
1

Computing the Feasible Spaces of

Optimal Power Flow Problems
Daniel K. Molzahn, Member, IEEE

Abstract—The solution to an optimal power flow (OPF) prob-
lem provides a minimum cost operating point for an electric
power system. The performance of OPF solution techniques
strongly depends on the problem’s feasible space. This paper
presents an algorithm for provably computing the entire feasible
spaces of small OPF problems to within a specified discretization
tolerance. Specifically, the feasible space is computed by discretiz-
ing certain of the OPF problem’s inequality constraints to obtain
a set of power flow equations. All solutions to the power flow
equations at each discretization point are obtained using the Nu-
merical Polynomial Homotopy Continuation (NPHC) algorithm.
To improve computational tractability, “bound tightening” and
“grid pruning” algorithms use convex relaxations to eliminate
the consideration of discretization points for which the power
flow equations are provably infeasible. The proposed algorithm
is used to generate the feasible spaces of two small test cases.

Index Terms—Optimal power flow, Feasible space, Convex
optimization, Global solution

I. INTRODUCTION

OPTIMAL power flow (OPF) is one of the key problems

in power system optimization. The OPF problem seeks

an optimal operating point in terms of a specified objective

function (e.g., minimizing generation cost, matching a desired

voltage profile, etc.). Equality constraints are dictated by the

network physics (i.e., the power flow equations) and inequality

constraints are determined by engineering limits on, e.g.,

voltage magnitudes, line flows, and generator outputs.

The OPF problem is non-convex due to the non-linear

power flow equations, may have local optima [1], and is

generally NP-Hard [2], [3], even for networks with tree

topologies [4]. Since first being formulated by Carpentier

in 1962 [5], a broad range of solution approaches have

been applied to OPF problems, including successive quadratic

programs, Lagrangian relaxation, heuristic optimization, and

interior point methods [6], [7]. Many of these approaches are

computationally tractable for large OPF problems. However,

despite often finding global solutions [8], these approaches

may fail to converge or converge to a local optimum [1], [9].

Recently, there has been significant effort focused on convex

relaxations of the OPF problem. These include relaxations

based on semidefinite programming (SDP) [2], [10]–[16],

second-order cone programming (SOCP) [17]–[20], and lin-

ear programming (LP) [21], [22]. In contrast to traditional

approaches, convex relaxations provide a lower bound on the

optimal objective value, can certify problem infeasibility, and,

in many cases, provably yield the global optimum.

The performance of both traditional algorithms and convex

relaxations strongly depends on the OPF problem’s feasible
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space characteristics. Accordingly, understanding OPF feasible

spaces is crucial for algorithmic research. Characterizing the

feasible spaces of OPF problems has been an important re-

search topic [1], [3], [4], [12], [23]–[28]. This paper proposes

an algorithm for computing the feasible spaces of small OPF

problems. Visualizations resulting from the computed feasi-

ble spaces increase researchers’ understanding of challenging

problems and aid in improving solution algorithms.

The feasible spaces of some OPF problems can be computed

analytically. For instance, OPF problems for two-bus systems

have analytic solutions [1], [11], [29]. Exploiting problem

symmetries enables explicit expressions for the feasible spaces

of other problems [24]. However, analytic solution is limited

to a small set of special cases.

Related work focuses on the feasibility boundary of the

power flow equations (i.e., the set of parameters for which

small parameter changes results in insolvability of the power

flow equations). There have been many research efforts in

computing the distance to the power flow feasibility boundary

for voltage collapse studies, e.g., [30]–[33]. These approaches

generally provide small regions (often a single point) that

are on the boundary of the feasible space of the power flow

equations. A more general continuation-based approach is

developed in [23]. Starting from a feasible point, the approach

in [23] uses a continuation method to find a point on the

power flow feasibility boundary. By freeing a single parameter

(e.g., active power injection at one bus), the approach in [23]

uses continuation to trace curves that lie on the power flow

feasibility boundary. The approach in [23] is computationally

tractable for large problems. However, it is difficult to certify

that the approach in [23] captures the entire feasible space due

to certain non-convexities such as disconnected components.

Further, the approach in [23] does not consider all inequality

constraints relevant to OPF problems.

The algorithm proposed in this paper is guaranteed to

compute the entire OPF feasible space (to within a specified

discretization tolerance) for small OPF problems. Specifically,

the proposed algorithm discretizes certain inequalities in an

OPF problem into equality constraints that take the form of

power flow equations. The Numerical Polynomial Homotopy

Continuation (NPHC) algorithm [34]–[37] is then used to

compute all power flow solutions at each discretization point.

The guarantees inherent to the NPHC algorithm ensure the

capturing of the entire OPF feasible space. The proposed algo-

rithm is similar to that used in the software Paramotopy [38]

for visualizing the effects of parameter variation in general

polynomial systems.

To improve computational tractability, convex relaxations

are employed to eliminate the consideration of infeasible
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discretization points. Specifically, a hierarchy of “moment”

relaxations is used to tighten the right hand sides of the OPF

problem’s inequality constraints. A “grid pruning” algorithm is

then used to eliminate discretization points that are outside the

relaxation’s feasible space and therefore provably infeasible.

Many industrially relevant OPF problems have thousands to

tens-of-thousands of buses. The proposed feasible space com-

putation algorithm is limited to much smaller problems due

to the intractability of NPHC for large problems. Fortunately,

there are many small OPF problems with interesting feasible

spaces. Further, experience with the moment relaxations of

OPF problems suggests that many challenges inherent to large

problems are related to non-convexities associated with small

regions of the large problems [13]. By enabling detailed

studies of small problems, the proposed algorithm provides

the basis for future work in characterizing the physical features

that give rise to challenging OPF problems.

