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Abstract

For the non-linear power flow problem with PQ and re-
active power limited slack and PV buses, we present two
sufficient conditions under which the specified set of non-
linear algebraic equations has no solution. The first condition
uses a semidefinite programming relaxation of the power flow
equations along with binary variables to model the generators’
reactive power capabilities. As a byproduct, this condition
yields a voltage stability margin to the power flow solvability
boundary. The second condition formulates the power flow
equations, including generator reactive power limits, as a
system of polynomials and uses real algebraic geometry and
sum of squares programming to create infeasibility certificates
which prove power flow insolvability.

Introduction

Power flow studies are the cornerstone of power system analy-
sis and design. They are used in planning, operation, economic
scheduling, transient stability, and contingency studies. The
power flow equations model the relationship between voltages
and active and reactive power injections in a power system.
The non-linear power flow equations may not have any solu-
tions (the power flow equations are said to be insolvable). That
is, it is possible to choose a set of power injections for which
no valid corresponding voltage profile exists. It is also possible
that no power flow solutions have reactive power injections
that can be supported by the generators. That is, enforcing
reactive power limits may result in power flow insolvability
within the generators’ capabilities [1]–[3]. Practical cases that
may be insolvable include long-range planning studies for
which the studied system may not be able to support projected
loads and contingency studies for which the loss of one or
more components may yield a network configuration that is
similarly inoperable for the specified injections.

This paper presents two sufficient conditions that, when sat-
isfied, rigorously classify a specified case as insolvable. The
first condition uses mixed-integer semidefinite programming
and yields a voltage stability margin that characterizes a
distance to the power flow solvability boundary [4]. The
second condition uses real algebraic geometry and sum of
squares programming [5] to generate infeasibility certificates
which prove power flow insolvability.

In engineering practice, large-scale non-linear power flow
equations are typically solved using iterative numerical tech-
niques, most commonly Newton-Raphson or its variants [6].
These rely on an initial guess of the solution voltage mag-
nitudes and angles and are only locally convergent. They
generally do not converge to a particular solution from an
arbitrary initial guess and may show very high sensitivity and
highly complex behavior with respect to initial conditions for
certain study cases. It is well recognized that the power flow
equations may generally have a very large number of solutions;
for example, the work of [7] establishes cases for which
the number of solutions grows faster than polynomial with
respect to network size. For cases having multiple solutions,
each solution has a set of initial conditions that converges to
that solution in Newton-Raphson iteration. Characterization of
Newton-Raphson regions of attraction was the subject of [8],
which demonstrated cases for which the boundaries of these
attractive sets were factual in nature. So despite the fact
that very large-scale problems (10’s or 100’s of thousands of
unknowns) are solved in power engineering practice, as param-
eters move outside of routine operating ranges the behavior of
these equations can be highly complex. Convergence failure
for a Newton-Raphson-based commercial software package is
far from a reliable indication that no solution exists.

The properties of the Newton-Raphson iteration guarantee
(under suitable differentiability assumptions) that the iteration
must converge to a solution for an initial condition selected
in a sufficiently small neighborhood about that solution [9].
However, when a selected initial condition (or some set of
multiple initial conditions) fails to yield convergence, the user
of a Newton-Raphson-based software package is left with an
indeterminate outcome: does the specified problem have no
solution, or has the initial condition(s) simply failed to fall
within the attractive set of a solution that does exist?

Development of conditions guaranteeing power flow solution
existence has been an active topic of study. For example, [10]
describes sufficient conditions for power flow solution ex-
istence. However, as sufficient conditions, these are often
conservative: a solution may exist for a much larger range
of operating points than satisfy the sufficient conditions.
Other work on sufficient conditions for power flow solvability
includes [11], which focuses on the decoupled (active power-
voltage angle, reactive power-voltage magnitude) power flow
model. Reference [12] describes a modified Newton-Raphson
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iteration tailored to the type of ill-conditioning that can appear
in power systems problems. In more recent work, [13] provides
two necessary conditions for saddle-node bifurcation based on
lines reaching their static transfer stability limits; however, this
work does not yet provide a test for power flow solvability
or define a distance to the power flow solvability boundary.
Further, these papers do not consider generators with reactive
power limits; power flow equations identified as solvable under
the conditions proposed in these works may not have any
solutions within the generators’ reactive power capabilities.

