem can be solved directly

using matrix pencil methods [1]. The linear matrix pencil method used for generalized eigen-

value problems solves the equation det (A− �B) = 0, similar to the characteristic equation

for standard eigenvalue problems (1.3). This allows for the solution of the generalized eigen-

value problem without explicitly forming the matrix B−1A.

Like the standard eigenvalue problem, an eigenvector for the generalized eigenvalue prob-

lem has one degree of freedom in its magnitude. If x is an eigenvector, then ax is also an

eigenvector for any non-zero scalar a.

The generalized eigenvalue problem has robust solution techniques and well developed

theory. Practical implementations of generalized eigenvalue problem solvers are common. For

instance, MATLAB’s EIG function has the ability to solve generalized eigenvalue problems.

1.1.3 The Multiparameter Eigenvalue Problem

The k-parameter eigenvalue problem combines k eigenvalues and k equations into a single

problem. The right k-parameter eigenvalue problem can be represented as in (1.7), where �j is

a scalar eigenvalue,Vij is a matrix, and xi is an eigenvector.

⎛

⎝Vi0 +
k
∑

j=1

�jVij

⎞

⎠xi = 0, i = 1, ⋅ ⋅ ⋅ , k (1.7)

The left k-parameter eigenvalue problem can be represented as in (1.8), where yi is a left

eigenvector.

yTi

⎛

⎝Vi0 +
k
∑

j=1

�jVij

⎞

⎠ = 0, i = 1, ⋅ ⋅ ⋅ , k (1.8)
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For ease of notation, the matrix sum in both left and right formulations is written asWi (�),

where � indicates the vector

[

�1 �2 ⋅ ⋅ ⋅ �k

]T

.

Wi (�) = Vi0 +
k
∑

j=1

�jVij, i = 1, ⋅ ⋅ ⋅ , k (1.9)

To aid in comprehension, the right four parameter eigenvalue problem is shown in (1.10).

(A0 + �1A1 + �2A2 + �3A3 + �4A4) x1 = 0

(B0 + �1B1 + �2B2 + �3A3 + �4B4) x2 = 0 (1.10)

(C0 + �1C1 + �2C2 + �3A3 + �4C4) x3 = 0

(D0 + �1D1 + �2D2 + �3A3 + �4D4) x4 = 0

The theory of multiparameter eigenvalue problems is not as mature as the theory of stan-

dard and generalized eigenvalue problems. Much of multiparameter eigenvalue theory assumes

that the Vij matrices are Hermitian or that the matrix Wi (�) is left or right definite. For in-

stance, the books [2] and [18] work almost entirely with Hermitian multiparameter eigenvalue

problems. Definiteness or Hermitian forms of multiparameter eigenvalue problems arise nat-

urally from the study of physical phenomena such as the wave equation and therefore have a

greater theoretical development. The multiparameter eigenvalue formulation of the power flow

equations is neither Hermitian nor left or right definite and thus cannot be analyzed with theory

developed for specialized forms of multiparameter eigenvalue problems. Two references rel-

evant to this thesis were found that describe interesting results for multiparameter eigenvalue

problems without restrictions.

The first reference, [5], describes a variety of methods for solving two parameter eigenvalue

problems. Two parameters are sufficient for the power flow equations associated with a two bus

power system (since one bus is a slack bus with known values of voltage magnitude and angle).

Since the Vij matrices required in the power flow equation are small (3 × 3), the Kronecker

product method described in Chapter 2 of [5] can be used to solve the power flow equations
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for two bus systems. The Kronecker product method converts the multiparameter eigenvalue

problem into two generalized eigenvalue problems that must be solved simultaneously.

The Kronecker product, denoted by ⊗, takes an m × n matrix A and a p × q matrix B as

inputs to form a mp× nq matrixA⊗B.

A⊗B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a11B ⋅ ⋅ ⋅ a1nB

...
. . .

...

an1B ⋅ ⋅ ⋅ annB

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1.11)

The derivation of the Kronecker product method provided in [5] can be performed using

the linearity, distributivity, and mixed product properties of the Kronecker product illustrated

in (1.12), (1.13), (1.14), and (1.15), where k is a scalar andA, B, and C are matrices.

(kA)⊗B = A⊗ (kB) = k (A⊗B) (1.12)

A⊗ (B+C) = A⊗B+A⊗C (1.13)

(A+B)⊗C = A⊗C+B⊗C (1.14)

(A⊗B) (C⊗D) = (AC⊗BD) (1.15)

See [20] for further discussion on the Kronecker product.

Consider the two parameter eigenvalue problem described in (1.16) and (1.17), where �1

and �2 are eigenvalues and x1 and x2 are eigenvectors.

A0x1 + �1A1x1 + �2A2x1 = 0 (1.16)

B0x2 + �1B1x2 + �2B2x2 = 0 (1.17)
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To derive the Kronecker product method, �1 must be isolated in a generalized eigenvalue

problem. Take the Kronecker product of (1.16) with −B2x2 and the Kronecker product of

−A2x1 with (1.17).

(A0x1 + �1A1x1 + �2A2x1)⊗(−B2x2) = (−A2x1)⊗(B0x2 + �1B1x2 + �2B2x2) (1.18)

Add �2A2x1 ⊗B2x2 to both sides to eliminate the �2 terms.

(A0x1 + �1A1x1)⊗ (−B2x2) = (−A2x1)⊗ (B0x2 + �1B1x2) (1.19)

Expand and rearrange this equation.

−A0x1 ⊗B2x2 +A2x1 ⊗B0x2 = �1 (A1x1 ⊗B2x2 −A2x1 ⊗B1x2) (1.20)

Then use the mixed product property (1.15).

(A2 ⊗B0 −A0 ⊗B2) (x1 ⊗ x2) = �1 (A1 ⊗B2 −A2 ⊗B1) (x1 ⊗ x2) (1.21)

Similarly, �2 must be isolated in a generalized eigenvalue problem. Take the Kronecker

product of (1.16) with −B1x2 and the Kronecker product of −A1x1 with (1.17). Equate the

results.

(A0x1 + �1A1x1 + �2A2x1)⊗(−B1x2) = (−A1x1)⊗(B0x2 + �1B1x2 + �2B2x2) (1.22)

Add �1A1x1 ⊗B1x2 to both sides to eliminate the �1 terms.

(A0x1 + �2A2x1)⊗ (−B1x2) = (−A1x1)⊗ (B0x2 + �2B2x2) (1.23)

Expand and rearrange this equation.
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A0x1 ⊗B1x2 −A1x1 ⊗B0x2 = �2 (A1x1 ⊗B2x2 −A2x1 ⊗B1x2) (1.24)

Then use the mixed product property (1.15).

(A0 ⊗B1 −A1 ⊗B0) (x1 ⊗ x2) = �2 (A1 ⊗B2 −A2 ⊗B1) (x1 ⊗ x2) (1.25)

(1.21) and (1.25) are generalized eigenvalue problems

Δ1z = �1Δ0z (1.26)

Δ2z = �2Δ0z (1.27)

where

Δ0 = A1 ⊗B2 −A2 ⊗B1 (1.28)

Δ1 = A2 ⊗B0 −A0 ⊗B2 (1.29)

Δ2 = A0 ⊗B1 −A1 ⊗B0 (1.30)

z = x1 ⊗ x2 (1.31)

The solution to the two-parameter eigenvalue problem can be obtained from a simultaneous

solution of (1.26) and (1.27).

Since each bus besides the slack bus has two degrees of freedom, the number of parameters

necessary to represent an n-bus power system is 2 (n− 1). It is not clear how the Kronecker

product method (or any other methods described in [5]) can be applied to multiparameter eigen-

value problems with more than two parameters. In fact, no solution techniques for multiparam-

eter eigenvalue problems with more than two parameters were found in any existing literature.

Solving multiparameter eigenvalue problems that have more than two parameters is believed

to be an open problem. Therefore, new developments in multiparameter eigenvalue theory will
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be needed before direct solution of the multiparmeter eigenvalue formulation of the power flow

equations will be possible for practical size power systems.