The main contributions of this paper are twofold: 1) Pro-

posal of an OPF-specific algorithm that is guaranteed to

compute the complete feasible spaces of small problems. This

algorithm is particularly relevant for studies of OPF problems

that challenge both traditional solvers and convex relaxation

approaches. 2) The use of convex relaxations to eliminate

provably infeasible points, thereby significantly improving

computational tractability.

This paper is organized as follows. Section II describes the

OPF problem. Section III presents the proposed discretization

approach and the NPHC algorithm used to solve the power

flow equations at each discretization point. Section IV dis-

cusses the application of a hierarchy of convex relaxations to

eliminate provably infeasible grid points. Section V applies

these techniques to two OPF problems: the five- and nine-bus

systems in [1]. Section VI concludes the paper.

II. OVERVIEW OF THE OPF PROBLEM

This section presents an OPF formulation in terms of

complex voltages, active and reactive power injections, and

apparent power line flow limits. Consider an n-bus power

system, where N = {1, . . . , n} is the set of all buses, G
is the set of generator buses, S is the index of the bus that

fixes the angle reference, and L is the set of all lines. Let

PDi + jQDi represent the active and reactive load demand at

bus i ∈ N , where j =
√
−1. Let Vi = Vdi+ jVqi represent the

complex voltage phasor at bus i ∈ N . Superscripts “max” and

“min” denote specified upper and lower limits. Buses without

generators have maximum and minimum generation set to

zero. Let Y = G+ jB denote the network admittance matrix.

The generator at bus i ∈ G has a quadratic cost function for

active power generation with coefficients c2i, c1i, and c0i.
Define a function for squared voltage magnitude:

|Vi|2 = fV i (Vd, Vq) := V 2
di + V 2

qi. (1)

The power flow equations describe the network physics:

PGi = fPi (Vd, Vq) :=PDi + Vdi

n
∑

k=1

(GikVdk −BikVqk)

+ Vqi

n
∑

k=1

(BikVdk +GikVqk) , (2a)

QGi = fQi (Vd, Vq) :=QDi + Vdi

n
∑

k=1

(−BikVdk −GikVqk)

+ Vqi

n
∑

k=1

(GikVdk −BikVqk) . (2b)

Define a quadratic cost of active power generation:

fCi (Vd, Vq) := c2i (fPi (Vd, Vq))
2
+ c1ifPi (Vd, Vq) + c0i.

(3)

Each line (l,m) ∈ L is modeled by a Π circuit with

mutual admittance ylm = glm+ jblm (or, equivalently, a series

impedance of Rlm+jXlm) and total shunt susceptance bsh,lm.

More flexible line models which include off-nominal voltage

ratios and non-zero phase shifts can easily be incorporated into

the proposed algorithm [39]. Define expressions for the active,

reactive, and apparent power flows on the line (l,m) ∈ L:

fPlm (Vd, Vq) := glm
(

V 2
dl + V 2

ql

)

− glm (VdlVdm + VqlVqm)

+ blm (VdlVqm − VqlVdm) , (4a)

fQlm (Vd, Vq) := −
(

blm +
bsh,lm

2

)

(

V 2
dl + V 2

ql

)

+ blm (VdlVdm + VqlVqm) + glm (VdlVqm − VqlVdm) , (4b)

fSlm (Vd, Vq) := (fPlm (Vd, Vq))
2
+ (fQlm (Vd, Vq))

2
. (4c)

The OPF problem is

min
Vd,Vq

∑

i∈G

fCi (Vd, Vq) subject to (5a)

Pmin
Gi ≤ fPi (Vd, Vq) ≤ Pmax

Gi ∀i ∈ N (5b)

Qmin
Gi ≤ fQi (Vd, Vq) ≤ Qmax

Gi ∀i ∈ N (5c)

(V min
i )2 ≤ fV i (Vd, Vq) ≤ (V max

i )2 ∀i ∈ N (5d)

fSlm (Vd, Vq) ≤ (Smax
lm )

2 ∀ (l,m) ∈ L (5e)

fSml (Vd, Vq) ≤ (Smax
lm )

2 ∀ (l,m) ∈ L (5f)

Vqi = 0 i ∈ S (5g)

Constraint (5g) sets the reference bus angle to zero.

III. COMPUTATION OF OPF FEASIBLE SPACES

Visualizing OPF feasible spaces helps researchers improve

solution algorithms. To enable such visualizations, this section

proposes an algorithm for provably computing the entire fea-

sible space to within a specified discretization tolerance. The

proposed algorithm discretizes certain inequality constraints to

form systems of polynomial equalities, which are solved using

the NPHC algorithm [34]–[37].

A. Discretization of Inequality Constraints

This paper discretizes certain of the OPF problem’s inequal-

ity constraints to construct equality constraints in the form of

power flow equations. For a set of power flow equations, load

buses (i ∈ N \ G) have specified active and reactive power

injections −PDi − jQDi. A single generator bus, denoted by

i ∈ S, is selected as the slack bus with a specified voltage

phasor Vdi = |Vi|, Vqi = 0. The active power generation

PGi and squared voltage magnitudes |Vi|2 are specified at the

remaining generator buses (i ∈ G \ S). The squared voltage
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magnitudes at generator buses |Vi|, i ∈ G, and active power

injections at non-slack generator buses PGi, i ∈ G \ S, are

determined using the following discretization.