A measure of the distance to the solvability boundary (the
set of operating points where a solution exists, but small
perturbations may result in the insolvability of the power flow
equations [4]) is desirable to ensure that power systems are
operated with security margins. If a solution does not exist for
a specified set of power injections, a measure of the distance
to the solvability boundary indicates how close the power flow
equations are to having a solution. If a power flow solution
exists, desired margins indicate distances to solution non-
existence at the solvability boundary. Existing techniques for
calculating such margins rely almost universally on Newton-
based, local solution methods. For instance, [14] and [15]
use a Newton-Raphson optimal multiplier approach to find
the voltage profile that yields the closest power injections to
those specified. For solvable sets of power injections, iterative
techniques for finding load margins comprised of the locally
optimal minimum distance to the power flow solvability
boundary are detailed in [16] and [17]. Other approaches
use continuation and/or non-linear optimization to calculate a
locally optimal minimum load shedding necessary for power
flow solvability [18]–[23].

Ideal voltage sources with no limits on reactive power output
often serve as simple generator models. However, reactive
power limits are relevant to power flow solvability since non-
existence of power flow solutions may result from limit-
induced bifurcations [1]–[3].

Recognizing the importance of reactive power limits, common
industry practice determines static voltage stability margins
using repeated power flow calculations to find the “nose point”
of a power versus voltage (“P-V”) curve while monitoring
“reactive margins” on generators (i.e., the margin between the
generator’s reactive power output at a given operating point
and its maximum reactive output). Descriptions of relevant
industry standards can be found in such works as [24]–[26].

Previous work by the authors in this area includes a sufficient
condition for power flow insolvability that yields voltage sta-
bility margins [27]. A semidefinite program is used to evaluate
this sufficient condition. In contrast to existing Newton-based
methods whose conditions for convergence are inherently local
in nature, the semidefinite program in [27] provides a global
solution to the optimization problem that is formulated from
the originally specified power flow equations. However, the

method proposed in [27] has only a rudimentary incorporation
of limits on generator reactive power outputs.

In this paper, we present two sufficient conditions under which
the power flow equations are guaranteed to be insolvable
within the generators’ reactive power limits. The first condition
is an extension of the work in [27] that uses mixed-integer
semidefinite programming (i.e., optimization problems with
both integer and semidefinite matrix constraints) to model re-
active power limited generators. The ability to achieve a global
optimum enables the guarantee of solution non-existence upon
satisfaction of a sufficient condition.

The computation for the first condition provides a power
injection margin to the power flow solvability boundary. This
margin is a non-conservative bound. Thus, for an insolvable
set of specified values, a change in power injections by at
least the amount indicated by the power injection margin
is required for the power flow equations to be potentially
solvable. More precisely, the margin identifies the shortest
distance (as measured by the change in power injections in the
direction of a specified injection profile) to a point at which
the sufficient condition for power flow insolvability fails to be
satisfied.

Current mixed-integer semidefinite programming solvers are
relatively immature, and unlike algorithms for semidefinite
programs, solvers are not assured to run in polynomial time.
However, this is an active area of research, and we anticipate
that more capable algorithms will become available. Existing
tools [28], [29] can solve the proposed formulation for small
power system models, and we discuss potential modifications
that improve the computational tractability of the proposed
formulation with respect to solution algorithms in the litera-
ture [30], [31].

The second sufficient condition for power flow insolvability
uses the concept of infeasibility certificates from the field
of real algebraic geometry [5]. Infeasibility certificates for
polynomial equations are calculated using sum of squares de-
compositions that are themselves computed with semidefinite
optimization programs. Specifically, infeasibility certificates
use the Positivstellensatz theorem, which states that there
exists an algebraic identity to certify the non-existence of real
solutions to every infeasible system of polynomial equalities
and inequalities [5]. This theorem does not require any as-
sumptions about the system of polynomials. Since the power
flow equations can be expressed as a system of polynomial
equalities, infeasibility certificates can be directly applied to
power flow problems. Further, this paper formulates limits on
generator reactive power outputs as a system of polynomial
equalities and inequalities and thus provides a means for
extending the theory of infeasibility certificates to power flow
problems with these limits.
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The organization of this paper is as follows. We first give an
overview of the power flow equations. We then describe the
first sufficient condition for power flow insolvability and define
a power injection margin. Next, we provide an overview of
infeasibility certificates and sum of squares programming and
describe the second proposed sufficient condition. Numeric
examples using standard test systems are then provided. We
conclude with a discussion of future work.