The second reference, [11], investigates condition numbers for multiparameter eigenvalue

problems. Condition numbers indicate the largest variation of an output that can occur due to

variation of an input or parameter. [11] derives the condition number for the eigenvalues of

the multiparameter eigenvalue problem as a function of variation of the matrices Vij. While

the condition number itself is not of primary interest to this thesis, an intermediate result of

the eigenvalue condition number derivation in the paper is useful; namely, the sensitivity of the

eigenvalues to variations in the matrices Vij. This sensitivity is obtained by first multiplying

the right multiparameter eigenvalue equation (1.7) by the corresponding left eigenvectors y∗

(in the power flow equation, as will be shown in Section 3.3, all eigenvectors are real so the

complex conjugation indicated by y∗ is equivalent to the transpose yT ). Next, all eigenvalues,

eigenvectors, and matrices in the resulting equation are perturbed by an amount Δ. The per-

turbed equation is expanded and simplified by discarding all second order and higher terms.

The result can be reduced to the form shown in (1.32).

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y∗
1
V11x1 ⋅ ⋅ ⋅ y∗

1
V1kx1

...
...

y∗kVk1xk ⋅ ⋅ ⋅ y∗kVkkxk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Δ�1

...

Δ�k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y∗
1
ΔW1 (�)x1

...

y∗kΔWk (�) xk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1.32)

In Section 3.6, the eigenvalue sensitivity equation (1.32) will be used to analyze a multipa-

rameter eigenvalue formulation of the power flow equations.

1.2 Induction Machine Initial Conditions Problem Overview

The first model that will be investigated in this thesis involves induction machines. Induc-

tion machines are of great importance to power system engineers due to both their prevalence

and size. Induction machines are the most common electric machine in most power systems

and are often used in both consumer applications such as air conditioners and refrigerators

and industrial applications such as pumps and fans. Industrial induction motors can be in the
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megawatt size range. Hence, induction machines often comprise a substantial percentage of the

load at many buses in a power system and can have a large impact on power system operations.

Power system engineers must investigate the dynamic operation of the electric grid in order

to ensure transient stability. Engineers use dynamic power system simulations to protect power

systems from transients such as faults and lightning strikes and thus maintain transient stability.

Since large induction machines can have a substantial effect on power system dynamics, it is

important that these machines are properly modeled in dynamic power system simulations.

In order to model an induction machine in these simulations, the initial conditions for the

machine’s rotor and stator currents, rotor speed, and mechanical torque must be determined.

The initial conditions are the values of the the currents, speed, and torque immediately before

the transient occurs and can be found from the steady state operating point of the induction

machine. The eigenvalue formulation for this problem described in Section 2.3 allows for

direct solution of all possible sets of initial conditions and can be used to easily determine

when no solutions exist.

The traditional method for solving the induction machine initial conditions problem uses

iteration on the machine’s rotor speed. A disadvantage of this method is that only one solution

is obtained when multiple solutions are possible. The iterative method is used in such software

as Electro-Magnetic Transients Program (EMTP) [7, pp. 9-19], Positive Sequence Load Flow

Software (PSLF) [8, p. 785] and Power System Simulation for Engineering (PSS/E) [17, pp.

20-16].

1.3 Power Flow Equations Overview

The second model that will be investigated in this thesis involves the power flow equations

(also known as the load flow equations). These equations use the electrical properties of the

transmission network to relate the real and reactive power injected at each bus to the voltage

magnitude and voltage angle at each bus in a power system. Since knowledge of the power

injections and voltage are essential for successful operation of the electric grid, the power flow

equations are extremely important to power system engineers.
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Due to the importance of the power flow equations, there has been significant research into

solution techniques and characteristics of the solutions. For a textbook treatment of the power

flow equations, including their derivation from circuit theory and several standard solution

techniques and approximations (Gauss-Seidel, Newton-Raphson, and the DC power flow), see

[9]. There has also been significant research attention to the problem of finding all solutions

to the power flow equations. [4] uses analytic tools from topology and geometry to determine

bounds on the number of solutions and the stability of solutions in a lossless network of PV

(specified real power injection and voltage magnitude) buses. [3] generalizes this analysis

to lossy systems of PV buses. A continuation power flow algorithm that can reliably find

all solutions to the power flow equations was published in [14] and has one implementation

described [6]. More esoteric solution techniques for the power flow equations have also been

attempted, such as a biologically inspired ant colony algorithm in [12] and a genetic algorithm

[19]. None of the existing literature formulates the power flow equations in terms of eigenvalue

problems.

In Chapter 3, the power flow equations are formulated in terms of a multiparameter eigen-

value problem. Direct solutions of the multiparameter eigenvalue formulation for a two bus

power systems using the Kronecker product method are detailed. In addition to directly search-

ing for the solutions of the power flow equations, the multiparameter eigenvalue formulation

provides two other areas of investigation: a further reformulation motivated by standard eigen-

value problem structure and a sensitivity analysis of the multiparameter eigenvalues. Although

practical applications of these investigations were not discovered, this thesis details some in-

teresting theoretical results and lays the groundwork for future research into the power flow

equations.
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Chapter 2

Induction Machine Initial Conditions Problem

2.1 Introduction

Dynamic simulations of power systems generally begin by running a load flow analysis

to determine steady state values of the real power (P ), the reactive power (Q), the voltage

magnitude (V ) and the voltage angle (�) at each bus. Subsequently, the initial conditions

for components connected to the bus are set to their steady state value. Induction machines

comprise a significant portion of the load at many buses. For each induction machine connected

to a bus, the initial conditions of the machine model’s internal state variables must be obtained

such that the terminal variables of the model match the values of P ,Q, V , and � obtained from

the load flow analysis. Appropriate choice of the internal states of the induction machine model

can set both the machine’s real power and voltage to match the bus values that are obtained

from the load flow analysis. An additional capacitor is often added at the bus to ensure that the

reactive power output of the machine matches the reactive power obtained from the load flow

analysis [16].

A common approach for matching the real power and voltage uses iteration on the induc-

tion machine’s slip to solve the machine equations for the internal variables using the known

terminal values. This approach is used in such software as Electro-Magnetic Transients Pro-

gram (EMTP) [7, pp. 9-19], Positive Sequence Load Flow Software (PSLF) [8, p. 785] and

Power System Simulation for Engineering (PSS/E) [17, pp. 20-16]. A potential disadvantage

of the iterative approach is that only one solution is obtained when multiple solutions are often
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possible. For general purposes the highest speed stable solution is sought; however, for some

research purposes, studies can focus on other unstable solutions.

This section presents an eigenvalue approach for solving the induction machine initial con-

ditions problem. Assuming linear magnetic relationships, the electrical equations appear nearly

linear, with non-linearity involving a common multiplier, the rotor speed. This will serve as

the eigenvalue in our formulation. The eigenvector is composed of the machine electrical vari-

ables. Once these are solved, the torque equation is used to initialize the model’s mechanical

torque.

This eigenvalue approach has the advantage of providing all solutions, stable and unsta-

ble, and can reliably determine when no solution exists through the absence of non-zero real

eigenvalues.

This chapter first describes a single-cage dynamic induction machine model and derives the

eigenvalue formulation for the induction machine initial conditions problem. Next, the eigen-

value formulation is extended to a double-cage induction machine model. Numeric examples

are provided.

2.2 Dynamic Single-Cage Induction Machine Model

This section presents a standard dynamic induction machine model in the dq frame with

linear magnetic relationships and short circuited rotor windings. The model was adapted from

[13, pp. 284].
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vds

Vqs

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Rs − (Xls +Xm) 0 −Xm

(Xls +Xm) Rs Xm 0

0 −Xm Rr − (Xlr +Xm)

Xm 0 (Xlr +Xm) Rr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+
!r

!s

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0 0 0 0

0 Xm 0 (Xlr +Xm)

−Xm 0 − (Xlr +Xm) 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ids

Iqs

Idr

Iqr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2.1)

+
1

!s

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(Xls +Xm) 0 Xm 0

0 (Xls +Xm) 0 Xm

Xm 0 (Xlr +Xm) 0

0 Xm 0 (Xlr +Xm)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

d

dt

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ids

Iqs

Idr

Iqr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

2H

!s

d!r

dt
= Te (Ids, Iqs, Idr, Iqr)− Tm (2.2)

Te (Ids, Iqs, Idr, Iqr) = Xm (IqsIdr − IdsIqr) (2.3)

!s refers to the electrical excitation frequency and !r refers to the rotor speed. Xls is the

stator leakage reactance, Xlr is the rotor leakage reactance, Xm is the mutual reactance, Rs is

the stator resistance, Rr is the rotor resistance, andH is the inertia constant of the machine and

mechanical load. All quantities are in per unit.

