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Abstract—Recently, there has been significant interest in con-
vex relaxations of the optimal power flow (OPF) problem. A
semidefinite relaxation globally solves many OPF problems.
However, there exist practical problems for which the semidefinite
relaxation fails to yield the global solution. Conditions for the
success or failure of the semidefinite relaxation are valuable
for determining whether the relaxation is appropriate for a
given OPF problem. To move beyond existing conditions, which
only apply to a limited class of problems, a typical conjecture
is that failure of the semidefinite relaxation can be related to
physical characteristics of the system. By presenting an example
OPF problem with two equivalent formulations, this paper
demonstrates that physically based conditions cannot universally
explain algorithm behavior. The semidefinite relaxation fails for
one formulation but succeeds in finding the global solution to the
other formulation. Since these formulations represent the same
system, success (or otherwise) of the semidefinite relaxation must
involve factors beyond just the network physics.

I. INTRODUCTION

The optimal power flow (OPF) problem determines a mini-

mum cost operating point for an electric power system subject

to both network equality constraints (the power flow equations,

which model the relationship between the voltage phasors and

the power injections) and engineering limits. Typical objec-

tives are minimization of losses or generation costs. The OPF

problem is generally non-convex due to the non-linear power

flow equations [1] and may have local solutions [2]. Non-

convexity of the OPF problem has made solution techniques

an ongoing research topic. Many OPF solution techniques

have been proposed, including successive quadratic programs,

Lagrangian relaxation, and interior point methods [3].

Recently, there has been significant interest in a semidefinite

relaxation of the OPF problem [4]. Using a rank relaxation,

the OPF problem is reformulated as a convex semidefinite

program. If the relaxed problem satisfies a rank condition (i.e.,

the relaxation is said to be “exact”), the global solution to

the original OPF problem can be determined in polynomial

time. Prior OPF solution methods do not guarantee finding a

global solution in polynomial time; semidefinite programming

approaches thus have a substantial advantage over traditional

solution techniques. However, the rank condition is not satis-

fied for all practical OPF problems [2], [5].

There is substantial interest in developing sufficient con-

ditions for exactness of the semidefinite relaxation. Existing

sufficient conditions include requirements on power injection,

voltage magnitude, and line-flow limits and either radial

networks (typical of distribution system models), appropriate

placement of controllable phase shifting transformers, or a

limited subset of mesh network topologies [6], [7].

The semidefinite relaxation globally solves many OPF prob-

lems which do not satisfy any known sufficient conditions [6],

[7]. In other words, the set of problems guaranteed to be exact

by known sufficient conditions is much smaller than the set of

problems for which the relaxation is exact. This suggests the

potential for developing broader conditions. A natural specu-

lation is that some physical characteristics of an OPF problem

may inform such conditions. With solutions that are close to

voltage collapse, several problems for which the semidefinite

relaxation fails to be exact support this speculation [5].

This paper tends to dampen enthusiasm for this avenue of

research by considering a small problem with two equivalent

formulations. The semidefinite relaxation succeeds in globally

solving one formulation but fails to solve the other. Since both

formulations represent the same system, strictly physically

based conditions for the success of the relaxation cannot

differentiate between these formulations.1 It will be shown that

the feasible spaces illustrate why the semidefinite relaxation

succeeds for one formulation but fails for the other.

The small example presented in this paper is relatively

simple. In fact, this example “OPF” problem reduces to finding

the minimum loss solution to power flow constraint equations

for a specified set of power injections and voltage magnitudes.

Thus, this example further demonstrates that the semidefinite

relaxation may fail even for simple OPF problems.

This paper is organized as follows. Section II introduces

the OPF problem. Section III gives the semidefinite relaxation.

Section IV presents the example OPF problem that is the main

contribution of this paper. Section V concludes the paper.

II. OPF PROBLEM FORMULATION

We first present a formulation of the OPF problem in terms

of rectangular voltage coordinates and active and reactive

power generation. Consider an n-bus power system, where

1See also [7] for an example where different line-flow limit formulations
determine success or failure of the semidefinite relaxation.