Power Flow Equations Overview

The power flow equations describe the sinusoidal steady state
equilibrium of a power network, and hence are formulated in
terms of complex “phasor” representation of circuit quantities
(see, for example, Ch. 9 of [32]). The underlying voltage-to-
current relationships of the network are linear, but the nature of
equipment in a power system is such that injected/demanded
complex power at a bus (node) is typically specified, rather
than current. The relation of interest is between the active
and reactive power injected at each bus and the complex
voltages at each bus, and hence the associated equations are
non-linear. Using a rectangular representation for complex
voltages (Vi = Vdi + jVqi), and rectangular “active/reactive”
representation of complex power (Pi + jQi), the power bal-
ance equations at bus i are given by

Pi = fPi (Vd, Vq) =Vdi

n∑
k=1

(GikVdk −BikVqk)

+ Vqi

n∑
k=1

(BikVdk + GikVqk) (1a)

Qi = fQi (Vd, Vq) =Vdi

n∑
k=1

(−BikVdk −GikVqk)

+ Vqi

n∑
k=1

(GikVdk −BikVqk) (1b)

where Y = G + jB is the network admittance matrix and n
is the number of buses in the system.

The rectangular voltage components must additionally satisfy
the voltage magnitude equation.

V 2
i = fV i (Vd, Vq) = V 2

di + V 2
qi (1c)

Using the voltage at the slack bus Vslack = Vd,slack+jVq,slack
as an angle reference, Vq,slack = 0.

To represent typical behavior of equipment in the power
system, each bus is classified as PQ, PV, or slack according to
the constraints imposed. PQ buses, which typically correspond
to loads and are denoted by the set PQ, treat Pi and Qi

as specified quantities and enforce the active power (1a)

and reactive power (1b) equations at that bus. PV buses,
which typically correspond to generators and are denoted
by the set PV , specify a voltage magnitude Vi and active
power injection Pi and enforce the active power and voltage
magnitude equations (1a) and (1c). The associated reactive
power Qi may be computed as an “output quantity” via (1b).
Finally, a single slack bus is selected with specified Vdi and
Vqi (typically chosen such that the reference angle is 0◦). The
set S denotes the slack bus. The active power Pi and reactive
power Qi at the slack bus are determined from (1a) and
(1b); network-wide conservation of complex power is thereby
satisfied.

Additionally, generator reactive power outputs must be within
specified limits. If a generator’s reactive power output is
between the upper and lower limits, the generator maintains a
constant voltage magnitude at the bus (i.e., the bus behaves like
a PV bus). If a generator’s reactive power output reaches its
upper limit, the reactive power output is fixed at the upper limit
and the bus voltage magnitude is allowed to decrease (i.e.,
the bus behaves like a PQ bus with reactive power injection
determined by the upper limit). If the generator’s reactive
power output reaches its lower limit, the reactive power output
is fixed at the lower limit and the voltage magnitude is
allowed to increase (i.e., the bus behaves like a PQ bus with
reactive power injection determined by the lower limit). Fig. 1
shows the reactive power versus voltage characteristic for this
generator model with a voltage setpoint of V ∗, lower reactive
power limit of Qmin, and upper reactive power limit of Qmax.
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Fig. 1. Reactive Power versus Voltage Magnitude Characteristic
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A Sufficient Condition for Power Flow Insolv-
ability Using Mixed-Integer Semidefinite Pro-
gramming

Mixed-Integer Semidefinite Programming Formulation for a
Voltage Stability Margin

This section first formulates a mixed-integer semidefinite pro-
gram to calculate a voltage stability margin that incorporates
generator reactive power limits. Matrices employed in the
formulation are defined as

Yk =
1

2

[
Re
(
Yk + Y T

k

)
Im
(
Y T
k − Yk

)
Im
(
Yk − Y T

k

)
Re
(
Yk + Y T

k

)] (2)

Ȳk = −1

2

[
Im
(
Yk + Y T

k

)
Re
(
Yk − Y T

k

)
Re
(
Y T
k − Yk

)
Im
(
Yk + Y T

k

)] (3)

Mk =

[
eke

T
k 0

0 eke
T
k

]
(4)

where ek denotes the kth standard basis vector in Rn, the
matrix Yk = eke

T
k Y, and superscript T indicates the transpose

operator. Notation is adopted from [33]. To write the semidef-
inite relaxation, first define the vector of voltage coordinates

x =
[
Vd1 Vd2 . . . Vdn Vq1 Vq2 . . . Vqn

]
(5)

Then define the rank one matrix

W = xxT (6)

The active and reactive power injections at bus i are then given
by tr (YiW) and tr

(
ȲiW

)
, respectively, where tr indicates

the matrix trace operator (i.e., sum of the diagonal elements).
The square of the voltage magnitude at bus i is given by
tr (MiW).

Replacement of the non-convex rank constraint (6) by the
less stringent constraint W � 0, where � 0 indicates
the corresponding matrix is positive semidefinite, yields the
convex semidefinite relaxation. This relaxation gives a lower
bound for the globally optimal solution of the rank constrained
problem. Further, a solution to the semidefinite relaxation has
zero duality gap if and only if the rank condition (7) is satisfied
(i.e., the relaxation is “tight”).

rank (W) ≤ 2 (7)

For a solution with zero duality gap, a unique rank one matrix
W can be recovered by enforcing the known voltage angle at
the slack bus [33].