The familiar steady state equivalent circuit for the induction machine model from (2.1),

(2.2), and (2.3) is presented in Fig. 2.1. The machine slip is s = !s−!r

!s
, the stator current is

Is = Ids + jIqs, the rotor current is Ir = Idr + jIqr, and the stator voltage is Vs = Vds + jVqs.
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Vs

Figure 2.1 Single-Cage Induction Machine Steady State Equivalent Circuit

2.3 Eigenvalue Formulation of the Initial Conditions Problem

The dynamic induction machine model given by (2.1), (2.2), and (2.3) fits into a more

general induction machine dynamic model framework.

y = [A+ !rB] x+C
dx

dt
(2.4)

2H

!s

d!r

dt
= Te (x)− Tm (2.5)

This model has the applied voltage contained in the vector y and stator and rotor currents

contained in the vector x. The rotor windings are short circuited. A contains all terms that do

not depend on the rotor speed !r,B contains all terms that do depend on !r, andC contains all

terms that depend on the derivative of the currents. The model thus has a single multiplicative

non-linearity, namely a dependence on !r.

In steady state,d!r

dt
= 0 and dx

dt
= 0.

y = [A+ !rB] x (2.6)

Te (x) = Tm (2.7)

A and B are completely defined by the machine parameters. Since the phase angle of the

applied voltage does not affect the power consumption of the motor, we specify the stator d-

axis voltage Vds equal to the voltage obtained from the load flow analysis and the stator q-axis

voltage Vqs equal to zero. The voltage is then directed entirely in the d-axis. This specification
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can be corrected at the end of the method by rotating the current angles by the bus voltage angle

obtained from the load flow analysis. Therefore, the voltage vector y is completely known.

Since Vqs is specified to be zero, the real power used by the machine is P = VdsIds. The real

power is known from the load flow analysis, so the d-axis current can be directly determined.

Ids =
P

Vds

(2.8)

The machine model can be put into the form of an eigenvalue problem by combining the

known voltage vector and the known matrixA. First rewrite the voltage vector y as

y =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vds

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vds

Ids

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Ids =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

RA

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Ids (2.9)

where, using (2.8),

RA =
Vds

Ids
=

V 2

in

P
(2.10)

Then define the matrixD as

−D = −

⎡

⎢

⎢

⎣

RA 0

0 0

⎤

⎥

⎥

⎦

+A (2.11)

and rewrite (2.6) as

−Dx+ !rBx = 0 (2.12)

or, in a well-known generalized eigenvalue form

Dx = !rBx (2.13)
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This formulation can either be solved with generalized eigenvalue solution techniques or,

since D is invertible, converted to standard eigenvalue form and solved with standard eigen-

value techniques [1].

1

!r

x = D
−1
Bx (2.14)

Since the eigenvector can be arbitrarily scaled, rescaling the eigenvector using the known

value of Ids from (2.8) is required. Additionally, correction for the voltage angle � from the

load flow analysis is needed: rotate the currents in the vector x by � after solving the eigenvalue

problem. Finally, the mechanical torque is obtained using (2.3) and (2.7).

2.4 Single-Cage Induction Machine Numeric Example

Assume Vin is obtained from a load flow analysis. Specify Vds = Vin and Vqs = 0. The

method can then be applied to the single-cage induction machine model given by (2.6) and

(2.7) as previously described in Section 2.3.

The matrixD is

D = −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(Rs − RA) − (Xls +Xm) 0 −Xm

(Xls +Xm) Rs Xm 0

0 −Xm Rr − (Xlr +Xm)

Xm 0 (Xlr +Xm) Rr

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2.15)

Now !r and the currents in x can be found by solving (2.14). Note that the eigenvector

x must be scaled correctly. Since the first entry of x should be Ids, scaling can be done by

multiplying the each entry in the eigenvector x by Ids divided by the first entry of x.

Consider a single-cage induction machine with the parameter values in per unit represen-

tation given in Table 2.1. Assume that the values in Table 2.2 are obtained from a load flow

analysis.
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Xls Xlr Xm Rs Rr !s (rad/sec)

0.10 0.10 3.5 0.013 0.015 377

Table 2.1 Single-Cage Induction Machine Equivalent Circuit Parameters

P Vin �

1.0 1.0 30∘

Table 2.2 Single-Cage Example Load Flow Parameters

From this data, (2.8) shows that Ids = 1.0 and (2.10) shows that RA = 1.0. D can then be

obtained from (2.15).

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.987 3.6 0 3.5

−3.6 −0.013 −3.5 0

0 3.5 −0.015 3.6

−3.5 0 −3.6 −0.015

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Solving (2.14) gives two non-zero solutions for !r. The zero eigenvalues can be neglected

since they are not physically meaningful. The eigenvector x was scaled such that the Ids entry

is equal to its known value of 1.0. After scaling the eigenvector, the currents were rotated by

�. This was accomplished by calculating the vectors Ik = (Idk + jIqk) e
j� for k = {s, r}. The

rotated stator and rotor d-axis currents correspond to the real parts of Ik, and the rotated stator

and rotor q-axis currents correspond to the imaginary parts of Ik. Finally, torque was calculated

using (2.3).

The solutions for !r in radians per second and the currents and torque in per unit are pre-

sented below. Note that both the stable and unstable solutions are acquired rather than the

single solution that would be obtained from an iterative method. These solutions were veri-

fied in the steady state equivalent circuit shown in Fig. 2.1 through the traditional method of

iteration on the machine’s slip until the proper terminal power was obtained.
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Solution !r

(

rad

sec

)

Ids Iqs Idr Iqr Tm

1 183.6 3.295 -3.708 -3.233 3.579 0.6801

2 370.7 1.110 0.0773 -0.999 -0.323 0.9839

Table 2.3 Solution to Single-Cage Induction Machine Example
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Single−Cage Induction Machine Torque vs. Speed Curve

Torque vs. Speed Curve

Solutions for Numeric Example

Figure 2.2 Torque Speed Curve and Solutions for Single-Cage Machine Numeric Example

The torque versus speed curve for this machine is given in Fig. 2.2, and both solutions are

shown.

2.5 Dynamic Double-Cage Induction Machine Model

This section presents a dynamic double-cage induction machine model in the dq frame with

linear magnetic relationships and short circuited rotor windings. The model was adapted from
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[15]. This model is commonly used to represent the deep-bar effect and is similar to the model

described by (2.1), (2.2), and (2.3) with an additional rotor circuit branch.
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⎤
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(2.16)

+
1
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⎢

⎢

⎢

⎢

⎢
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⎢

⎢

⎢
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⎢

⎢

⎢

⎣

(Xls +Xm) 0 Xm 0 Xm 0

0 (Xls +Xm) 0 Xm 0 Xm
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0 Xm 0 Xm 0 (Xlr2 +Xm)
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⎥
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⎥
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⎢

⎢
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⎢
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Iqr1

Idr2

Iqr2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

2H

!s

d!r

dt
= Te (Ids, Iqs, Idr1, Iqr1, Idr2, Iqr2)− Tm (2.17)

Te (Ids, Iqs, Idr1, Iqr1, Idr2, Iqr2) = Xm (Iqs (Idr1 + Idr2)− Ids (Iqr1 + Iqr2)) (2.18)

The steady state equivalent circuit for the double-cage induction machine model given by

(2.16), (2.17), and (2.18) is presented in Fig. 2.3.
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Figure 2.3 Double-Cage Induction Machine Steady State Equivalent Circuit

The dynamic double-cage induction machine model (2.16), (2.17), and (2.18) also fits into

the general induction machine dynamic model framework given by (2.4) and (2.5). The devel-

opment in section 2.3 can therefore be directly applied to the double-cage induction machine

model.

2.6 Double-Cage Induction Machine Numeric Example

Assume Vin is obtained from a load flow analysis. Specify Vds = Vin and Vqs = 0. The

matrixD is

D = −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(Rs −RA)− (Xls +Xm) 0 −Xm 0 −Xm

(Xls +Xm) Rs Xm 0 Xm 0

0 −Xm Rr1 − (Xlr1 +Xm) 0 −Xm

Xm 0 (Xlr1 +Xm) Rr1 Xm 0

0 −Xm 0 −Xm Rr2 − (Xlr2 +Xm)

Xm 0 Xm 0 (Xlr2 +Xm) Rr2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(2.19)

Now !r and the currents in x can be found by solving (2.14). Note that the eigenvector

x must be scaled correctly. Since the first entry of x should be Ids, scaling can be done by

multiplying the each entry in the eigenvector x by Ids divided by the first entry of x.
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Consider a double-cage induction machine with the following parameter values in per unit

representation. These parameter values were obtained from the 90 kW double-cage machine

in Table 2 of [15].