N = {1, 2, . . . , n} is the set of all buses and G is the set

of generator buses. Let PDk + jQDk represent the active and

reactive load demand at each bus k ∈ N . Let Vk = Vdk+jVqk

represent the voltage phasors in rectangular coordinates at

each bus k ∈ N . Superscripts “max” and “min” denote

specified upper and lower limits. Buses without generators

have maximum and minimum generation set to zero (i.e.,

Pmax
Gk = Pmin

Gk = Qmax
Gk = Qmin

Gk = 0, ∀k ∈ N \ G). Let

Y = G+ jB denote the network admittance matrix.

The power flow equations describe the network physics:

PGk =Vdk

n∑

i=1

(GikVdi −BikVqi) + Vqk

n∑

i=1

(BikVdi +GikVqi) + PDk

(1a)

QGk =Vqk

n∑

i=1

(GikVdi −BikVqi)− Vdk

n∑

i=1

(BikVdi +GikVqi) +QDk

(1b)

The OPF problem considered in this paper is

min
Vd,Vq

∑

k∈G

PGk subject to (2a)

P
min

Gk ≤ PGk ≤ P
max

Gk ∀k ∈ N (2b)

Q
min

Gk ≤ QGk ≤ Q
max

Gk ∀k ∈ N (2c)
(

V
min

k

)

2

≤ V
2

dk + V
2

qk ≤
(

V
max

k

)

2

∀k ∈ N (2d)

Vq1 = 0 (2e)

Note that constraint (2e) sets the reference bus angle to zero.

This formulation minimizes the active power losses, but

other convex objective functions, such as piecewise-linear

and quadratic functions of active power generation, may be

modeled. See [8] for the semidefinite relaxation of a more

general OPF formulation.

III. SEMIDEFINITE RELAXATION OF THE OPF PROBLEM

This section describes a semidefinite relaxation of the OPF

problem, which was first presented in [4]. Let ek denote the

kth standard basis vector in R
n. Define Yk = eke

⊺

kY.

Matrices employed in the bus power injection, voltage

magnitude, and angle reference constraints are

Yk =
1

2

[

Re (Yk + Y
⊺

k ) Im (Y ⊺

k − Yk)

Im (Yk − Y
⊺

k ) Re (Yk + Y
⊺

k )

]

(3a)

Ȳk = −1

2

[

Im (Yk + Y
⊺

k ) Re (Yk − Y
⊺

k )

Re (Y ⊺

k − Yk) Im (Yk + Y
⊺

k )

]

(3b)

Mk =

[

eke
⊺

k 0

0 eke
⊺

k

]

(3c)

Nk =

[

0 0

0 eke
⊺

k

]

(3d)

Define the vector of voltage components

x =
[

Vd1 Vd2 . . . Vdn Vq1 Vq2 . . . Vqn

]⊺

(4)

Then define the rank-one matrix

W = xx⊺ (5)

The active and reactive power injections at bus k are

tr (YkW) and tr
(

ȲkW
)

, respectively, where tr indicates the

matrix trace operator. The square of the voltage magnitude at

bus k is tr (MkW). The constraint tr (N1W) = 0 sets the

reference angle.

Replacing the rank-one requirement from (5) by the less

stringent constraint W � 0, where � 0 indicates positive

semidefiniteness, yields the semidefinite relaxation of (2):

min
W

∑

k∈G

tr (YkW) + PDk subject to (6a)

Pmin
Gk ≤ tr (YkW) + PDk ≤ Pmax

Gk ∀k ∈ N (6b)

Qmin
Gk ≤ tr

(

ȲkW
)

+QDk ≤ Qmax
Gk ∀k ∈ N (6c)

(

V min
k

)2 ≤ tr (MkW) ≤
(

V max
k

)2 ∀k ∈ N (6d)

tr (N1W) = 0 (6e)

W � 0 (6f)

If the condition rank (W) = 1 is satisfied, the relaxation

is “exact” and the global solution to (2) is recovered using

an eigen decomposition. Let λ be the non-zero eigenvalue

of a rank-one solution W to (6) with associated unit-length

eigenvector η. The globally optimal voltage phasor is

V ∗ =
√
λ
(

η1:n + jη(n+1):2n

)

(7)

where subscripts denote vector entries in MATLAB notation.