Specify discretization parameters ∆P and ∆V for the active

power injections and voltage magnitudes, respectively. The

chosen discretization yields the set of power flow equations

fPi (Vd, Vq) = Pmin
i + ηi∆P i ∈ G \ S (6a)

fV i (Vd, Vq) =
(

V min
i + µi∆V

)2
i ∈ G \ S (6b)

fPi (Vd, Vq) = 0 i ∈ N \ G (6c)

fQi (Vd, Vq) = 0 i ∈ N \ G (6d)

Vdi =
(

V min
i + µi∆V

)

i ∈ S (6e)

Vqi = 0 i ∈ S (6f)

for each combination of ηi ∈ {0, . . . , ηmax
i }, i ∈ G \ S, and

µi ∈ {0, . . . , µmax
i }, i ∈ G, where ηmax

i := ⌊P
max
i −Pmin

i

∆P
⌋,

µmax
i := ⌊V

max
i −V min

i

∆V
⌋, and ⌊·⌋ is the “integer floor” func-

tion. The number of discretization points depends on the

number of generator buses |G|; the range of the inequality

constraints Pmax
i − Pmin

i , i ∈ G \ S, and V max
i − V min

i ,

i ∈ G; and the chosen discretization parameters ∆P and ∆V .1

The discretization (6) ensues the satisfaction of the OPF

problem’s constraints on active power generation (other than at

the slack bus) and generator voltage magnitudes as well as the

load demands. Solutions to (6) that satisfy the other inequality

constraints in (5) are in the feasible space of the OPF problem.

Thus, a “filtering” step is required after computing the power

flow solutions at each discretization point to select the points

that satisfy all the inequality constraints in (5).

B. Numerical Polynomial Homotopy Continuation Algorithm

Ensuring the computation of the complete feasible space re-

quires a robust algorithm for solving the power flow equations

from (6). The Numerical Polynomial Homotopy Continuation

(NPHC) algorithm [34]–[37] is used for this purpose.

The NPHC algorithm yields all complex solutions to sys-

tems of polynomial equations. This algorithm uses continu-

ation to trace all the complex solutions for a “start” system

of polynomial equations to a “target” system along a one-

dimensional parameterization. The start system is designed

such that 1) the number of complex solutions to the start

system upper bounds the number of complex solutions to the

target system, and 2) all solutions to the start system can be

trivially computed. The NPHC algorithm guarantees that each

solution to the target system is connected via a continuation

trace to at least one solution of the start system [36].

Consider a target system of m quadratic equations fi (x) =
0, i = 1, . . . ,m, and variables x ∈ Cm.2 One method for

constructing the start system g (x) = 0 uses the Bézout

bound [36] on the number of isolated complex solutions to

f (x) = 0. The Bézout bound of 2m suggests a start system

gi (x) := aix
2
i − bi i = 1, . . . ,m (7)

1To reduce the number of discretization points, the slack bus S is chosen
as the generator bus i ∈ G with the largest value of Pmax

i − Pmin
i .

2While NPHC is applicable to higher-order polynomials, this section
focuses on quadratics to match the form of the power flow equations (6).

where ai, bi 6= 0 are generic complex numbers. The start

system g (x) = 0 has 2m solutions of the form xi =
√

bi/ai.
Using a predictor-corrector method, the NPHC algorithm

tracks all complex solutions to

(1− t) f (x) + κ t g (x) = 0 (8)

from t = 1 (i.e., the start system) to t = 0 (i.e., the target

system). The constant κ is a randomly chosen complex number

which ensures, with probability one, that the traces do not

bifurcate, turn back, or cross [36].3 Thus, NPHC is guaranteed

to find all complex solutions to the target polynomial system.

With each bus having two constraints and two variables, Vdi

and Vqi, the power flow equations (6) for a given discretization

point are a square system of polynomial equalities which can

be solved with the NPHC algorithm. Only solutions with real-

valued Vd and Vq are physically meaningful; solutions with

any non-real Vd or Vq variables are discarded.

The computational burden required for each solution of

the NPHC algorithm depends on the number of continuation

traces. When solving multiple problems that differ only in their

parameter values, one approach for reducing the number of

continuation traces is to compute a parameterized homotopy.

This approach solves an initial problem with generic complex

parameter values (i.e., the right hand sides of (6a), (6b), and

(6e)). Each set of desired parameters are then solved using

start systems based on the solutions to the generic set of

parameters rather than (7). Since the generic-parameter system

can have significantly fewer solutions than the Bézout bound,

fewer continuation traces are required. This effectively “hot

starts” the NPHC algorithm for each set of parameters.

Despite the ability to speed computation for subsequent sets

of parameters, the initial solution of the generic-parameter

system with the Bézout bound can be challenging, with a

requirement for 22n−2 continuation traces. With the Bézout

bound, NPHC is capable of solving systems with up to

the 14 buses [35]. Future work includes leveraging recently

developed tighter bounds on the number of complex solutions

to the power flow equations [40], [41] to speed the initial

computation required for the generic-parameter system.

IV. ELIMINATING INFEASIBLE POINTS

Some of the power flow equations resulting from the dis-

cretization in (6) may be infeasible: there may not exist any

real solutions or all of the real solutions may fail to satisfy the

inequality constraints of (5). This section proposes two screen-

ing algorithms, “bound tightening” and “grid pruning”, that

use Lasserre’s hierarchy of convex “moment” relaxations [11],

[16], [42], [43] to eliminate many infeasible points. As will be

described later in this section, the bound tightening algorithm

improves upon the bounds on power injections, line flows, and

voltage magnitudes given in the OPF problem description (5).

The grid pruning algorithm then eliminates infeasible points

within the tightened constraints.

3While some traces may diverge, each solution to the target system will
be reached by at least one trace beginning at a solution to the start system.