Xls Xlr1 Xlr2 Xm Rs Rr1 Rr2 !s (rad/sec)

0.0682 0.1206 0.0682 2.6595 0.0034 0.0130 0.1171 377

Table 2.4 Double-Cage Induction Machine Equivalent Circuit Parameters

Assume that the following per unit values are obtained from a load flow analysis.

P Vin �

1.75 0.9 20∘

Table 2.5 Double-Cage Example Load Flow Parameters

From this data, (2.8) shows that Ids = 1.9444 and (2.10) shows that RA = 0.4629. D can

then be obtained from (2.19).

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.4595 2.7277 0 2.6595 0 2.6595

−2.7277 −0.0034 −2.6595 0 −2.6595 0

0 2.6595 −0.013 2.7801 0 2.6595

−2.6595 0 −2.7801 −0.013 −2.6595 0

0 2.6595 0 2.6595 −0.1171 2.7277

−2.6595 0 −2.6595 0 −2.7277 −0.1171

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Solving (2.14) gives four non-zero solutions for !r. The zero eigenvalues can be neglected

since they are not physicallymeaningful. The eigenvector xwas scaled such that the Ids entry is

equal to its known value of 1.9444. After scaling the eigenvector, the currents were rotated by

�. This was accomplished by calculating the vectors Ik = (Idk + jIqk) e
j� for k = {s, r1, r2}.

The rotated d-axis currents correspond to the real parts of Ik, and the rotated q-axis currents

correspond to the imaginary parts of Ik. Finally, torque was calculated using (2.18).
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The solutions for !r in radians per second and the currents and torque in per unit are pre-

sented below. Note that four solutions (the high speed stable solution and three lower speed

unstable solutions) are acquired rather than the single solution that would be obtained from an

iterative method.

Solution !r

(

rad

sec

)

Ids Iqs Idr1 Iqr1 Idr2 Iqr2 Tm

1 -7.6 4.030 -5.388 -0.823 3.765 -3.188 1.448 1.5961

2 107.3 3.856 -4.908 -1.107 3.962 -2.725 0.759 1.6175

3 279.2 3.512 -3.964 -2.234 3.744 -1.248 0.0073 1.6547

4 364.8 2.237 -0.461 -1.954 0.197 -0.224 -0.039 1.7323

Table 2.6 Solution to Double-Cage Induction Machine Example

The torque versus speed curve for this machine is given in Fig. 2.4 with all four solutions

shown.

2.7 Conclusion

A new method for determining the initial conditions of induction machine models in dy-

namic power system simulations has been developed. This method converts the initial con-

ditions problem into a generalized eigenvalue formulation that can be solved using standard

linear algebra techniques. In contrast to existing iterative methods, the eigenvalue method has

the advantage of providing all solutions to the initial conditions problem and can reliability

determine when no solutions exist. While eigenvalue solution techniques for arbitrarily sized

matrices require iteration, these techniques are robust. Additionally,D−1
B in (2.14) has rank

two for the single-cage machine. Therefore, the largest factor in the eigenvalue characteristic

equation for the single-cage induction machine model is a second order polynomial. Hence,

the eigenvalue formulation can be non-iteratively solved using the quadratic formula. See Ap-

pendix A for the details of this solution technique. Similarly, the largest factor in the eigenvalue

characteristic equation for the double-cage induction machine has a fourth order polynomial
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Figure 2.4 Torque Speed Curve and Solutions for Double-Cage Machine Numeric Example

which can be solved non-iteratively with the the equation for roots of quartic polynomials given

in [20].
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Chapter 3

A Multiparameter Eigenvalue Formulation of the Power Flow

Equations

3.1 Development of the Power Flow Equations

The power flow equations relate the real and reactive power injected at each bus (with loads

treated as negative injections) to the voltage magnitude and angle at each bus. The development

of these equations is described in this section; see [9] for a textbook treatment of this material.

There are four variables associated with each bus k on a power system that are used in the

power flow equations: the net real power injection (Pk), the net reactive power injection (Qk),

the voltage magnitude (Vk) and the voltage angle (�k).

Each bus k in the power system is classified as one of three bus types: slack bus, load (PQ)

bus, and voltage controlled (PV) bus. A single bus is chosen as the slack bus. This bus has

a fixed value of voltage magnitude Vk and angle �k. The real power Pk and reactive power

Qk injections for the slack bus are calculated from the power flow equations. For notational

purposes, the slack bus is typically referred to as bus 1. The remaining buses are specified

as either PQ or PV buses. A PQ bus has specified values for the real power injection Pk

and Qk. The voltage magnitude Vk and voltage angle �k are computed using the power flow

equations. A PV bus has specified values of real power injection Pk and voltage magnitude

Vk. The reactive power injection Qk and voltage angle �k are computed using the power flow

equations.

The electrical and topological properties of the transmission network are encapsulated in

the admittance matrix Y, where Y relates the voltages V and currents I in the network as
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V = YI . The diagonal element ofY corresponding to bus k, Ykk, is the sum of the admittances

connected to bus k. The off-diagonal elements of Y, Ykn where k ∕= n, are given by the

negative of the sum of the admittances connected between buses k and n. The admittance

matrixY is typically decomposed into a real partG = ℜ (Y) and imaginary part B = ℑ (Y).

In most traditional derivations of the power flow equations, the voltage magnitude and angle

are used directly. Here, however, the voltages at each bus are decomposed into orthogonal d

and q components.

Vdk = Vk cos (�k) (3.1)

Vqk = Vk sin (�k) (3.2)

The power flow equations are then developed using the equation for complex power P +

jQ = V I∗ = VY
∗V ∗. For an n bus power system, bus i has equations,

Pi + jQi = (Vdi + jVqi)
n
∑

k=1

(Gik − jBik) (Vdk − jVqk) (3.3)

Splitting (3.3) into real and imaginary parts and including the voltage magnitude relation-

ship gives the full set of power flow equations.

Pi = Vdi

n
∑

k=1

(GikVdk − BikVqk) + Vqi

n
∑

k=1

(BikVdk +GikVqk) (3.4)

Qi = Vdi

n
∑

k=1

(−BikVdk −GikVqk) + Vqi

n
∑

k=1

(GikVdk −BikVqk) (3.5)

V 2

i = V 2

di + V 2

qi (3.6)

With specified real power Pi and reactive power Qi and no specification of voltage magni-

tude, PQ buses must satisfy (3.4) and (3.5). The voltage magnitude Vi is then calculated using

(3.6). At PV buses, real power Pi and voltage magnitude Vi are specified, so (3.4) and (3.6)

must be satisfied. The reactive power injection Qi is then calculated from (3.5). The slack

bus has specified Vdi and Vqi, so the real power injection Pi, reactive power injection Qi, and

voltage magnitude Vi can be calculated using (3.4), (3.5), and (3.6).
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3.2 A Multiparameter Eigenvalue Formulation of the Power Flow Equa-

tions

The power flow equations are now converted to a multiparameter eigenvalue form. Each

bus contributes an additional two voltage parameters and an additional two equations that must

be satisfied. Equations (3.7), (3.8) and (3.9) are the power flow equations presented in right

multiparameter eigenvalue form for bus i and correspond to (3.4), (3.5), and (3.6), respectively.

Equations (3.10), (3.11), and (3.12) are the power flow equations presented in left multiparam-

eter eigenvalue form for bus i and correspond to (3.4), (3.5), and (3.6), respectively.
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Both left and right formulations for bus i have eigenvalues Vdk, Vqk where k = 2, . . . , n.