Previous work [27] uses the semidefinite relaxation to define
margins to the power flow solvability boundary. The additional
flexibility provided by mixed-integer programming is used to
extend this work to model reactive power limited generators.
The mixed-integer semidefinite programming formulation is

max η subject to (8a)

tr (YkW) = Pk η ∀k ∈ {PQ, PV} (8b)

tr
(
ȲkW

)
= QDk η ∀k ∈ PQ (8c){

tr
(
ȲkW

)
≥ Qmax

k ψUk +Qmin
k (1− ψUk)

tr
(
ȲkW

)
≤ Qmin

k ψLk +Qmax
k (1− ψLk)

∀k ∈ {PV, S} (8d)

{
tr (MkW) ≥ (V ∗k )2 (1− ψUk)

tr (MkW) ≤ (V ∗k )2 (1− ψLk) + dψLk
∀k ∈ {PV, S} (8e)

ψLk + ψUk ≤ 1 ∀k ∈ {PV, S} (8f)∑
k∈{PV,S}

(ψLk + ψUk) ≤ ng − 1 (8g)

W � 0 (8h)

ψUk ∈ {0, 1} ψLk ∈ {0, 1} ∀k ∈ {PV, S} (8i)

where d is a large scalar such that the upper limit of (8e) is
non-binding when ψLk = 1 and the scalar ng is the number
of generators (i.e., the number of slack and PV buses). Let
ηmax be a globally optimal solution to (8).

Generator reactive power and voltage magnitude limits are
enforced by equations (8d), (8e), (8f), and (8g). When the
binary variable ψUk is equal to one, the upper reactive power
limit of the generator at bus k is binding. Accordingly, (8d)
fixes the reactive power output at the upper limit and (8e) sets
the lower voltage magnitude limit to zero. When the binary
variable ψLk is equal to one, the lower reactive power limit
of the generator at bus k is binding. Accordingly, (8d) fixes
the generator reactive power output at the lower limit and
(8e) removes the upper voltage magnitude limit. When both
ψUk = 0 and ψLk = 0, (8d) constrains the reactive power
output within the upper and lower limits and (8e) fixes the
voltage magnitude to the specified value V ∗k . Consistency in
the reactive power limits is enforced by (8f); a generator’s
reactive power output cannot simultaneously be at both the
upper and lower limits. Finally, reactive power balance is
enforced by (8g).

Note that the formulation (8) gives a power injection margin
in the specific direction of a uniform, constant-power-factor
injection profile; however, the formulation can be extended to
consider the impact of non-uniform power injection profiles.
Specifically, a semidefinite relaxation can be written for any
choice of the right hand side of the power injection con-
straints (8b) and (8c) that is a linear expression of active and
reactive power injections Pk and Qk, the square of voltage
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magnitude (V ∗k )
2, and the degree-of-freedom η. For instance,

with nominal power injections Pk0 and Qk0, choosing the
expressions

Pk0 + η (9a)
Qk0 + tan (φk) η (9b)

for the right hand sides of the active power constraint (8b) and
reactive power constraint (8c), respectively, yields an additive
power injection margin for the injection profile with specified
power factor angles φk.

Although alternate right-hand-side expressions allow for cal-
culating the power injection margin for non-uniform injection
profiles, the insolvability condition that is described next is
not applicable for all injection profiles (e.g., a right hand side
specifying an injection profile with a non-uniform power factor
angle φk as in (9)).

Optimality Considerations and a Sufficient Condition for
Power Flow Insolvability

The solution to (8), ηmax, is a voltage stability margin to
the power flow solvability boundary with consideration of
generator reactive power limits. In contrast to traditional iter-
ative methods that may only obtain a locally optimal solution,
the formulation (8) yields a globally optimal voltage stability
margin.

It is important to note that ηmax is, in general, a non-
conservative bound. Thus, for an insolvable set of specified
values, ηmax indicates the least factor by which the power
injections must change in the specified profile for the power
flow equations to be potentially solvable. For a solvable set
of specified values, ηmax indicates the greatest factor by
which the power injections can change while the power flow
equations remain potentially solvable.

The non-conservativeness of the bound given by ηmax is
a result of the possibility that a solution to (8) does not
satisfy the rank condition of the semidefinite programming
relaxation (7) (i.e., the solution to (8) exhibits non-zero duality
gap). If a solution to (8) satisfies the rank condition and
thus exhibits zero duality gap, a power flow solution can be
obtained [33]. This power flow solution is the furthest possible
point (i.e., the “nose point”) of a P-V curve constructed with
consideration of generator reactive power limits. Since (8)
can be solved to global optimality, a solution satisfying the
rank condition is guaranteed to locate the furthest possible
point on the P-V curve. (This is an advantage over traditional
iterative approaches which are not guaranteed to locate the
furthest possible point.) For solutions satisfying the rank
condition (7), the voltage stability margin ηmax provides the
exact distance to the power flow solvability boundary rather
than a non-conservative bound.

