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Identifying and Characterizing Non-Convexities in
Feasible Spaces of Optimal Power Flow Problems

Daniel K. Molzahn, Member, IEEE

Abstract—Optimal power flow (OPF) is an important problem
in the operation of electric power systems. The solution to an
OPF problem provides a minimum cost operating point that
satisfies constraints imposed by both the non-linear power flow
equations and engineering limits. These constraints can yield non-
convex feasible spaces that result in significant computational
challenges. This paper proposes an algorithm that identifies
and characterizes non-convexities in OPF feasible spaces. This
algorithm searches for a pair of feasible points whose connecting
line segment contains an infeasible point. Such points certify
the existence of a non-convexity in the OPF feasible space.
Moreover, the constraint violations at the infeasible point along
the connecting line segment physically characterize a cause of
the non-convexity. Numerical demonstrations include a small
illustrative example as well as applications to various test cases.

I. INTRODUCTION

The optimal power flow (OPF) problem seeks a minimum
cost operating point for an electric power system, subject to
both the power flow equations modeling the network physics
and engineering limits. The OPF problem is non-convex [1],
may have local optima [2], and is generally NP-hard [3], [4].
A variety of local solution algorithms and convex relaxation
techniques have been applied to OPF problems [5]–[7].

The difficulty inherent to solving an OPF problem depends
on the non-convexities present in the problem’s feasible space.
Accordingly, many research efforts, e.g., [1], [2], [8]–[21],
have studied OPF feasible space geometry, including analyses
of convexity characteristics, local optima, exactness guarantees
for certain convex relaxations, etc. (See [7] for a detailed
survey.) Many of these papers consider special cases, such
as very small systems, radial network topologies, a subset of
the constraints, etc. Moreover, much of the literature focuses
on conditions for which the feasible space is convex or
convexifiable, as opposed to studying possible non-convexities.

This paper builds on previous literature by proposing an
algorithm that identifies and characterizes non-convexities in
OPF feasible spaces without focusing on very small systems
or special cases. The proposed algorithm seeks a pair of
feasible points whose connecting line segment contains an
infeasible point. Specifically, the algorithm identifies non-
convexities via a point on the connecting line segment for
which 1) the power flow equations are solvable and 2) all
power flow solutions violate at least one engineering limit.
Non-convexities associated with power flow insolvability are
not considered by this algorithm.

By the definition of convexity, such a combination of points
certifies that the feasible space is non-convex, with the specific
constraints violated by the infeasible point characterizing
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the cause of the non-convexity. Characterizing typical non-
convexities is useful for informing the development of future
OPF solution algorithms and creating challenging test cases
for algorithmic benchmarking purposes.

This paper is organized as follows. Section II overviews the
OPF problem. Section III describes the proposed algorithm for
identifying non-convexities in OPF feasible spaces. Section IV
presents numerical results. Section V concludes the paper.

II. OPTIMAL POWER FLOW OVERVIEW

This section overviews the OPF problem. Consider an n-
bus system, where N = {1, . . . , n}, G, and L are the sets of
buses, generators, and lines. Let S denote the slack bus. Let
PDi + jQDi and PGi + jQGi, where j =

√
−1, represent the

active and reactive load demand and generation, respectively,
at bus i ∈ N . Let Vi∠θi represent the voltage phasor at bus i ∈
N . Denote the shunt admittance at bus i ∈ N as gsh,i +
jbsh,i. Each generator i ∈ G has a quadratic cost function
with coefficients c2,i ≥ 0, c1,i, and c0,i. Superscripts “max”
and “min” denote upper and lower limits. Buses i ∈ N \ G
have generation limits set to zero.

Each line (l,m) ∈ L is modeled as a Π circuit with mutual
admittance glm + jblm and shunt susceptance jbsh,lm. Let plm
and qlm represent the active and reactive power flows on the
line (l,m) ∈ L. Denote θlm = θl − θm.