Since the slack bus voltages Vd1 and Vq1 are known, the matrices not multiplied by an eigen-

value (Vi0 in (1.7) and (1.8)) are given by (3.13) for the real power equations ((3.7) and (3.10)),

and by (3.14) for the reactive power equations ((3.8) and (3.11)). The voltage equations ((3.9)

and (3.12)) have easily identifiable constant matrices.
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The right formulation has eigenvectors x =
[

x1i x2i x3i

]T

, y =
[

y1i y2i y3i

]T

and

w =
[

w1i w2i w3i

]T

associated with the real power equation, reactive power equation,

and voltage magnitude equation, respectively. The left formulation has eigenvectors p =
[

p1i p2i p3i

]T

, q =
[

q1i q2i q3i

]T

and r =
[

r1i r2i r3i

]T

associated with the real power

equation, reactive power equation, and voltage magnitude equation, respectively.

3.3 Left and Right Eigenvector Formulas

The eigenvalues of the multiparameter eigenvalue formulation can be easily recognized as

the Vd and Vq voltages. However, the eigenvectors are not as easily identified. This section

provides formulas for the eigenvectors x, y, w, p, q, and r in both left and right formulations.

Expressions for right eigenvectors can be obtained by expanding the second and third rows

of the corresponding multiparameter eigenvalue equation and examining the relationships be-

tween the elements of the eigenvector. For instance, the second and third rows of the right

multiparameter eigenvalue formulation of the real power equation (3.7) are

−Vdix2i + Vqix1i = 0 ⇒ x2i =
Vqi

Vdi

x1i (3.15)

−x1i + Vdix3i = 0 ⇒ x3i =
1

Vdi

x1i (3.16)

Thus, the eigenvector xi can be rewritten as
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(3.17)



30

Since eigenvectors have a single degree of freedom in their magnitude (if v is an eigenvec-

tor, then av is also an eigenvector for scalar a ∕= 0), assuming Vdi ∕= 0 and x1i ∕= 0, (3.17) can

be rewritten as
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Since the second and third rows of all right multiparameter formulations are identical, (3.7),

(3.8), and (3.9) have identical eigenvectors
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A similar process can be used for the left eigenvectors p, q, and r from (3.10), (3.11) and

(3.12), respectively, where the second and third columns, rather than the second and third rows,

are expanded. In contrast to the right eigenvectors, the left eigenvectors pi, qi, and ri are not

identical.
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One advantage of calculating the eigenvectors using (3.19) through (3.22) instead of using a

numeric routine like MATLAB’s EIG function is that eigenvector formulas represent the exact

eigenvector values rather than the approximation obtained from a numeric eigenvector solver.

An additional point to note is that the eigenvector formulas indicate that the eigenvectors

must be real.

3.4 Direct Solution of theMultiparameter Eigenvalue Formulation for Two

Bus Systems

Since the slack bus voltages are known, the power flow equations for a two bus systems can

be represented with a two-parameter eigenvalue problem (Vd2 and Vq2 are the eigenvalues). As

described in Section 1.1.3, two parameter problems can be decoupled into a system of two gen-

eralized eigenvalue problems using the Kronecker product method. Since each matrix in the

generalized eigenvalue form has dimension 3× 3, the Kronecker product method yields gener-

alized eigenvalue problems which have matrices of dimension 9 × 9. Generalized eigenvalue

problems of this size are easily solvable. Joint solutions of the two generalized eigenvalue

problems are solutions of the two bus system power flow equations. This section explores the

Kronecker product method for two bus systems and provides numeric examples. Systems with

both PQ and PV buses are investigated.

A two bus power system has a 2× 2 admittance matrixY = G+ jB. Bus 1 is a slack bus

with known values of Vd1 and Vq1. First consider bus 2 as a PQ bus with real power injection

P2 and reactive power injection Q2. Solving the power flow equations requires finding the

voltages at bus 2: Vd2 and Vq2. Using the P and Q multiparameter eigenvalue formulations

given in (3.7) and (3.8) as well as the Kronecker product method in (1.26) and (1.27), the

following generalized eigenvalue problems must be satisfied

Δ1z = Vd2Δ0z (3.23)

Δ2z = Vq2Δ0z (3.24)

where
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Δ0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −G22B22 0 G22B22 0 0 0 0 0

G22 0 0 0 G22 0 0 0 0

0 0 0 0 0 −G22 0 0 0

B22 0 0 0 B22 0 0 0 0

0 1 0 −1 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 −B22 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.25)

Δ1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 aB22 0 −bG22 (aG22 + bB22) −Q2G22 0 −P2B22 0

−a 0 0 −b 0 0 P2 0 0

0 0 0 −G22 0 0 0 0 0

−b a −Q2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0

0 −B22 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.26)
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Δ2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(−aB22 + bG22) −aG22 Q2G22 −bB22 0 0 P2B22 0 0

0 −a 0 0 −b 0 0 P2 0

G22 0 a 0 0 b 0 0 −P2

0 0 0 −b a −Q2 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

B22 0 0 0 0 0 b −a Q2

0 1 0 0 0 0 0 0 0

0 0 −1 0 0 0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.27)

and, for notational convenience, a = G21Vd1 − B21Vq1 and b = B21Vd1 +G21Vq1.

To determine which pairs of eigenvalues are actually solutions to the power flow equations,

test each of the possible combinations for the voltages (Vd2,Vq2) in the power flow equations

(3.4) and (3.5). Combinations of voltages that yield the specified values of real and reactive

power injections Pi and Qi are solutions to the power flow equations.

Next, a numeric example of the Kronecker product method with a PQ bus is presented.

Consider a two bus systemwhere the buses are connected by a transmission line with impedance

0.01 + j0.05 per unit. This gives the admittance matrix

G+ jB =

⎡

⎢

⎣

3.846 −3.846

−3.846 3.846

⎤

⎥

⎦+ j

⎡

⎢

⎣

−19.231 19.231

19.231 −19.231

⎤

⎥

⎦ (3.28)

Assume a slack bus voltage Vd1 + jVq1 = 1.0 + j0 per unit and bus 2 power injection of

P2 + jQ2 = −0.75 − j0.5 per unit (negative indicating bus 2 has a load). Then Δ0, Δ1, and

Δ2 can be determined from (3.25), (3.26), and (3.27).
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Δ0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 73.96 0 −73.96 0 0 0 0 0

3.846 0 0 0 3.846 0 0 0 0

0 0 0 0 0 −3.846 0 0 0

−19.23 0 0 0 −19.23 0 0 0 0

0 1 0 −1 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 19.23 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.29)

Δ1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 73.96 0 −73.96 −384.6 1.923 0 −14.42 0

3.846 0 0 −19.23 0 0 −0.75 0 0

0 0 0 −3.846 0 0 0 0 0

−19.23 −3.846 0.5 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0

0 19.23 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.30)
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Δ2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 14.79 −1.923 369.8 0 0 14.42 0 0

0 3.846 0 0 −19.23 0 0 −0.75 0

3.846 0 −3.846 0 0 19.23 0 0 0.75

0 0 0 −19.23 −3.846 0.5 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

−19.23 0 0 0 0 0 19.23 3.846 −0.5

0 1 0 0 0 0 0 0 0

0 0 −1 0 0 0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.31)

Solving (3.23) and (3.24) gives the sets of possible values for Vd2 and Vq2. Vd2 must be in the

set {0, 0.0348, 0.9652} and Vq2 must be in the set {−5, −0.0325, 0.2, 11.5573}. By verifying

whether the calculated real and reactive power injections from each possible combination from

these two sets matches the specified power injections, the actual solutions of Vd2 + jVq2 =

0.9652− j0.0325 and Vd2 + jVq2 = 0.0348− j0.0325 are found.

A similar process can be done for a two bus system where bus 2 is a PV bus with real

power injection P2 and voltage magnitude V2. The Kronecker product equations (3.23) and

(3.23) must be solved, where
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Δ0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 G22 0 −G22 0 0 0 0 0

G22 0 0 0 G22 0 0 0 0

0 0 0 0 0 −G22 0 0 0

−1 0 0 0 −1 0 0 0 0

0 1 0 −1 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.32)

Δ1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −a 0 0 −b −V 2

2
G22 0 P2 0

−a 0 0 −b 0 0 P2 0 0

0 0 0 −G22 0 0 0 0 0

0 0 −V 2

2
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.33)
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Δ2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a 0 V 2

2
G22 b 0 0 −P2 0 0

0 −a 0 0 −b 0 0 P2 0

G22 0 a 0 0 b 0 0 −P2

0 0 0 0 0 −V 2

2
0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

−1 0 0 0 0 0 0 0 V 2

2

0 1 0 0 0 0 0 0 0

0 0 −1 0 0 0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.34)

and, for notational convenience, a = G21Vd1 − B21Vq1 and b = B21Vd1 +G21Vq1.