A globally optimal ηmax provides a sufficient but not neces-
sary insolvability condition for the power flow equations with
generator reactive power limits. Specifically, since ηmax is a
measure of the distance to the power flow solvability boundary,

ηmax < 1 (10)

is a sufficient but not necessary condition indicating that
the specified set of power flow equations has no solution.
Conversely,

ηmax ≥ 1 (11)

is a necessary but not sufficient condition for power flow
solvability. The conditions (10) and (11) hold regardless of
the rank properties of the solution to (8) (i.e., the semidefinite
relaxation need not be “tight”).

Note that unlike previous work [27] which develops power
injection margins using a provably feasible optimization prob-
lem, the formulation in (8) does not have a feasibility proof.
In other words, it is possible to specify a set of power flow
equations for which the optimization problem (8) has an empty
feasibility set; the formulation (8) can fail when an injection
profile is specified that does not have a value of η such that
the power injections have a valid corresponding voltage profile
(i.e., the power flow equations are insolvable for any choice
of η in (8)).

Computational Considerations

Computational challenges exist in solving mixed-integer
semidefinite programs. Without considering the integer con-
straints, the computational requirements of a semidefinite
relaxation of the power flow equations scales with square of
the number of buses. Advances in matrix completion decom-
positions that exploit power system sparsity in semidefinite
program relaxations can be applied to ameliorate this chal-
lenge [34]–[36]. Thus, each semidefinite program evaluation
internal to the mixed-integer semidefinite program solver can
be performed significantly more quickly.

The integer constraints introduce added difficulty, and mixed-
integer semidefinite programming algorithms are not as mature
as, for instance, mixed-integer linear programming algorithms.
The existing mixed-integer semidefinite programming solvers
BARON [28] and YALMIP [29] are suited for small problems.
For instance, YALMIP’s branch-and-bound solver is capable
of calculating the voltage stability margin using (8) for IEEE
test systems [37] with sizes up to 57 buses.

The algorithms described in [30] and [31] claim to be capable
of solving large mixed-integer semidefinite programs. The
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algorithm proposed in [30] is limited by the need to symbol-
ically invert certain submatrices of the positive semidefinite
constrained matrix, which is computationally intractable for
large matrices. However, this limitation may be overcome for
power systems applications by exploiting the sparsity inherent
to power system models. Specifically, the matrix completion
techniques described in [34]–[36] create a block-diagonal
positive-semidefinite-constrained matrix; since each block can
be separately inverted, the algorithm described in [30] may be
computationally tractable for large power systems.

An additional technique for improving the computational
tractability of the proposed method employs a semidefinite
relaxation of the integer constraints (8i). This relaxation uses
the fact that the binary constraint ψ ∈ {0, 1} is equivalent
to the quadratic constraint ψ2 − ψ = 0. Define the constant
matrix N as

N =

[
0 − 1

2
− 1

2 1

]
(12)

If the 2 × 2 symmetric matrix R is rank one and R11 = 1,
then R22 =

(
R12

)2
, where superscript cd indicates the

(c, d) entry of the corresponding matrix. Then the equation
tr (NR) = R22 − R12 = 0 implements the quadratic con-
straint

(
R12

)2−R12 = 0. For reactive power limited generator
bus i, semidefinite relaxations of the quadratic equations (i.e.,
replacing the requirement rank (R) = 1 with the less stringent
R � 0) are then implemented with the constraints given in
(13), which replace the binary-constraints (8i).

tr (NRUi) = 0 tr (NRLi) = 0 (13a)

R11
Ui = 1 R11

Li = 1 (13b)

R12
Ui = ψUi R12

Li = ψLi (13c)
RUi � 0 RUi � 0 (13d)

The positive semidefinite constraint (13d) relaxes the rank one
requirement on the RUi and RLi matrices. See reference [38]
for further discussion on this relaxation technique.

Relaxation of the integer constraints yields an upper bound,
denoted as η̄max, on the distance to the power flow solvability
boundary considering reactive power limited generators. Ac-
cordingly, the sufficient condition for power flow insolvability
(10) holds with this relaxation (i.e., η̄max ≤ 1 is a sufficient
condition for power flow insolvability). If the solution to the
relaxed problem has rank one RLi and RUi matrices for
all reactive power limited generator buses, the semidefinite
relaxation of the integer constraints is “tight.” With additional
satisfaction of the rank condition for W (7), the proposed for-
mulation gives the exact distance to the power flow solvability
boundary.