Using these definitions, the OPF problem is

min
∑
i∈G

c2i P
2
Gi + c1i PGi + c0i (1a)

s.t. (∀i ∈ N , ∀ (l,m) ∈ L )
plm = V 2

l glm − VlVm (glm cos (θlm) + blm sin (θlm)) , (1b)

qlm = −V 2
l (blm + bsh,lm/2)

+ VlVm (blm cos(θlm)− glm sin(θlm)) , (1c)

PGi − PDi =
∑

(l,m)∈L
s.t. l=i

plm +
∑

(l,m)∈L
s.t.m=i

pml + gsh,i V
2
i , (1d)

QGi −QDi =
∑

(l,m)∈L
s.t. l=i

qlm +
∑

(l,m)∈L
s.t.m=i

qml − bsh,i V 2
i , (1e)

θs = 0, s ∈ S, (1f)

PminGi ≤ PGi ≤ PmaxGi , (1g)

QminGi ≤ QGi ≤ QmaxGi , (1h)

V mini ≤ Vi ≤ V maxi , (1i)

θminlm ≤ θlm ≤ θmaxlm , (1j)

(plm)2 + (qlm)2 ≤ (smaxlm )2 , (pml)
2 + (qml)

2 ≤ (smaxlm )2 . (1k)

The objective (1a) minimizes the active power generation cost.
The power flow equations (1b)–(1e) relate the voltage phasors
and power injections. Constraint (1f) sets the angle reference.
Constraints (1g)–(1i) limit the power generation and voltage
magnitudes. Constraint (1k) limits the apparent power flows
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Fig. 1. Illustrative examples of convex and non-convex feasible spaces. In
Fig. 1a, all points on the line connecting the feasible points A and B are in
the feasible space. This is true for all pairs of feasible points. In Fig. 1b,
the infeasible point C is on the line connecting the feasible points A and B.
Points A, B, and C certify that the feasible space in Fig. 1b is non-convex.

Algorithm 1 Identify and Characterize OPF Non-Convexities
1: for each constraint f ∈ C do
2: Solve (2) to obtain points A, B, and C.
3: if problem (2) is feasible, solve a relaxation of (3).
4: if problem (3) is infeasible, certify a non-convexity

associated with f .

into both terminal buses of each line. Let C denote the set of
all inequality constraints (1g)–(1k).

III. AN ALGORITHM FOR IDENTIFYING AND
CHARACTERIZING OPF NON-CONVEXITIES

This section proposes an algorithm for finding and char-
acterizing OPF non-convexities, including discussions of the
mathematical details, computational tractability, and compar-
isons to alternative approaches.

A. Description of the Algorithm

The proposed algorithm is based on the definition of con-
vexity: a feasible space is convex if and only if it contains all
points on the line segments connecting every pair of feasible
points. As shown in Fig. 1, one approach for demonstrating
non-convexity is to show that there exist points (A, B, and C
in Fig. 1b) that violate this definition. The proposed algorithm
uses local optimization techniques to seek such points for a
specified OPF problem.

There are two relevant spaces within which one may seek
non-convexities: the space of voltage phasors and the space
of power injections, voltage magnitudes, and line flows. OPF
non-convexities may exist in either or both spaces. The former
space may be non-convex while the latter is convex (or vice-
versa) since the power flow equations (1b)–(1f) are a non-
linear map between these spaces [1]. With an objective and
constraints specified directly for the power injections, voltage
magnitudes, and line flows, characterizing non-convexities in
the latter space is most relevant for OPF problems.

As summarized in Algorithm 1, the proposed approach
consists of two steps, each of which solves families of op-
timization problems. The first step seeks triplets of points
denoted A, B, and C. Points A and B are in the feasible space
of the OPF problem. Point C must satisfy two conditions:
1) lie along the line segment connecting points A and B in the
space of active power generation and voltage magnitudes, and
2) have a corresponding “high-voltage” power flow solution
that is infeasible in the OPF problem. The second step guaran-
tees that all power flow solutions corresponding to point C are
infeasible in the OPF problem in order to rigorously certify
that the OPF problem’s feasible space is non-convex.