Then each combination of eigenvalues must be checked in the power flow equations for

real power (3.4) and voltage magnitude (3.6). Combinations that satisfy these equations are the

solutions to the power flow equations.

Next, a numeric example of the Kronecker product method for a two bys system with a PV

bus is presented. Consider the same system as described in the PQ bus case. Assume a bus

2 power injection of P2 = 3.0 per unit (positive indicating bus 2 has a generator) and bus 2

voltage magnitude V2 = 0.9 per unit. Then Δ0, Δ1, and Δ2 can be determined from (3.32),

(3.33), and (3.34).
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Δ0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 3.846 0 −3.846 0 0 0 0 0

3.846 0 0 0 3.846 0 0 0 0

0 0 0 0 0 −3.846 0 0 0

−1 0 0 0 −1 0 0 0 0

0 1 0 −1 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.35)

Δ1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 3.846 0 0 −19.23 −3.115 0 3.0 0

3.846 0 0 −19.23 0 0 3.0 0 0

0 0 0 −3.846 0 0 0 0 0

0 0 −0.81 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.36)
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Δ2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−3.846 0 3.115 19.23 0 0 −3.0 0 0

0 3.846 0 0 −19.23 0 0 3.0 0

3.846 0 −3.846 0 0 19.23 0 0 −3.0

0 0 0 0 0 −0.81 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

−1 0 0 0 0 0 0 0 0.81

0 1 0 0 0 0 0 0 0

0 0 −1 0 0 0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.37)

Solving (3.23) and (3.24) gives the sets of possible values for Vd2 and Vq2. Vd2 must be in the

set {−0.8813, 0, 0.8837} and Vq2 must be in the set {−0.1823, 0.0867, 0.1707, 1.6822, 7.9643}.

By verifying whether the calculated real and reactive power injections from each possible com-

bination from these two sets matches the specified real power injection and voltage magnitude,

the actual solutions of Vd2 + jVq2 = 0.8837 + j0.1707 and Vd2 + jVq2 = −0.8813 − j0.1823

are found.

3.5 A Reformulation of the Power Flow Equations Motivated by Eigen-

value Problem Structure

The right multiparameter eigenvalue formulation of the power flow equations (3.7), (3.8),

(3.9) can be reformulated to resemble a standard eigenvalue problem with a matrix that is de-

pendent on the Vd and Vq voltages. Although this reformulation does not yet have any practical

applications, it is an interesting theoretical development. Motivated by standard eigenvalue

problem structure, this section develops a method for reformulating the power flow equations

and provides an example for a three bus system.

Start with the formulation of the power flow equations for bus i shown in (3.38). This

formulation takes advantage of the fact that the right eigenvectors are the same for the real
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power equation, reactive power equation, and voltage magnitude equation. Two relationships

(real power and reactive power for PQ buses, real power and voltage magnitude for PV buses)

are combined into one block matrix equation, and the known expressions are substituted for

the eigenvalues as discussed in Section 3.3.

[

A1 ⋅ ⋅ ⋅ Ai ⋅ ⋅ ⋅ An

]

V

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vdi

Vqi

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.38)

where n is the number of buses in the system,V is a 3n× 3 matrix

V =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vd1I3

Vq1I3

1I3
...

VdiI3

VqiI3

1I3
...

VdnI3

VqnI3

1I3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.39)

and, if bus i is a PQ bus,
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Ak =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Gik Bik 0 −Bik Gik 0 0 0 0

−Bik Gik 0 −Gik −Bik 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, k = 1, . . . , n, k ∕= i (3.40)

Ai =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Gii 0 0 0 Gii 0 0 0 −Pi

−Bii 0 0 0 −Bii 0 0 0 −Qi

0 −1 0 1 0 0 0 0 0

0 0 1 0 0 0 −1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.41)

or, if bus i is a PV bus

Ak =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Gik Bik 0 −Bik Gik 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, k = 1, . . . , n, k ∕= i (3.42)

Ai =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Gii 0 0 0 Gii 0 0 0 −Pi

1 0 0 0 1 0 0 0 −V 2

i

0 −1 0 1 0 0 0 0 0

0 0 1 0 0 0 −1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.43)

(3.38) is a nullspace equation. It shows that the vector V

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vdi

Vqi

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

is in the nullspace of the

matrix

[

A1 ⋅ ⋅ ⋅ Ai ⋅ ⋅ ⋅ An

]

. Since this matrix is completely composed of known values,

the nullspace can be calculated immediately and written as
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V

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vdi

Vqi

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= �i1zi1 + �i2zi2 + ⋅ ⋅ ⋅+ �ikzik (3.44)

where k = dim
(

ker
([

A1 ⋅ ⋅ ⋅ Ai ⋅ ⋅ ⋅ An

]))

, �i are scalars, and zi refer to a set of

vectors forming a basis of the nullspace and composed entirely of the known parameters G, B,

Pi, Qi, and Vi.

The values for the scalars �i can be found solely in terms of the Vd and Vq voltages by

expanding the vectorV

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vdi

Vqi

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and comparing entries to the nullspace described in (3.44).

Next, the psuedo-inverse can be used to isolate

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vdi

Vqi

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

in (3.44). This entails multiplication

of both sides of (3.44) byV
T
.

V
T
V

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vdi

Vqi

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= V
T
(�i1zi1 + �i2zi2 + ⋅ ⋅ ⋅+ �ikzik) (3.45)

Hence,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vdi

Vqi

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
(

V
T
V

)−1

V
T
(�i1zi1 + �i2zi2 + ⋅ ⋅ ⋅+ �ikzik) (3.46)

Expansion of
(

V
T
V

)−1

gives

(

V
T
V

)−1

=
1

d
I3 (3.47)
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where d = V 2

d1 + V 2

q1 + 1 + V 2

d2 + V 2

q2 + 1 + . . .+ V 2

dn + V 2

qn + 1.

Therefore, (3.46) can be rewritten as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vdi

Vqi

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
1

d
V

T
(�i1zi1 + �i2zi2 + ⋅ ⋅ ⋅+ �ikzik) (3.48)

Collecting terms on the right-hand side of (3.48) gives

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vdi

Vqi

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
1

d
[fi (�i, G,B, Pi, Qi)]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vd2

Vq2

1

Vd3

Vq3

1

...

Vdn

Vqn

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.49)

where [fi (�i, G,B, Pi, Qi)] is a 3×3(n−1)matrix. Note that the slack bus voltages Vd1 and Vq1

do not need to be separated out since they are known values and can therefore be grouped with

the terms multiplying a constant 1 in (3.49). All of the constants in (3.49) could be consolidated

into one term; they are kept separate to maintain the form of stacked eigenvectors.

Repeating this process for all buses and combining the corresponding equations from (3.49)

gives the power flow equations in a form that resembles a standard eigenvalue problem as

shown in (3.50). d is similar to an eigenvalue, and the vectors containing the Vd and Vq voltages

resemble eigenvectors. All �i are known functions of Vd and Vq and are therefore eliminated

by substitution.
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d

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vd2

Vq2

1

Vd3

Vq3

1

...

Vdn

Vqn

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f2 (Vd, Vq, G,B, P,Q)

f3 (Vd, Vq, G,B, P,Q)

...

fn (Vd, Vq, G,B, P,Q)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vd2

Vq2

1

Vd3

Vq3

1

...