4

A. Moment Relaxation Hierarchy

The bound tightening and grid pruning algorithms employ

convex relaxations to identify provably infeasible discretiza-

tion points. This section describes Lasserre’s moment relax-

ation hierarchy [42] as applied to the OPF problem [11], [14],

[16], with the recognition that any convex relaxation (e.g., [2],

[10], [11], [13]–[22]) could be used for the bound tightening

and grid pruning applications to follow.

Development of the moment relaxations begins with several

definitions. Define the vector of decision variables x̂ ∈ R2n:

x̂ :=
[

Vd1 Vd2 . . . Vdn Vq1 Vq2 . . . Vqn

]⊺

. (9)

A monomial is defined using an exponent vector α ∈
N2n: x̂α := V α1

d1 V α2

d2 · · ·V α2n
qn . A polynomial g (x̂) :=

∑

α∈N2n gαx̂
α, where gα is the scalar coefficient correspond-

ing to the monomial x̂α.

Define a linear functional Ly (g) which replaces the mono-

mials x̂α in a polynomial g (x̂) with scalar variables yα:

Ly {g} :=
∑

α∈N2n

gαyα. (10)

For a matrix g (x̂), Ly {g} is applied componentwise.

Consider, e.g., the vector x̂ =
[

Vd1 Vd2 Vq1 Vq2

]⊺

for

a two-bus system and the polynomial g (x̂) = −
(

V min
2

)2
+

V 2
d2 + V 2

q2. (The constraint g (x̂) ≥ 0 forces the voltage

magnitude at bus 2 to be greater than or equal to V min
2 per

unit.) Then Ly {g} = −
(

Vmin
2

)2
y0200 + y0002. Thus, Ly {g}

converts a polynomial g (x̂) to a linear function of y.

For the order-γ relaxation, define a vector xγ consisting of

all monomials of the voltages up to order γ (i.e., x̂α such that

|α| ≤ γ, where | · | is the one-norm):

xγ =
[

1 Vd1 . . . Vqn V 2
d1 Vd1Vd2 . . .

. . . V 2
qn V 3

d1 V 2
d1Vd2 . . . V γ

qn

]⊺

(11)

The relaxations are composed of positive-semidefinite-

constrained moment and localizing matrices. The symmetric

moment matrix Mγ has entries yα corresponding to all mono-

mials x̂α such that |α| ≤ 2γ:

Mγ {y} := Ly

{

xγx
⊺

γ

}

. (12)

Symmetric localizing matrices are defined for each con-

straint of (5). For a polynomial constraint g (x̂) ≥ 0 with

largest degree |α| among all monomials equal to 2η, the

localizing matrix is:

Mγ−η {gy} := Ly

{

g xγ−ηx
⊺

γ−η

}

. (13)

See [11], [39] for example moment and localizing matrices for

the second-order relaxation applied to small OPF problems.

The objective functions used for the bound tightening and

grid pruning algorithms in Sections IV-B and IV-C are either

1) linear functions of the active and reactive power generation,

squared voltage magnitudes, and apparent power line flows

or 2) convex quadratic functions of the active powers and

squared voltage magnitudes. This section considers a general

polynomial objective function h (Vd, Vq) which represents a

generic function in either of these forms.

The order-γ moment relaxation is

min
y

Ly {h} subject to (14a)

Mγ−1

{(

fPi − Pmin
i

)

y
}

� 0 ∀i ∈ N (14b)

Mγ−1

{(

Pmax
i − fPi

)

y
}

� 0 ∀i ∈ N (14c)

Mγ−1

{(

fQi −Qmin
i

)

y
}

� 0 ∀i ∈ N (14d)

Mγ−1

{(

Qmax
i − fQi

)

y
}

� 0 ∀i ∈ N (14e)

Mγ−1

{(

fV i −
(

V min
i

)2
)

y
}

� 0 ∀i ∈ N (14f)

Mγ−1

{(

(V max
i )

2 − fV i

)

y
}

� 0 ∀i ∈ N (14g)

Mγ−2

{(

(Smax
lm )2 − fSlm

)

y
}

� 0 ∀ (l,m) ∈ L (14h)

Mγ−2

{(

(Smax
ml )

2 − fSml

)

y
}

� 0 ∀ (l,m) ∈ L (14i)

Mγ{y} � 0 (14j)

y⋆...⋆ρ⋆...⋆ = 0 ρ = 1, . . . , 2γ (14k)

y0...0 = 1 (14l)

where ρ in the angle reference constraint (14k) is the index n+
k, where k ∈ S is the index of the reference bus. Alternatively,

the angle reference (5g) can be used to eliminate all terms

corresponding to Vqk , k ∈ S, to reduce the problem size.

Constraint (14l) corresponds to the fact that x0 = 1.

For general polynomial optimization problems, the relax-

ation order γ must be greater than or equal to half the largest

degree of any polynomial. Objectives that are quadratic in

power generation and/or squared voltage magnitudes as well

as functions for apparent power line flows give rise to quartic

polynomials in the voltage components, which suggests that a

relaxation order γ ≥ 2 is required for problems that include

these functions. However, second-order cone programming

(SOCP) reformulations for these functions enable the solution

of (14) with γ = 1 [2], [39]. Note that the first-order relaxation

is equivalent to the SDP relaxation of [2].

Formally, for γ = 1, the apparent power line flow limits (5e)

and (5f) take the form of the SOCP constraints

Smax
lm ≥

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

Ly {fPlm}
Ly {fQlm}

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

, Smax
lm ≥

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

Ly {fPml}
Ly {fQml}

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

∀ (l,m) ∈ L (15)

where || · ||2 is the two-norm. Formulation of the quartic

objective function for the grid pruning algorithm is addressed

in Section IV-C.