Formally, define a pair of points consisting of the active
power generation at all non-slack generator buses i ∈ G \ S,
denoted PA

G and PB
G , and voltage magnitudes at all generator

buses i ∈ G, denoted V A and V B . In the space of active power
generation and voltage magnitudes, any point along the line
segment connecting these points has active power generation
at non-slack generator buses given by λPA

G +(1− λ)PB
G and

generator bus voltage magnitudes given by λV A+(1− λ)V B

for some value of the scalar λ ∈ [0, 1]. A non-convexity is
identified by values for PA

G , PB
G , V A, V B , and λ such that:

1) there exist power flow solutions corresponding to PA
G , V A

and PB
G , V B that are feasible for the OPF problem;

2) all power flow solutions corresponding to the point λPA
G +

(1− λ)PB
G , λV A + (1− λ)V B (i.e., point C in Fig. 1b)

are infeasible for the OPF problem.
This section presents the mathematical formulations used to
address both of these conditions.

Step 1–Identify a triplet of points A, B, and C: The follow-
ing optimization problem seeks to satisfy the first condition
through violation of a specific inequality constraint. For each
inequality constraint in the OPF problem (1g)–(1k), abstractly
denoted as f (V, θ, PG, QG, p, q) ≥ 0 , f ∈ C, define

min
∑
i∈G

(
c2i
(
PAGi

)2
+ c1iP

A
Gi + c0i

)
+ εobj f

(
V C, θC, PCG, Q

C
G, p

C, qC
)

(2a)

s.t. (∀i ∈ N , ∀ (l,m) ∈ L, ∀κ ∈ {A,B,C} , ∀σ ∈ {A,B} )
pκlm = (V κl )2 glm − V κl V κm (glm cos(θlm) + blm sin(θκlm)) , (2b)

qκlm = − (V κl )2 (blm + bsh,lm/2)

+ V κl V
κ
m (blm cos(θκlm)− glm sin(θκlm)) , (2c)

PκGi − PκDi =
∑

(l,m)∈L
s.t. l=i

pκlm +
∑

(l,m)∈L
s.t.m=i

pκml + gsh,i (V
κ
i )2 , (2d)

QκGi −QκDi =
∑

(l,m)∈L
s.t. l=i

qκlm +
∑

(l,m)∈L
s.t.m=i

qκml − bsh,i (V κi )2 , (2e)

θκs = 0, s ∈ S, (2f)

PminGi ≤ PσGi ≤ PmaxGi , (2g)

QminGi ≤ QσGi ≤ QmaxGi , (2h)

V mini ≤ V σi ≤ V maxi , (2i)

θminlm ≤ θσlm ≤ θmaxlm , (2j)

(pσlm)2 + (qσlm)2 ≤ (smaxlm )2 , (pσml)
2 + (qσml)

2 ≤ (smaxlm )2 , (2k)

PCGh = λPAGh + (1− λ) PBGh, ∀h ∈ G \ S, (2l)

V Ck = λV Ak + (1− λ) V Bk , ∀k ∈ G, (2m)
0 ≤ λ ≤ 1, (2n)

f
(
V C , θC , PCG , Q

C
G, p

C , qC
)
≤ −εvio, (2o)

V Ci ≥ Vlv, (2p)

where εobj , εvio, and Vlv are specified positive scalars and
superscripts denote a quantity at the corresponding point A,
B, or C. The decision variables in (2) consist of the scalar λ
and the voltage magnitudes, voltage angles, power injections,
power generation, and power flows at points A, B, and C.

Constraints (2b)–(2e) relate the power injections, line flows,
and voltage phasors for each point A, B, and C. Constraint (2f)
sets the reference angle. Constraints (2g)–(2k) ensure that
points A and B are in the OPF problem’s feasible space.
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Constraints (2l)–(2n) constrain point C to be on the line
between points A and B. Constraint (2o) forces the inequality
constraint f ≥ 0 associated with this problem to be violated
at point C by at least εvio > 0, ensuring that the solution
obtained for point C is infeasible in the OPF problem (1).

The objective (2a) selects among multiple valid choices for
points A, B, and C based on two criteria, weighted by εobj :
1) A maximum violation of the constraint f ≥ 0 associated

with this optimization problem. Larger violations are likely
associated with more extreme non-convexities.

2) A minimum generation cost at one of the points (arbitrarily
selected to be point A). This criteria attempts to find a non-
convexity associated with an optimum of the OPF problem.