Vdn

Vqn

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.50)

Next, an example of (3.50) is presented for a three bus system where bus 1 is the slack bus

and buses 2 and 3 are PQ buses. The reformulation is given by

d

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vd2

Vq2

1

Vd3

Vq3

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

V 2

d2 Vd2Vq2 a1 Vd3Vd2 Vq3Vd2 0

Vd2Vq2 V 2

q2 a2 Vd3Vq2 Vq3Vq2 0

Vd2 Vq2 a3 Vd3 Vq3 0

Vd2Vd3 Vq2Vd3 0 V 2

d3 Vd3Vq3 b1

Vd2Vq3 Vq2Vq3 0 Vd3Vq3 V 2

q3 b2

Vd2 Vq2 0 Vd3 Vq3 b3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vd2

Vq2

1

Vd3

Vq3

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3.51)

where

d = V 2

d1 + V 2

q1 + 1 + V 2

d2 + V 2

q2 + 1 + V 2

d3 + V 2

q3 + 1

a1 = 3Vd2 + V 2

q1Vd2 + Vd1

(

−Vq1Vq2 −
B21B23 +G21G23

G2
21

+B2
21

(Vd2Vd3 + Vq2Vq3)

+
B21G23 −G21B23

G2
21

+B2
21

(Vq2Vd3 − Vd2Vq3)−
G22G21 +B22B21

G2
21

+B2
21

(

V 2

d2 + V 2

q2

)

+
P2G21 −B21Q21

G2
21

+B2
21

)
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a2 = 3Vq2 + V 2

q1Vq2 + Vd1

(

Vq1Vd2 +
G21B23 −B21G23

G2
21

+B2
21

(Vd3Vd2 + Vq3Vq2)

−
B21B23 +G21G23

G2
21

+B2
21

(Vq2Vd3 − Vq3Vd2) +
B22G21 −G22B21

G2
21

+B2
21

(

V 2

d2 + V 2

q2

)

+
P2B21 +Q2G21

G2
21

+B2
21

)

a3 = 3 + V 2

d1 + V 2

q1

b1 = 3Vd3 + V 2

q1Vd3 + Vd1

(

−Vq1Vq3 −
B31B32 +G31G32

G2
31

+B2
31

(Vd2Vd3 + Vq2Vq3)

+
B31G32 −G31B32

G2
31

+B2
31

(Vd2Vq3 − Vq2Vd3)−
B31B33 +G31G33

G2
31

+B2
31

(

V 2

d3 + V 2

q3

)

+
P3G31 −Q3B31

G2
31

+B2
31

)

b2 = 3Vq3 + V 2

q1Vq3 + Vd1

(

Vq1Vd3 +
G31B32 −B31G32

G2
31

+B2
31

(Vd2Vd3 + Vq2Vq3)

+
B31B32 +G31G32

G2
31

+B2
31

(Vq2Vd3 − Vd2Vq3) +
G31B33 −B31G33

G2
31

+B2
31

(

V 2

d3 + V 2

q3

)

+
P3B31 +Q3G31

G2
31

+B2
31

)

b3 = 3 + V 2

q1 + V 2

d1

The hypothesis that the formulation of the power flow equations given by (3.50) could lead

to a new iterative approach to solving the power flow equations was investigated. Starting

from initial values of Vd and Vq that were close to a solution, the solution might be found by

evaluating the eigenvalue problem, substituting the new Vd and Vq values from the solution of

the eigenvalue problem back into (3.50), reevaluating the eigenvalue problem, and repeating.

If this process converged, it may have provided a new method for solving the power flow

equations. Unfortunately, all investigated test cases diverged with Vd and Vq values going to

positive or negative infinity. Therefore, this reformulation of the power flow equations does

not appear to enable an iterative solution method. Future work includes further investigation

into this reformulation of the power flow equations to determine whether it has any practical

applications.
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3.6 Power Flow Equations Eigenvalue Sensitivity

Since the eigenvalues of the multiparameter eigenvalue form of the power flow equations

are the Vd and Vq voltages, an eigenvalue sensitivity analysis yields a linearization of the power

flow equations. This linearization gives a first order approximation to how the Vd and Vq volt-

ages change with a change in real powerΔP , reactive powerΔQ, and slack bus voltagesΔVd1

andΔVq1. The eigenvalue sensitivity linearization provides identical results to the linearization

obtained from the power flow Jacobian. This section contains an eigenvalue sensitivity analysis

and details its equivalence to the Jacobian linearization.

To develop the eigenvalue sensitivity linearization, start from the eigenvalue sensitivity

equation for a general multiparameter eigenvalue problem given in (1.32). Applying (1.32) for

the right multiparameter eigenvalue form of the power flow equations (3.7), (3.8), (3.9) requires

the expressions for the left and right eigenvectors from (3.19), (3.20), (3.21), and (3.22) as well

as the expressions for the constant matrices (3.13) and (3.14).

The eigenvalue sensitivity linearization for the multiparameter eigenvalue formulation of

the power flow equations for an n bus system has the form

AsensΔVsens = bsens (3.52)

where Asens is a 2 (n− 1)× 2 (n− 1) matrix, bsens is a vector with length 2 (n− 1), and the

vectorΔVsens is

ΔVsens =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ΔVd2

ΔVq2

...

ΔVdn

ΔVqn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Each bus has two associated equations, and thus two corresponding rows inAsens and bsens.

If the itℎ row of (3.52) refers to a real power equation, it is given by



47

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

pTi

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Gi2 Bi2 0

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xi pTi

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−Bi2 Gi2 0

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xi ⋅ ⋅ ⋅

⋅ ⋅ ⋅ pTi

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Gii 0 0

0 −1 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xi pTi

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 Gii 0

1 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xi ⋅ ⋅ ⋅

⋅ ⋅ ⋅ pTi

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Gin Bin 0

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xi pTi

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−Bin Gin 0

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

xi

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ΔVsens (3.53)

= pTi

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 −ΔPi

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ΔVd1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−Bi1 Gi1 0

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ΔVq1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−Bi1 Gi1 0

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

xi

or, if the itℎ row refers to a reactive power equation,
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

qTi

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−Bi2 Gi2 0

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

yi qTi

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−Gi2 −Bi2 0

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

yi ⋅ ⋅ ⋅

⋅ ⋅ ⋅ qTi

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−Bii 0 0

0 −1 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

yi qTi

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −Bii 0

1 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

yi ⋅ ⋅ ⋅

⋅ ⋅ ⋅ qTi

⎡

⎢
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⎥

⎥

⎥

⎥
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= qTi
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or, if the itℎ row refers to a voltage magnitude equation
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⎢
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0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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To show that the eigenvalue sensitivity linearization is equivalent to the linearization ob-

tained from the Jacobian, substitute (3.19) for the eigenvectors x, y, w and (3.20), (3.21), and

(3.22) for p, q, r, respectively, and expand the resulting expressions. Then, the itℎ row is

equivalent to
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Vdi

[

∂Pi

∂Vd2

∂Pi

∂Vq2
⋅ ⋅ ⋅ ∂Pi

∂Vdn

∂Pi

∂Vqn

]

ΔVsens = VdiΔPi (3.56)

if the itℎ row refers to a real power equation,

Vdi

[

∂Qi

∂Vd2

∂Qi

∂Vq2
⋅ ⋅ ⋅ ∂Qi

∂Vdn

∂Qi

∂Vqn

]

ΔVsens = VdiΔQi (3.57)

if the itℎ row refers to a reactive power equation, or

Vdi

[

0 0 ⋅ ⋅ ⋅ ∂Vi

∂Vdi

∂Vi

∂Vqi
⋅ ⋅ ⋅ 0 0

]

ΔVsens = VdiΔV 2

i (3.58)

if the itℎ row refers to a voltage magnitude equation.

Equations (3.56), (3.57), and (3.58) are those of the standard Jacobian linearization of the

power flow equations with both sides multiplied by Vdi. Therefore, the eigenvalue sensitivity

linearization gives identical results to the standard Jacobian linearization.

3.7 Conclusions and Future Work

This chapter first detailed a new multiparameter eigenvalue formulation of the power flow

equations for both PQ and PV buses. Formulas for both the left and right eigenvectors have

been developed.

Next, the Kronecker product method for direct solution of the power flow equations for

two bus systems with both PQ and PV buses has been explored. This method converts the

two parameter eigenvalue problem into two generalized eigenvalue problems that must be si-

multaneously satisfied. Since the matrices in the multiparameter eigenvalue formulation have

size 3 × 3, the generalized eigenvalue problems have 9 × 9 matrices that can be solved using

existing generalized eigenvalue solution techniques. Since no solution techniques for multipa-

rameter eigenvalue problems with more than two parameters were found, there is currently no

known method for direct solutions of the multiparameter eigenvalue formulation for systems

with more than two buses.
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Motivated by eigenvalue problem structure, the expressions for the right eigenvectors were

next used to convert the multiparameter eigenvalue problem to a form that resembled a stan-

dard eigenvalue problem with matrix elements that are functions of the Vd and Vq voltages.

Although this reformulation does not have any known practical applications, it is an interesting

theoretical development.

Finally, an eigenvalue sensitivity analysis of the multiparameter eigenvalue formulation

was performed. The linearization resulting from this sensitivity analysis gave identical results

to the linearization obtained from the Jacobian method.