The relaxation (14) yields a single global solution if

rank
(

Mγ{y}
)

= 1. (16)

The global solution V ∗ is calculated using an eigendecomposi-

tion of the diagonal block of the moment matrix corresponding

to the second-order monomials (i.e., |α| = 2). Let σ be a unit-

length eigenvector corresponding to the non-zero eigenvalue

λ of
[

Mγ{y}
]

(2:2n+1,2:2n+1)
. Then the globally optimal volt-

ages are V ∗ =
√
λσ. Relaxations in the moment hierarchy are

guaranteed to yield the global optima of generic polynomial

optimization problems at a finite relaxation order [44].

If the rank condition (16) is satisfied, the relaxation’s

objective value is equal to the non-convex problem’s globally
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optimal objective value. If the rank condition (16) is not

satisfied for some relaxation order (i.e., rank
(

Mγ{y}
)

> 1),

the objective value of the relaxation provides a (potentially

strict) lower bound on the optimal objective value for the cor-

responding non-convex problem. The lower bound is used in

the bound tightening and grid pruning algorithms to eliminate

provably infeasible points in the discretization (6).

B. Bound Tightening

The bounds on the voltage magnitudes at generator buses

and on the active power outputs at non-slack generator buses

determine the number of discretization points in (6). The

bounds on these quantities specified in the OPF problem may

be larger than the values that are actually achievable due to

the limitations imposed by other constraints. In other words,

certain bounds may never be binding. It may therefore be

possible to reduce the number of discretization points by

determining tighter bounds on the generators’ active power

outputs and voltage magnitudes. This can be accomplished

using a “bound tightening” algorithm similar to those proposed

in [19], [45], [46] for the purpose of determining better lower

bounds on the global solutions of OPF problems.

Moment relaxations are used to tighten the OPF prob-

lem’s bounds on the generators’ active and reactive power

outputs (5b), (5c), apparent power line flows (5e), (5f), and

squared voltage magnitudes (5d). Define hc,γ {f} as the

solution to the following optimization problem:

hc,γ {f} := max
y

Ly {cf}

subject to (14b)–(14l) with relaxation order γ (17)

where the parameter c ∈ {−1, 1} effectively determines

whether the objective is to minimize or maximize, f is the

function corresponding to one of the OPF problem’s con-

straints (5b)–(5f), and γ is the specified relaxation order.

Algorithm 1 describes the bound tightening approach. Given

the tightest known bounds, each iteration uses (17) to com-

pute new bounds on the maximum and minimum achievable

values of the expressions for the constrained quantities in

the OPF problem (5). Within an iteration, the bounds for

each quantity are computed in parallel. Increasing relaxation

orders of the moment hierarchy are used to determine tighter

bounds. A solution to the relaxation which satisfies the rank

condition (16) yields a feasible point for the OPF problem (5).

No further tightening of that constraint is possible and the

constraint is removed from the list of considered constraints.

The algorithm terminates upon reaching a fixed point where

no bound tightening occurs at some iteration.

There is a subtly regarding the tightening of apparent power

line flow limits. The Schur complement formulation for the the

apparent power line flow limits (15) cannot be maximized in

an objective function. Thus, the first-order moment relaxation

cannot be directly applied to tighten these limits. However,

the first-order relaxation can still applied through the use of

an upper bound on the apparent power line flows. Specifically,

the squared line flow limits are bounded by the maximum

value of the squared magnitude of the current flow multiplied

by the upper bound on the squared voltage magnitude at the

Algorithm 1 Bound Tightening

1: Input: γmax, upper and lower bounds ζu and ζℓ, constraint

functions f
2: Set Cu to contain all upper bound constraints

3: Set Cℓ to contain all lower bound constraints

4: repeat

5: for each constraint in Cu do (in parallel)

6: for γ = 1, . . . , γmax do
7: if the constraint is a flow limit for line (l,m)
8: if max (h1,γ {fSlm} , h1,γ {fSml}) < (Smax

lm )
2

9:
Set the flow limit for line (l,m) to
√

max (h1,γ {fSlm} , h1,γ {fSml})
10: else
11: if h1,γ {f} < ζu
12: Update the bound: ζu ← h1,γ {f}
13: if the rank condition (16) is satisfied

14: Remove constraint from Cu
15: break

16: for each constraint in Cℓ do (in parallel)

17: for γ = 1, . . . , γmax do

18: if h-1,γ {f} > ζℓ
19: Update the bound: ζℓ ← h-1,γ {f}
20: if the rank condition (16) is satisfied

21: Remove constraint from Cℓ
22: break

23: until no bounds are updated during this iteration

corresponding terminal bus. For the line (l,m) ∈ L, the

squared magnitude of the current flow is

fIlm (Vd, Vq) :=
(

b2lm + g2lm
) (

V 2
dm + V 2

qm

)

+ blmbsh,lm (VdlVdm + VqlVqm)

+
(

b2lm − blmbsh,lm + b2sh,lm/4 + g2lm
) (

V 2
dl + V 2

ql

)

− 2
(

b2lm + g2lm
)

(VqlVqm + VdlVdm)

+ bsh,lmglm (VdlVqm − VdmVql) (18)

The first-order relaxation can be used to obtain upper

bounds on the apparent power line flow limits for the

line (l,m) ∈ L by maximizing Ly

{

(V max
l )

2
fIlm

}

and

Ly

{

(V max
m )2 fIml

}

. Higher-order relaxations directly formu-

late the expressions Ly {fSlm} and Ly {fSml}.