To explain constraint (2p), observe that there may exist
multiple solutions for voltage phasors V C∠θC which sat-
isfy (2b)–(2f) for any specified choice of V C

k , ∀k ∈ G, and
PC
Gh, ∀h ∈ G \ S , in (2l) and (2m) (i.e., the power flow

equations defined by (2b)–(2f) may have multiple solutions).
There is typically a “high-voltage” solution that corresponds to
a normal operating condition and “low-voltage” solutions that
generally correspond to undesirable operating conditions [22].
OPF non-convexity is certified by a point C for which all
corresponding power flow solutions violate one or more OPF
inequality constraints (1g)–(1k). In contrast, the optimization
problem (2) seeks any power flow solution corresponding to
point C that is infeasible in the OPF problem (1). In the
absence of (2p), the optimization problem (2) could choose
voltage phasors V C∠θC corresponding to a low-voltage solu-
tion at point C for which there exists a high-voltage solution
that is feasible in the OPF problem (1). Constraint (2p) forces
the voltage magnitudes at point C to be greater than a scalar
parameter Vlv in an attempt to preclude a low-voltage power
flow solution at point C. Selecting Vlv = 0.7 per unit (p.u.) will
typically exclude low-voltage solutions while enabling discov-
ery of non-convexities associated with high-voltage solutions.

In addition to the engineering limits (1g)–(1k), note that
OPF non-convexities can also be caused by insolvability of the
power flow equations (2b)–(2f) for some choices of generator
outputs within the valid generation range (i.e., there may exist
choices of PG and QG satisfying (1g) and (1h) that lack
corresponding voltage phasors which solve (1b)–(1f)) [1].1

Since (2) requires that the power flow equations (2b)–(2f) at
point C have a solution, the proposed algorithm cannot detect
non-convexities associated with power flow insolvability.

To search for non-convexities in the OPF problem, Algo-
rithm 1 applies a local solver to the optimization problems (2)
corresponding to the inequality constraints in the OPF prob-
lem. If the local solver indicates infeasibility for all of these
problems, no non-convexities are identified and the algorithm
terminates. Due to the non-convexity of (2), note that failure of
Algorithm 1 to identify a non-convexity does not necessarily
imply that the OPF problem is convex.

For any feasible solutions obtained from (2), Algorithm 1
applies the following step to certify OPF non-convexity.

Step 2–Certify that all power flow solutions corresponding
to point C are infeasible in the OPF problem: Solving (2)

1Large enough increases in load demands result in saddle node bifurcations
that decrease the number of power flow solutions. The power flow equa-
tions (2b)–(2f) are insolvable for sufficiently high load demands.

indicates that at least one power flow solution corresponding
to point C fails to satisfy the OPF problem’s constraints. Rig-
orously certifying OPF non-convexity requires proving that all
power flow solutions corresponding to point C are infeasible in
the OPF problem (1). Algorithm 1 accomplishes this by using
convex relaxation techniques to compute a sufficient condition
for infeasibility of all power flow solutions corresponding to
point C. Specifically, consider the feasibility problem

Find a point satisfying the constraints (1b)–(1k), (3a)

PGi = PC
Gi, ∀i ∈ G \ S, (3b)

Vi = V C
i , ∀i ∈ G, (3c)

where PC
Gi and V C

i are the values obtained from solving (2).
The feasibility problem (3) can be formulated as an optimiza-
tion problem with a constant objective function (i.e., min 1
subject to (3)). If (3) is infeasible, then there does not exist a
power flow solution corresponding to point C that is feasible
in the OPF problem. In this case, points A, B, and C from (2)
certify non-convexity of the OPF problem’s feasible space.

As a non-convex problem, proving infeasibility of (3) can
be challenging. Algorithm 1 therefore leverages techniques
based on, e.g., semidefinite programming (SDP) [23]–[26] or
second-order cone programming [12], [27]–[31] to solve a
convex relaxation of (3). Infeasibility of a convex relaxation
is sufficient to certify infeasibility of (3) and therefore prove
that the OPF problem’s feasible space is non-convex.