Unlike the relaxation of the power flow equations, the relax-
ation of the integer constraints is typically not “tight” and, as
will be shown later via numeric examples, may substantially
overestimate the distance to the power flow solvability bound-
ary. We therefore propose the following method for obtaining
a lower bound on the distance to the power flow solvability
boundary. First, calculate η̄max with relaxed integer constraints
from (13). Then, using the solution to the relaxed problem, set
all values of ψUi and ψLi that are over a specified threshold
to one with the remainder set to zero. Solve the semidefinite
program (8) with the specified values for ψUi and ψLi. If the
resulting solution has non-zero duality gap (i.e., the solution
satisfies (7)), the solution provides a lower bound, denoted as
ηmax, on the distance to the power flow solvability boundary
considering reactive power limited generators. If the rank
condition (7) is not satisfied, the solution does not provide a
bound on the distance to the power flow solvability boundary.

A Sufficient Condition for Power Flow Insolv-
ability Using Infeasibility Certificates

The second sufficient condition for power flow insolvability
uses real algebraic geometry and sum of squares program-
ming to develop infeasibility certificates. After providing an
overview of infeasibility certificate theory, we formulate reac-
tive power limits as a system of polynomial inequalities and
equalities. This enables application of the Positivstellensatz
theorem, which states that there exists an algebraic identity to
certify the non-existence of real solutions to every infeasible
system of polynomial equalities and inequalities [5].

Overview of Infeasibility Certificate Theory

We first introduce the theory used in constructing infeasi-
bility certificates, specifically the Positivstellensatz theorem
and the relationship between sum of squares and semidefinite
programming. See [5] for a more detailed overview of this
material.

Notation and several definitions are required for understanding
the infeasibility certificate theory. This theory applies to a
ring of multivariate polynomials with real coefficients, which
is denoted as R [x] for the variables {x1, . . . , xn}. Some
polynomials have a sum of squares decomposition. These
polynomials can be written as

p (x) =
∑
i

q2i (x) , qi ∈ R [x] (14)

Note that this decomposition is not necessarily unique. Polyno-
mials with sum of squares decompositions have the important
property that they are non-negative for all values of x.

Polynomials with sum of squares decompositions can always
be written in the form of a semidefinite program [5]. Define
the vector z using monomials of x.
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z =
[
1 x1 x2 . . . xn x21 . . . x1xn x22 . . .

]T
(15)

Then any polynomial with a sum of squares decomposition
can be written as

p (x) = zTQz (16)

where Q � 0. Thus, sum of squares decompositions can be
calculated using semidefinite optimization techniques.

Two definitions necessary for creating infeasibility certificates
are next introduced. First, the ideal of a set of multivariate
polynomials {f1, . . . , fm} is defined as

ideal (f1, . . . , fm) =

{
f | f =

m∑
i=1

tifi, ti ∈ R [x]

}
(17)

Note that every polynomial in ideal (f1, . . . , fm) is zero
at the zeros of the polynomials f1, . . . , fm. That is,
f1 (x0) = 0, . . . , fm (x0) = 0 implies that any polynomial
in ideal (f1, . . . , fm) is zero when evaluated at x0.

Next define the cone of the set of multivariate polynomials
{g1, . . . , gr} as

cone (g1, . . . , gr) =g | g = s0 +
∑
i

sigi +
∑
{i,j}

sijgigj +
∑
{i,j,k}

sijkgigjgk + · · ·


(18)

where the terms s0, sij , sijk, . . . are sum of squares poly-
nomials. Note that every polynomial in cone (g1, . . . , gr) is
non-negative if gk (x) ≥ 0 ∀k.

The Positivstellensatz theorem can then be written as follows.
The set of polynomial equations

fi (x) = 0 i = 1, . . . ,m (19a)
gk (x) ≥ 0 k = 1, . . . , r (19b)

is infeasible in Rn (i.e., the equations admit no real solution)
if and only if there exist polynomials

F (x) ∈ ideal (f1, . . . , fm)

G (x) ∈ cone (g1, . . . , gr)

such that F (x) +G (x) = −1 for all x.

Since F is in ideal (f1, . . . , fm), F (x0) = 0 for any solution
x0 to the equations fi (x0) = 0, i = 1, . . . ,m. Since G
is in cone (g1, . . . , gr), G (y0) ≥ 0 for any point y0 in the
feasible set of gk (y0) ≥ 0, k = 1, . . . , r. Thus, F (x0) +
G (x0) must be non-negative for any x0 that satisfies (19).
However, existence of such an x0 contradicts the fact that
F (x) + G (x) = −1 for all x. Thus, no valid x0 exists and
the set of equations (19) is infeasible.