An eigenvector sensitivity analysis was also attempted. In addition to containing the deriva-

tion for the eigenvalue sensitivity for multiparameter eigenvalue problems, [11] also described

the right eigenvector sensitivities. Since the real power equation right eigenvector xi is iden-

tical to the reactive power equation right eigenvector yi (as described in Section 3.3, both are
[

Vdi Vqi 1

]T

), the eigenvector sensitivity analysis was expected to show that the eigenvector

sensitivities for xi and yi were also identical. Furthermore, since the third entries of xi and yi

are constant values of one (when properly scaled), the eigenvector sensitivities were expected

to show that the the sensitivity of this entry was zero. However, neither of these characteris-

tics were found in an eigenvector sensitivity analysis of a three bus system with a slack bus

and two PQ buses. Additionally, since the eigenvector entries are known to be the voltage

components Vdi and Vqi, a presumed sensitivity of the eigenvectors can be obtained from the

Jacobian linearization of the power flow equations. The sensitivity results obtained in this way

did not satisfy the eigenvector sensitivity equations described in [11]. It is possible that the

multiparameter eigenvalue formulation of the power flow equations does not meet some crite-

ria required by the eigenvector sensitivity analysis, or that the eigenvector sensitivity equations

were somehow misapplied in this analysis. An eigenvector sensitivity for the multiparameter

eigenvalue form of the power flow equations is therefore an open question for future research.

The multiparameter eigenvalue formulation of the power flow equations enables future ad-

vances in eigenvalue theory to benefit power systems research. Further developments in direct

solution techniques for multiparameter eigenvalue problems may facilitate the solution of the
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power flow equations for power systems with more than two buses. However, it is important

to note that much of the existing multiparameter eigenvalue research has focused on limited

problems, such as restrictions to Hermitian matrices or definiteness requirements. The matrices

resulting from the power flow equations do not have these properties (the only evident special

property is that the eigenvectors and eigenvalues are real). Therefore, future developments in

direct solution techniques for multiparameter eigenvalue problems must not be dependent on

special matrix properties in order to be applicable to the power flow equations.

The multiparameter eigenvalue formulation of the power flow equations may still prove

useful even if relevant direct solution techniques are not developed. For instance, discovery

of an upper bound to the number of real solutions of a multiparameter eigenvalue problem

would be useful for the continuation power flow method [14],[6]. Given an initial solution,

the continuation power flow finds all solutions to the power flow equations by tracing from

one solution to the next. The tracing method varies a single parameter, such as the real power

injection at a bus, until a new solution is found. Ensuring that all solutions are found may

require the continuation power flow to continue tracing after actually finding all solutions. An

upper bound on the number of real solutions provided by future advances in multiparameter

eigenvalue theory would provide the continuation power flow with a stop condition to prevent

unnecessary tracing.

The future discovery of conditions for the existence of solutions to multiparameter eigen-

value problems is an additional advancement in multiparameter eigenvalue theory that has the

potential for practical application to the power flow equations. The power flow equations for

some operating conditions, particularly when the system is heavily loaded, may not have any

real valued solutions (since the power flow equations are derived by separating the real and

imaginary parts of the complex power injections, physically meaningful solutions for the volt-

age components must be real). On the other hand, solutions to solvable systems may not be

found due to convergence problems inherent to numeric solution codes. If a solution is not

found, engineers may be uncertain of whether there truly are no solutions or if the numeric
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code is not converging to a solution that does in fact exist. Conditions for the existence of a so-

lution to multiparameter eigenvalue problems would eliminate this uncertainty. Also, for some

purposes, such as determining the point of voltage collapse, the details of a solution may not

be particularly important; it may be sufficient to simply determine whether any real solutions

exist. With future research into conditions for the existence of real solutions, the multiparame-

ter eigenvalue formulation of the power flow equations could play a role for these purposes as

well.

The multiparameter eigenvalue formulation of the power flow equations also allows for

power flow research to advance multiparameter eigenvalue theory. For instance, it is possible

that a method similar to the continuation power flow could be applied to multiparameter eigen-

value problems. Starting from an initial solution to the multiparameter eigenvalue problem, it

is possible that another solution could be found by varying a single entry in one of the matrices.

An analogous method to the continuation power flow may be able to find all real solutions to a

multiparameter eigenvalue problem by varying each matrix entry. This is an open question for

future research.
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Chapter 4

Conclusion

This thesis has presented eigenvalue formulations for two power systems models: the in-

duction machine initial conditions problem, which is formulated as a standard eigenvalue prob-

lem, and the power flow equations, which are formulated as a multiparameter eigenvalue prob-

lem. The eigenvalue formulations incorporate the multiplicative nonlinearities that are inherent

in both of these models.

Chapter 1 contains an overview of both models and a review of standard, generalized,

and multiparameter eigenvalue theory. The eigenvalue review includes a method for solving

two parameter eigenvalue problems and the equations for eigenvalue sensitivity analysis of

multiparameter eigenvalue problems.

Chapter 2 introduces the induction machine initial conditions problem. This problem in-

volves the determination of the stator and rotor currents, rotor speed, and mechanical torque

of an induction machine from known values of real power input and stator voltage magnitude

and angle. This problem must be solved when performing dynamic simulations of power sys-

tems to initialize induction machine internal variables. The real power, voltage magnitude,

and voltage angle values can be obtained from solution of the power flow equations. Finding

the induction machine initial conditions for the dynamic simulation requires determining the

steady state operating point. Steady state equations derived from the induction machine dy-

namic equations are converted to standard eigenvalue form using the conditions imposed at the

machine terminals. In the standard eigenvalue form, the rotor speed can be obtained from the

eigenvalue and the stator and rotor currents can be obtained from the eigenvector. The torque
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is a function of the currents and can therefore be directly determined after solving the eigen-

value formulation. In contrast to existing iterative methods, the eigenvalue formulation has the

advantage of finding all solutions, stable and unstable, to the induction machine initial condi-

tions problem and can easily determine when no solutions exist. The eigenvalue formulation

is developed for both single-cage and double-cage induction machines. Numeric examples are

provided for both single-cage and double-cage machines.

Chapter 3 explores a multiparameter eigenvalue formulation of the power flow equations.

After introducing this formulation, the chapter develops expressions for the left and right eigen-

vectors. Next, the chapter details a method for solving the two parameter eigenvalue formula-

tion for two bus systems with both PV and PQ buses. This method converts the two parameter

eigenvalue formulation into a set of generalized eigenvalue problems that must be simultane-

ously satisfied. Next, motivated by eigenvalue problem structure, the multiparameter eigen-

value formulation for an arbitrarily sized system was converted into a form that resembles a

standard eigenvalue problem with a voltage dependent matrix. Although no practical appli-

cations of this reformulation of the power flow equations have yet been discovered, it is an

interesting theoretical development. Finally, an eigenvalue sensitivity analysis of the multipa-

rameter eigenvalue formulation of the power flow equations was performed. The eigenvalue

sensitivity gives equivalent results to the Jacobian linearization of the power flow equations.

The multiparameter eigenvalue formulation of the power flow equations enables advances

in multiparameter eigenvalue theory to contribute to power systems engineering knowledge.

As described in Section 3.7, specific advances that would be beneficial include the develop-

ment of general solution techniques for multiparameter eigenvalue problems with more than

two parameters, a method for determining the number of real solutions, and conditions for the

existence of any real solutions to multiparameter eigenvalue problems. It is also possible that

the multiparameter eigenvalue formulation of the power flow equations will enable application

of theory and solution techniques for the power flow equations to multiparameter eigenvalue
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problems. A specific open question of interest is whether an analogous technique to the contin-

uation power flow method could be used to find solutions to other multiparameter eigenvalue

problems.
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Appendix A: Solution to the Induction Machine Initial Condi-

tions Problem

D
−1
B for the single-cage inductionmachine model has rank two. Therefore, the eigenvalue

problem (2.14) has a second order characteristic equation. This equation can be solved directly

using the quadratic equation rather than using iterative eigenvalue solution techniques. The

characteristic equation forD−1
B is given in (A.1).

det
(

D
−1
B− �I

)

= m�2
(
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= 0 (A.1)
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Similarly, D−1
B for the double-cage induction machine model has rank four. Therefore,

the eigenvalue problem (2.14) has a fourth order characteristic equation. This equation can also

be solved directly using the equation for quartic equations given in [20].