B. Discussion of Computational Tractability
Algorithm 1 is tractable for reasonably large systems. The

computational burden of (2) is determined by the number of
OPF inequality constraints, with each requiring one call to a
local solver. The inequality constraints consist of 2 |N | limits
on voltage magnitudes, 2 |L| limits on line flows (one for each
line terminal), 2 |L| limits on angle differences, and 4 |G| limits
on active and reactive outputs of generators, where | · | denotes
the cardinality of a set.2 While large problems can have many
inequalities, practical applications of Algorithm 1 will likely
focus on those in a specific subregion of interest.

Each solution from (2) requires one call to a convex
programming solver in order to evaluate the feasibility of (3),
which has a computational complexity that depends on the
chosen relaxation. More computationally intensive relaxations
are typically capable of certifying infeasibility of a broader
class of problems, so there is a trade-off in computation time
versus generality of the algorithm. Recently developed convex
relaxations often provide tight bounds on OPF objective values
and are tractable for large problems [7]. The second step of
Algorithm 1 is therefore not overly burdensome.

Note that each evaluation of (2) and (3) can be parallelized,
which is an attractive option for improving performance.

C. Comparisons to Alternative Approaches
This section concludes with qualitative comparisons of

the proposed algorithm to alternative approaches. Refer-
ence [18] describes a probabilistic approach for identifying

2Constraints (2l) and (2m) ensure that OPF constraints (1g) for i ∈ G \ S
and (1i) for i ∈ G are always satisfied at point C. It is therefore not necessary
to consider these constraints in Algorithm 1, thus reducing the number of
relevant inequality constraints by 4 |G| − 2.
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non-convexities using linear matrix inequalities. This approach
is computationally challenging, and thus has only been demon-
strated for small problems. Other related approaches in [19]–
[21] compute discretized representations of OPF feasible
spaces. Projections constructed from these representations can
be used to visually identify and characterize non-convexities.
This requires appropriate two- or three-dimensional projec-
tions from the high-dimensional feasible spaces, which can be
difficult to find and challenging to interpret physically. More-
over, computing high-fidelity representations of the feasible
spaces can be computationally burdensome. Some OPF prob-
lems have analytic representations for their feasible spaces or
have provable convexity characteristics, but these are restricted
to very particular special cases [1], [9], [13]. Other approaches,
such as [8], [10], focus on the feasible spaces of power flow
problems, neglecting the engineering limits in OPF problems.

In contrast to previous approaches, the algorithm pro-
posed in this paper directly identifies and characterizes non-
convexities and is not computationally limited to small prob-
lems. However, as discussed in Section III-A, note that the
proposed algorithm can identify non-convexities associated
with the engineering constraints (1g)–(1k) but not those asso-
ciated with power flow insolvability (i.e., insolvability of (1b)–
(1f)). Conversely, alternative approaches such as those in [18]–
[20] can identify non-convexities associated with both the
engineering constraints and power flow insolvability.

IV. NUMERICAL TEST CASES

This section describes the application of Algorithm 1 to
several test cases. The optimization problems (2) are imple-
mented in Julia [32] using PowerModels.jl [33] and the JuMP
modeling language [34], with Ipopt [35] as the local solver. A
convex relaxation of (3) is formulated using the combination
of an SDP relaxation [23], [24] and the QC relaxation [27]–
[29] along with a bound tightening technique [28]. This
relaxation is implemented in MATLAB using YALMIP [36]
and solved using MOSEK. Parameters for all the test cases
are Vlv = 0.7 p.u. and εobj = 1. The parameter εvio is
0.05 p.u. for power injections and line flows, 0.02 p.u. for
voltage magnitudes, and 1◦ for angle differences.

As an illustrative example, Fig. 2 shows the feasible space
for the nine-bus system “case9mod” from [2], computed using
the algorithm in [19], along with points A, B, and C for various
solutions to (2). Solving a relaxation of (3) indicates that all
power flow solutions corresponding to point C are infeasible
in the OPF problem for each solution to (2), thus assuring that
these points certify OPF non-convexity.

Note that the solution to (2) is dependent on the initializa-
tion. For instance, the light and dark blue lines in Fig. 1 cor-
respond to solutions of (2) for the same inequality constraint
f ≥ 0 (a lower reactive generation limit at bus 2) obtained with
different initializations. A “flat start” initialization (voltages of
1∠0 p.u.) works well in practice.