C. Grid Pruning

Even the tightest possible constraints may still admit

infeasible points in the discretization (6). The “grid pruning”

algorithm described in this section often eliminates many of

these infeasible points. This algorithm projects a specified

point in the space of active powers and squared voltage

magnitudes onto the feasible space of a convex relaxation of

the OPF problem’s constraints. A non-zero objective value

provides the right hand side of an ellipse centered at the

specified point. No feasible points for the OPF problem exist

within this ellipse.
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Formally, consider the optimization problem

φγ (P
◦, V ◦, β◦) :=

min
y

Ly







∑

i∈G\S

(fPi − P ◦
i )

2
+ β◦

∑

i∈G

(

fV i − (V ◦
i )

2
)2







subject to (14b)–(14l) with relaxation order γ (19)

where P ◦ ∈ Rn and V ◦ ∈ Rn are vectors of parameters

specifying a point in the space of active powers and voltage

magnitudes, the parameter β◦ specifies a scalar coefficient

that weights distances in active power to distances in squared

voltage magnitude, and γ is the relaxation order.

For φ1 (P
◦, V ◦, β◦), the objective in (19) minimizes an

auxiliary variable ω with the SOCP constraints

ω ≥
∣

∣

∣

∣

[

(Ly {FPi})⊺ (Ly {FV i})⊺
]⊺
∣

∣

∣

∣

2
(20)

where FPi and FV i are the vectors containing fPi, ∀i ∈ G\S,

and fV i, ∀i ∈ G, respectively.

A solution to (19) with φγ (P
◦, V ◦, β◦) > 0 provides the

right hand side of an ellipse in the space of active powers

P and voltage magnitudes V that is centered at P ◦ and V ◦

with the weighting between squared voltages and active power

generation described by β◦:

∑

i∈G\S

(Pi − P ◦
i )

2+β◦
∑

i∈G

(

(Vi)
2 − (V ◦

i )
2
)2

<φγ (P
◦, V ◦, β◦)

(21)

Points satisfying (21) are infeasible for the OPF problem (5).4

The grid pruning method in Algorithm 2 uses (21) to

eliminate infeasible discretization points. Consider two dis-

cretizations of the form (6): a “dense” discretization with

parameters ∆̂P and ∆̂V , which is denoted by Dd with points

P̂ ◦ and V̂ ◦, and a “sparse” discretization with parameters

∆P > ∆̂P and ∆V > ∆̂V , which is denoted by Ds with points

P
◦

and V
◦
. The dense discretization represents the feasible

space of the OPF problem while the sparse discretization

provides the specified points in the grid pruning algorithm.

Algorithm 2 solves (19) at each point in sparse discretization.

For each solution with φγ

(

P
◦
, V

◦
, β◦

)

> 0, all points Dd

which satisfy (21) are infeasible and therefore eliminated.

This process is repeated for various values of the weighting

parameter β◦. The choice of different weighting parameters

changes the shape of the ellipse (21) and can therefore result

in the elimination of additional infeasible points.

Any solution to (19) which satisfies the rank condition (16)

is feasible for the OPF problem (5). Higher-order relaxations

are not required for any point in the sparse discretization that

yields a solution satisfying (16).

D. Feasible Space Computation Algorithm

Algorithm 3 describes the method for computing an OPF

feasible space. First, Algorithm 1 tightens the constraint

bounds and then Algorithm 2 eliminates provably infeasible

4If a point satisfying (21) were feasible for the OPF problem (5), it would
be included in the feasible space of the moment relaxation (19), resulting in
an objective value less than φγ (P ◦, V ◦, β◦).

Algorithm 2 Grid Pruning

1: Input: scalar γmax, vector β, dense discretization Dd

defined using (6) with ∆̂P and ∆̂V yielding points P̂ ◦

and V̂ ◦, sparse discretization Ds defined using (6) with

∆P > ∆̂P and ∆V > ∆̂V yielding points P
◦

and V
◦

2: for each β◦ ∈ β do

3: Set Ds,β◦ ← Ds

4: for γ = 1, . . . , γmax do
5: for each point in Ds,β◦ do (in parallel)

6: Compute φγ

(

P
◦
, V

◦
, β◦

)

with (19)

7:

Eliminate points in Dd satisfying (21) with

right hand side φγ

(

P
◦
, V

◦
, β◦

)

, P := P̂ ◦,

V := V̂ ◦, P ◦ := P
◦
, and V ◦ := V

◦

8: if the rank condition (16) is satisfied

9: Remove this point from Ds,β◦

Algorithm 3 OPF Feasible Space Computation

1: Input: OPF constraint bounds and functions, scalar γmax,

vector β, dense discretization parameters ∆̂P and ∆̂V ,

sparse discretization parameters ∆P and ∆V

2: Tighten bounds using Algorithm 1 with relaxations up to

order γmax

3: Save any resulting solutions that satisfy (16)

4: Construct dense and sparse discretizations, Dd and Ds,

using (6) with ∆̂P , ∆̂V and ∆P , ∆V , respectively

5: Prune Dd using Algorithm 2 with γmax, β, Ds, and Dd

6: Save any resulting solutions that satisfy (16)

7: for each discretization point in Dd do (in parallel)

8: Solve the power flow equations (6) using NPHC

9: Filter the power flow solutions satisfying all constraints (5)

10: Output: Filtered power flow solutions augmented with the

rank-one solutions obtained from Algorithms 1 and 2

points within the tighter bounds. The NPHC algorithm is

applied (in parallel) to solve the power flow equations cor-

responding to the remaining discretization points. Finally, the

resulting real power flow solutions are filtered to select only

those satisfying all the constraints in the OPF problem (5).