Infeasibility Certificates for the Power Flow Equations

Polynomial Formulation of the Power Flow Equations In or-
der to generate infeasibility certificates, we must represent the
power flow equations with reactive power limited generators as
a system of polynomial inequalities and equalities. The power
flow equations without consideration of reactive power limited
generators are polynomial equalities in terms of the voltage
components Vd and Vq as shown in (1). We next formulate
the reactive power limit characteristic shown in Fig. 1 as a set
of polynomial equalities and inequalities in the form of (19).
Reactive power limits at the generator bus i are formulated as

fV i = (V ∗i )
2 − V −i + V +

i (20a)
Qmax

i − fQi = xi (20b)

V −i xi = 0 (20c)

V +
i

(
Qmax

i −Qmin
i − xi

)
= 0 (20d)

Qmax
i −Qmin

i − xi ≥ 0 (20e)

V +
i ≥ 0, V −i ≥ 0, xi ≥ 0 (20f)

where the polynomial functions fQi (Vd, Vq) and fV i (Vd, Vq)
are defined in (1b) and (1c), respectively.

The variable xi represents the distance to the upper reactive
power limit for the generator bus i (i.e., xi is a “slack variable”
for this limit). With xi constrained to be non-negative in (20f),
the reactive power generation at bus i is maintained within its
upper limit. Similarly, the distance to the lower reactive power
limit is Qmax

i −Qmin
i − xi, which is constrained to be non-

negative in (20e). Reactive power generation is thus greater
than or equal to the lower limit. With equality constraints
(20a) and (20c), the non-negative variable V −i allows the
voltage magnitude at bus i to decrease when the reactive
power generation is at its upper limit. Similarly, with equality
constraints (20a) and (20d), the non-negative variable V +

i

allows the voltage magnitude at bus i to increase when the
reactive power generation is at its lower limit. Thus, the set
of equations (20) models the reactive power versus voltage
characteristic shown in Fig. 1.

Infeasibility Certificates for the Power Flow Equations With-
out Considering Reactive Power Limits With a polynomial
formulation, infeasibility can be verified using the Positivstel-
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lensatz theorem. We first consider the case without reactive
power limits on generators (i.e., generators are modeled as
ideal voltage sources with fixed voltage V ∗i for any reactive
power output). For this case, the power flow equations are
entirely in the form of equalities. An infeasibility certificate is
found if a polynomial F (Vd, Vq) in the ideal formed by the
power flow equations (1) satisfies

F (Vd, Vq) = −1 (21)

A polynomial in the ideal of the power flow equations has the
form

F (Vd, Vq) = τVq,slack +
∑

i∈{PV,PQ}

λi (fPi − Pi)

+
∑
i∈PQ

γi (fQi −Qi) +
∑

i∈{S,PV}

µi

(
fV i − V 2

i

)
(22)

where Vq,slack is the q-component of the slack bus voltage
and τ , λ, γ, and µ are polynomials (which are not necessarily
sum of squares) associated with the slack bus angle, active
power injection, reactive power injection, and squared voltage
magnitude equations, respectively.

Using the Positivstellensatz theorem, the power flow equations
are insolvable if there exist polynomials τ , λ, γ, and µ
such that F (Vd, Vq) = −1. This condition is evaluated by
attempting to find a sum of squares decomposition for the
polynomial −F (Vd, Vq)− 1 using semidefinite programming.
If such a decomposition exists, the power flow equations are
proven insolvable.

This can be understood using the fact that the polynomial
−F (Vd, Vq)− 1 is negative for any values of Vd and Vq that
are solutions to the power flow equations (1); conversely, a
sum of squares decomposition is non-negative for all values
of Vd and Vq . Thus, the power flow equations are insolvable
if −F (Vd, Vq)− 1 is a sum of squares.

Note that the theory used to develop this result does not pro-
vide any information on the necessary degree of the unknown
polynomials τ , λ, γ, and µ. A need for high-degree polyno-
mials may make this method computationally intractable, and
there are examples of polynomial equations for which high
degrees are necessary to prove infeasibility [39]. Fortunately,
numerical experience suggests that low-degree choices for τ ,
λ, γ, and µ often suffice for proving insolvability of the
power flow equations. For instance, infeasibility certificates
were generated using constant (degree zero) polynomials for
the numeric examples provided in this paper.