Table I summarizes selected results obtained from applying
Algorithm 1 to various test cases, initialized using both a flat
start and the OPF solution obtained from MATPOWER [37].
The “nesta” cases are from [38]. The “case39mod” cases are
from [2], augmented with angle difference limits of ±60◦.
Note that the values in Table I are lower bounds on the
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Fig. 2. A projection of the disconnected feasible space for the nine-bus system
“case9mod” from [2]. The colored region represents the feasible space with
the colors indicating the generation cost. For various solutions of (2), the
squares at the endpoints of the colored lines represent points A and B and the
circles represent point C. Each of the lines results from choosing f ≥ 0 in (2)
as the lower reactive generation limit at one of the three generator buses. The
red line corresponds to bus 1, the light and dark blue lines correspond to
bus 2 (using different initializations for the local solver), and the green line
corresponds to bus 3. Note that the endpoints for the red and light blue lines
as well as the green and dark blue lines overlap with each other.

TABLE I
NUMBER OF CONSTRAINTS (BY TYPE) ASSOCIATED WITH A

NON-CONVEXITY AS IDENTIFIED BY ALGORITHM 1

Test Case PminG PmaxG QminG QmaxG Smax

nesta case5 pjm 1 0 2 3 0
nesta case9 wscc 1 0 0 0 0
nesta case14 ieee 0 0 0 0 0
nesta case30 ieee 0 0 0 0 0
nesta case39 epri 0 0 10 0 3
case39mod1 1 0 10 0 8
case39mod2 2 0 17 0 12
case39mod3 1 0 8 0 1
case39mod4 1 0 17 0 9
nesta case57 ieee 0 0 0 0 0
Algorithm 1 does not identify any non-convexities associated with limits
on voltage magnitudes (1i) or angle differences (1j).

number of constraints associated with non-convexities since
Algorithm 1 is not guaranteed to find all non-convexities.

Algorithm 1 does not identify any non-convexities for some
of these test cases (the IEEE 14-, 30-, and 57-bus systems).
This aligns with previous research suggesting that these cases
are not difficult (e.g., relatively simple relaxations yield small
optimality gaps [38]). Algorithm 1 identifies non-convexities
in several other cases. While previous research suggests that
some of these test cases (e.g., the WSCC 9-bus and the
EPRI 39-bus cases) are relatively “simple,” others are more
challenging (e.g., the PJM 5-bus case and the “case39mod”
systems from [2]), at least in terms of the non-negligible
optimality gaps resulting from various relaxations and, for the
“case39mod” systems, the existence of multiple local optima.

Although the presence of non-convexities does not necessar-
ily mean that a problem is challenging, Algorithm 1 often finds
multiple non-convexities for the challenging test cases. Many
of these non-convexities are associated with lower reactive



5

generation and apparent power flow limits, which corroborates
other evidence regarding the importance of these limits with
respect to OPF non-convexities [2], [11], [21], [39].

As an estimate of computational complexity, approximately
30 minutes is required to evaluate Algorithm 1 for all con-
straints in the 39-bus systems, of which over 90% is spent
in locally solving (2). Ongoing efforts to speed computation
include parallelizing the implementation and modifying the
formulation to more quickly identify infeasibility of (2).

V. CONCLUSIONS AND FUTURE WORK

This paper proposes an algorithm that identifies and charac-
terizes non-convexities in OPF feasible spaces. The proposed
algorithm is based on the definition of convexity: a feasible
space is convex if and only if it contains all points on the
line segments connecting any pair of feasible points. Using a
local solver, the proposed algorithm searches for a triplet of
points: two feasible points and a third point on the connecting
line segment that is infeasible. The proposed algorithm then
certifies infeasibility of the third point using convex relaxation
techniques. Numerical results demonstrate the algorithm’s
ability to find non-convexities for a variety of OPF test cases.

Along with improving computational speed, ongoing work
is leveraging the identified non-convexities to create test
cases that challenge various OPF algorithms for benchmarking
purposes. Other future work aims to use the identified non-
convexities to both develop a better physical understanding of
OPF problems and improve convex relaxation algorithms.
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