V. EXAMPLE TEST CASES

This section applies Algorithm 3 to two small OPF test

cases which have multiple local optima [1]. The five-bus

system “WB5” has the one-line diagram in Fig. 1. The

voltage magnitudes in WB5 are constrained to the range

|Vi| ∈ [0.95, 1.05] per unit and there are no line flow limits.

The nine-bus system “case9mod” has the one-line diagram in

Fig. 2. The voltage magnitudes in case9mod are constrained to

the range |Vi| ∈ [0.90, 1.10] per unit and limits on the apparent

power line flows are 250 MVA for all lines except for (5, 6)
and (6, 7), which are limited to 150 MVA, and (3, 6), which

is limited to 300 MVA. Both test cases use a 100 MVA base.

Both WB5 and case9mod challenge a variety of optimiza-

tion algorithms. Local solvers with a variety of reasonable

initializations often converge to suboptimal local solutions

in these problems. The SDP relaxation of [2] is not exact
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1

50 ≥ PG1 ≥ 0

18 ≥ QG1 ≥ −0.30

2

PD2 + jQD2

= 1.30 + j 0.20

4

PD4 + jQD4

= 0.65 + j 0.10

5

50 ≥ PG5 ≥ 0

18 ≥ QG5 ≥ −0.30

3
PD3 + jQD3

= 1.30 + j 0.20

R12 + jX12

= 0.04 + j0.09

R13 + jX13

= 0.05 + j0.10

R
2
3
+

j
X

2
3

=
0
.0
7
+

j0
.0
9

R24 + jX24

= 0.55 + j0.90

bsh,24 = 0.45

R
4
5
+

j
X

4
5

=
0
.0
6
+

j0
.1
0

R35 + jX35

= 0.55 + j0.90

bsh,35 = 0.45

Fig. 1. Five-bus system from [1] with impedances and powers in per unit

1
2.50 ≥ PG1 ≥ 0
3.00 ≥ QG5 ≥ −0.30

R14 + jX14

= 0 + j 0.0576

4

9
PD9 + jQD9

= 0.75 + j0.30

5
PD5 + jQD5

= 0.54 + j0.18

8 6

7

PD7 + jQD7

= 0.60 + j0.21

2

3.00 ≥ PG2 ≥ 0.10

3.00 ≥ QG2 ≥ −0.05

3

2.70 ≥ PG2 ≥ 0.10

3.00 ≥ QG2 ≥ −0.05

R49 + jX49

= 0.0170 + j 0.0920

bsh,49 = 0.1580

R78 + jX78

= 0.0170 + j 0.0920

bsh,78 = 0.1580

R89 + jX89

= 0.0320 + j 0.1610

bsh,89 = 0.3060

R56 + jX56

= 0.0390 + j 0.1700

bsh,56 = 0.3580

R78 + jX78

= 0.0085 + j 0.0720

bsh,78 = 0.1490

R67 + jX67

= 0.119 + j 0.1008

bsh,67 = 0.2090

R28 + jX28

= 0 + j 0.0625

R36 + jX36

= 0 + j 0.0586

Fig. 2. Nine-bus system from [1] with impedances and powers in per unit

for either test case. Conversely, the second-order moment

relaxation finds the global solution to both problems.

Algorithm 3 is run for each of these systems using γmax =

2 for the bound tightening and grid pruning algorithms. The

implementation uses MATLAB with YALMIP 2015.06.26 [47]

and BertiniLab v.1.5 [48], the SDP solver in Mosek 7.1.0.28,

and Bertini v1.4.1 [37]. The Fusion cluster at Argonne Na-

tional Laboratory was used for the NPHC computations.

Fig. 3 shows a projection of the feasible space for WB5 in

terms of the active power generations PG1 and PG5 and the

reactive power generation QG5. The colors represent the gen-

eration cost corresponding to the specified objective function,

400PG1 + 100PG5. The lower limit QG5 ≥ −0.30 per unit

is shown by the gray plane. The feasible space is com-

posed of the two disconnected components that lie above

Fig. 3. Feasible Space for the five-bus system from [1]. The colors represent
the generation cost. The gray plane shows the lower reactive power limit
QG5 ≥ −0.30 per unit. This limit splits the feasible space into the two
disconnected components which are above the gray plane. The green star
shows the global solution and the blue triangle indicates a local optimum.
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G

3
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$3.50k

$3.75k

$4.00k

$4.25k

$4.50k

$4.75k

$5.00k

$3.00k

$3.25k

Fig. 4. Feasible Space for the nine-bus system from [1]. The colors represent
the generation cost. The feasible space is split into three disconnected compo-
nents by the black line, which signifies the set of points for which the limits
QG1 ≥ −0.05, QG2 ≥ −0.05, QG3 ≥ −0.05, and |V9| ≥ 0.9 per unit
are simultaneously binding. The green star shows the global solution and the
blue triangles indicate local optima.

this plane. The global solution is shown by the green star

at (PG1, PG5, QG5) = (1.81, 2.21, −0.30) per unit. The blue

triangle at (PG1, PG5, QG5) = (2.46, 0.98, −0.30) per unit

denotes a local solution with an objective value that is 14.34%

greater than that of the global solution.