IV. EQUIVALENT FORMULATIONS OF A SMALL EXAMPLE

PROBLEM

Since the semidefinite relaxation globally solves many OPF

problems which do not satisfy any known sufficient condi-

tions [6], [7], there is potential for development of broader

sufficient conditions. One speculation is that some physical

characteristic of the OPF problem predicts the relaxation’s

success or failure.

The following example shows that strictly physically based

sufficient conditions are unable to definitively predict success

or failure of the semidefinite relaxation for all OPF problems.

The example problem has equivalent two- and three-bus for-

mulations. The relaxation globally solves the two-bus system

but only gives a strict lower bound on the objective value (i.e.,

PG1 + PG2) rather than the solution to the three-bus system.

A. Example Problem

Consider the two- and three-bus systems in Figs. 1 and 2.

The upper and lower limits on active and reactive power

injections and voltage magnitudes are equal (e.g., V max
1 =

V min
1 = 1 per unit), which results in equality constraints on

the corresponding quantities. For both systems, the voltage

magnitudes at buses 1 and 2 are fixed to 1.0 and 1.3 per unit,

respectively, the active power injection at bus 2 is fixed to

zero, and there are no limits on the reactive power injections

at buses 1 and 2. For bus 3 in the three-bus system, the active

and reactive power injections are constrained to zero and there

is no voltage magnitude constraint.



1

V1 = 1

θ1 = 0◦
R′

12 + jX ′
12

= 0.06129 + j0.05117

2

V2 = 1.3

P2 = 0

Fig. 1. Two-Bus System

1

V1 = 1

θ1 = 0◦
R12 + jX12

= 0.15 + j0.1

2

V2 = 1.3

P2 = 0

R13 + jX13

= 0.1 + j0.05

3
P3 = 0

Q3 = 0

R23 + jX23

= 0.001 + j0.05

Fig. 2. Three-Bus System

With two quantities specified at each bus k along with two

degrees of freedom (Vdk and Vqk), the feasible space for the

OPF problem (2) for this example consists of a set of isolated

points that are the solutions of the power flow equations. The

OPF finds the solution point that has the lowest active power

losses. Here, this solution corresponds to the “high voltage”

power flow solution, which is commonly calculated using a

Newton-Raphson iteration initialized from a flat start (i.e.,

unity voltage magnitudes and zero voltage angles). In this

paper, however, we use this problem to explore the properties

of the semidefinite relaxation.

Since bus 3 in the three-bus system has zero power in-

jections, it can be eliminated by adding R13 + jX13 and

R23 + jX23 to yield an equivalent two-bus system with two

parallel lines. The parallel combination of these lines gives

the line impedance R′
12 + jX ′

12 shown in the two-bus system

of Fig. 1. Thus, the OPF problems for the two- and three-bus

systems are equivalent. The voltage at bus 3 in the three-bus

system can be directly computed from the solution to the two-

bus system. The global solutions are given in Table I.

The semidefinite relaxation globally solves the two-bus

system. However, for the three-bus system, the relaxation only

provides a lower bound that is 22% less than the true global

optimum (i.e., there exists a large relaxation gap).

B. Feasible Space Exploration

Although the OPF problems for the two- and three-bus

systems share the same feasible spaces, this is not the case

TABLE I
SOLUTIONS TO TWO- AND THREE-BUS SYSTEMS (PER UNIT)

Two-Bus System Three-Bus System

Vd1 + jVq1 1.000 + j0.000 1.000 + j0.000

Vd2 + jVq2 1.049 − j0.767 1.049 − j0.767

Vd3 + jVq3 N/A 0.849 − j0.586

P1 + jQ1 5.68 − j7.77 5.68− j7.77

P2 + jQ2 0.0 + j12.52 0.0 + j12.52

P3 + jQ3 N/A 0.0 + j0.0

for their semidefinite relaxations. This section explores the

feasible spaces of these relaxations to illustrate why the

relaxation globally solves the two-bus system but fails for the

equivalent three-bus system.