The feasible space for WB5 shown in Fig. 3 was con-

structed with discretization parameters ∆̂P = 1 MW and

∆̂V = 0.001 per unit. Bound tightening (Algorithm 1)

eliminated 98.65% of the points resulting from the origi-

nal OPF problem’s bounds. Grid pruning (Algorithm 2) us-

ing a sparse discretization with parameters ∆P = 5 MW,

∆V = 0.005 per unit, and β = 1 removed 76.46% of the

remaining points in the bound-tightened problem. Thus, the

bound tightening and grid pruning algorithms removed a total

of 99.68% of the initial discretization points, which suggests
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TABLE I
GENERATION COST FUNCTIONS FOR THE NINE-BUS SYSTEM FROM [1]

Bus c2i [$/(per unit-hr)2] c1i [$/(per unit-hr)] c0i [$/hr]

1 1100 500 150
2 85 120 600
3 122.5 100 335

that the bounds specified for the OPF problem poorly represent

the actual feasible space. After applying the bound tightening

and grid pruning algorithms, a total of 1.62× 105 points were

solved with the NPHC algorithm, with 76.46% of these points

satisfying the OPF constraints and therefore included in the

feasible space. Initial solution of the parameterized NPHC

algorithm described in Section III-B required 3 seconds. Each

subsequent NPHC solve required approximately 0.5 seconds.

Fig. 4 shows a projection of the feasible space for case9mod

in terms of the active power generations PG1, PG2, and

PG3. The colors represent the generation cost in terms

of the specified objective function, which has coefficients

given in Table I. The feasible space has three discon-

nected components. The green star at (PG1, PG2, PG3) =
(0.10, 1.254, 0.570) per unit shows the global solution. The

blue triangles at (PG1, PG2, PG3) = (0.10, 0.648, 1.178),
(1.432, 0.378, 0.10), and (1.422, 0.10, 0.388) per unit denote

the three local optima, which have objective values that are

10.05%, 37.52%, and 38.13%, respectively, greater than the

that of the global optimum.

The feasible space shown in Fig. 4 is cut by the ellipse

denoted by the black line. This ellipse is comprised of points

for which the lower voltage magnitude constraint at bus 9 as

well as the lower reactive power limits on the generators are

all binding (i.e., |V9|2 = (0.90)
2
, QG1 = QG2 = QG3 =

−0.05 per unit).5 In other words, the lower voltage magnitude

and lower reactive power generation limits interact to yield a

disconnected feasible space. The points in the three different

“corner” regions of Fig. 4 correspond to generator outputs that

are very different active power but similar in reactive power.

Constructing the feasible space for case9mod started with

a relatively sparse discretization of ∆̂P = 10 MW and

∆̂V = 0.005 per unit to identify the three disconnected

components of the feasible space. This facilitated multiple

computations with Algorithm 3 for adjoining subregions of the

feasible space, with each subregion containing one of the three

disconnected components. The bound tightening performed by

Algorithm 1 was significantly more effective when applied

to each subregion, which enabled computation with a denser

discretization of ∆̂P = 2 MW and ∆̂V = 0.002 per unit.

To improve fidelity near the dashed ellipse in Fig. 4, a

variety of smaller regions were considered with discretization

tolerances up to ∆̂P = 1 MW and ∆̂V = 0.0005 per unit.

The grid pruning algorithm used β = {100, 10, 1} and a

sparse discretization with parameters ∆P = 20 MW and

∆V = 0.02 per unit. Overall, the bound tightening algorithm

eliminated 99.96% of the initial discretization points. The

grid pruning algorithm removed 96.77% of the remaining

5The points which also satisfy the other constraints in (5) are included
in the feasible space, whereas the remainder of the black line is infeasible.

points. Thus, the bound tightening and grid pruning algorithms

removed a total of 99.9987% of the initial points in the

discretization. After applying the bound tightening and grid

pruning algorithms, there were 1.74 × 106 remaining points

which were solved (in parallel) with NPHC. Of these, 2.55%

of the NPHC solutions were feasible (i.e., passed the filtering

in the last step of Algorithm 3), which suggests that it may

be possible to further improve the detection of infeasible

points. The initial parameterized NPHC solution required 740

seconds. Each subsequent NPHC solve required approximately

1.4 seconds.

Observe that the system parameters in Figs. 1 and 2 are

reasonable (e.g., all lines have resistance-to-reactance ratios

less than one, all loads have power factors greater than 0.9, the

voltage magnitudes are constrained to be near their nominal

values). Despite this, the feasible spaces for the corresponding

problems exhibit significant non-convexity.

These examples illustrate that the challenges associated

with certain OPF problems are strongly related to the voltage

magnitude and reactive power limits. For WB5 and case9mod,

binding reactive power constraints result in disconnected

feasible spaces. The disconnected components contain local

optima that are significantly inferior to the global optima.

Disconnected feasible spaces may also result from binding

apparent power line flow limits [49]. Further characterizing the

physical characteristics which give rise to challenging feasible

spaces is an important future research direction that will be

informed by the proposed algorithm.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed an algorithm for computing the fea-

sible spaces of small OPF problems. This algorithm discretizes

certain of the OPF problem’s inequality constraints to a set of

power flow equations. The Numerical Polynomial Homotopy

Continuation (NPHC) algorithm is used to reliably solve the

power flow equations at each discretization point. The power

flow solutions which satisfy all OPF constraints are included in

the feasible space. Thus, the proposed algorithm is guaranteed

to compute the entire feasible space to within a specified

discretization tolerance. Bound tightening and grid pruning

algorithms improve computational tractability by using convex

moment relaxations to eliminate infeasible points.

Future work includes computational improvements, such

as integration with the software Paramotopy [38] to reduce

overhead and exploitation of network structure [40], [41] to

reduce the initial solution time for the parameterized NPHC

algorithm. Future work also includes applying the proposed

algorithm to other test cases to further characterize the physical

features that are associated with challenging OPF problems.
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