Projections of the feasible spaces of the two- and three-bus

systems, in terms of the active power injections at each bus, are

shown in Figs. 3 and 4, respectively. The boundary of the oval,

shown by the black line in Fig. 3, is the feasible space of the

OPF problem (2) for varying values of P2. The shaded region

comprising the interior of the oval in Fig. 3 is the feasible

space of the semidefinite relaxation. For the specified value

of P2 = 0, shown by the red dashed line, the OPF problem

has a feasible space consisting of the two red squares at the

intersection of the red dashed line and the black oval. The

semidefinite relaxation finds the global optimum of (2) (i.e.,

the leftmost red square) at the orange star.

In Fig. 4a, the black dots outline the feasible space of

the OPF problem (2) for varying values of P2 and P3,

as determined by repeated homotopy calculations [9]. This

feasible space has an ellipsoidal shape with a hole in the

interior. The red dashed line corresponds to zero active power

injections at buses 2 and 3. The OPF solutions are shown

by the red squares at the intersection of the exterior of the

ellipsoidal shape with the red dashed line, and are near the hole

in the feasible space. The feasible space of the semidefinite

relaxation, shown by the shaded region in Fig. 4, “stretches

over” this hole in the OPF’s feasible space. As seen in Fig. 4b,

which shows a zoomed view of a cut through P3 = 0, the

exterior of the relaxation’s feasible space does not match the

feasible space of the OPF problem near this hole. Thus, the

solution to the semidefinite relaxation (6) at the orange star

does not match the true global solution to the OPF problem (2)

at the leftmost red square. The semdefinite relaxation fails to

be exact for the three-bus problem.

The hole in the OPF’s feasible space is a non-convexity

introduced by “nearby” problems (i.e., OPF problems with

different values of P3) in the three-bus system. Without the

additional degrees of freedom associated with bus 3, there is

no “nearby” non-convexity for the two-bus system. Thus, even

though the OPF problems for the two- and three-bus systems

share the same feasible space (i.e., the red squares in Figs. 3

and 4), the semidefinite relaxation succeeds in globally solving

the two-bus system but not the three-bus system.

Modeling decisions among physically equivalent systems

may determine the success or failure of the semidefinite re-

laxation. This example suggests that simplifying power system

models may improve the performance of the semidefinite

relaxation; however, further work is necessary to determine

whether this holds more generally.

Finally, note that the second-order “moment” relax-

ation [10], which generalizes the semidefinite relaxation, glob-

ally solves both systems, but the penalization heuristic in [7]

fails to globally solve the three-bus system.



(a) Projection of the Two-Bus System’s Feasible Space
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(b) Zoomed View of Fig. 3a

Fig. 3. Projection of the Two-Bus System’s Feasible Space. The red squares at the intersection of the black oval and red dashed line are the feasible space
for the OPF problem (2). The orange star is the solution to the semidefinite relaxation (6).

(a) Projection of the Three-Bus System’s Feasible Space
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(b) Projection of the Three-Bus System’s Feasible Space with P3=0

Fig. 4. Projection of the Three-Bus System’s Feasible Space. The feasible space for the OPF problem (2) is denoted by the red squares at the intersection
of the red dashed line and the region formed by the black dots. The orange star is the solution to the semidefinite relaxation (6), which does not match the
global solution at the leftmost red square.

V. CONCLUSION

This paper has presented a small example OPF problem

with two equivalent formulations. The semidefinite relaxation

globally solves only one of the two formulations. This suggests

that strictly physically based sufficient conditions for exactness

of the semidefinite relaxation of the OPF problem cannot

predict the relaxation’s success or failure for all OPF problems.
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