Infeasibility Certificates for the Power Flow Equations Consid-
ering Reactive Power Limits To find infeasibility certificates
for the power flow equations with reactive power limited
generators (1a), (1b), and (20), form the polynomial

H
(
Vd, Vq, x, V

+, V −
)
= τVq,slack +

∑
i∈{PV,PQ}

λi (fPi − Pi)

+
∑

i∈PQ

γi (fQi −Qi) +
∑

i∈{S,PV}

{
ψ1i

(
(V ∗i )

2 − V −i + V +
i − fV i

)
+ ψ2i (Q

max
i − fQi − xi) + ψ3iV

−
i xi

+ ψ4i

(
Qmax

i −Qmin
i − xi

)
V +
i + s1i

(
Qmax

i −Qmin
i − xi

)
+ s2iV

+
i + s3iV

−
i + s4ixi

}
(23)

where ψ1i, ψ2i, ψ3i, and ψ4i are polynomials and s1i, s2i, s3i,
and s4i are sum of squares polynomials. If the polynomials τ ,
λ, γ, and ψ and sum of squares polynomials s can be chosen
such that −H (Vd, Vq, x, V

+, V −) − 1 is a sum of squares,
the power flow equations with consideration of reactive power
limits on generators are insolvable.

As shown in (23), H is a quadratic function of the variables x,
V +, and V − used to model the reactive power limits as well
as the voltage components Vd and Vq . For an n-bus system
with ng reactive power limited generators and constant (degree
zero) polynomials chosen for τ , λ, γ, ψ, and s, the number
of monomials used in a sum of squares decomposition of H
(i.e., the number of entries in z for the form (16)) is equal to
2n + 3ng + 1. Since the number of entries in the positive
semidefinite matrix Q in (16) scales as the square of the
number of monomials in z, a naı̈ve implementation for creating
infeasibility certificates becomes computationally intractable
for moderate size systems. However, pre-processing the sum
of squares program with the Newton Polytope method [40]
decreases the number of monomials required in the decom-
position, thus reducing the computational burden of the sum
of squares program. Future work includes improving com-
putational tractability; one promising direction is adoption of
pre-processing techniques which exploit power system sparsity
from applications of semidefinite programming to the optimal
power flow problem [34]–[36].

Experience with the IEEE test systems demonstrates that
infeasibility certificates are not found with either degree zero
or degree one polynomials when both upper and lower limits
on generator reactive power outputs limits are modeled. Since
the number of monomials required increases combinatorially
with the degree chosen for the polynomials, choices of higher
degree polynomials are not computationally tractable. How-
ever, infeasibility certificates are found by neglecting lower
reactive power limits on generator outputs. If lower limits on
reactive power outputs are not considered, (20) is simplified by
eliminating equations (20d) and (20e) as well as V +

i in (20a)
and (20f), with corresponding changes to (23). Since lower
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limits on reactive power outputs are rarely responsible for
power flow insolvability through limit-induced bifurcations,
neglecting the lower limits is an acceptable approximation for
the large majority of cases.

Examples

We next apply the mixed-integer semidefinite programming
and the infeasibility certificate formulations to test systems
using optimization codes YALMIP [29] and SeDuMi [41].
Consider a power injection profile where the active and
reactive injections at both PQ and PV buses are increased at
constant power factor as in (8).

We first consider application to the IEEE 14-bus system [37].
The power injection margin calculated from (8) is ηmax =
1.3522. Since the solution obtained from (8) satisfies the
condition rank (W) ≤ 2, the condition (11) indicates that a
power flow solution exists for power injection changes in the
direction of the specified profile up to an injection multiplier
of 1.3522. The insolvability condition (10) indicates that no
solutions exist for power injection multipliers greater than
1.3522.

Although the IEEE 14-bus system is small enough to find a
global optimum to (8) with branch-and-bound techniques, this
test case can also illustrate the use of the integer constraint
relaxations discussed in this paper. With all RUi matrices
being rank two, the relaxation of the integer constraints is
not “tight.” The resulting upper bound η̄max of 5.3589 is well
above the actual maximum value of 1.3522. In an attempt to
obtain a lower bound ηmax, we set to one all integer variables
ψUi and ψLi that are above a threshold of 0.5, with the
remainder set to zero. (For this case, all ψUi = 1 and ψLi = 0
except for the variables corresponding to the slack bus.) The
solution to the resulting semidefinite optimization satisfies the
rank condition (7) and therefore provides a lower bound ηmax

of 1.3522. Thus, the lower bound ηmax for this case is equal
to the actual value of ηmax.

Considering only upper reactive power limits for computa-
tional tractability, an infeasibility certificate is found using
(23) with constant (degree zero) polynomials for an injection
multiplier of 1.36. This infeasibility certificate proves power
flow insolvability for this power injection profile. Note that the
infeasibility certificates do not directly provide a measure of
the distance to the power flow solvability boundary. However,
a measure can be calculated using binary search over loading
cases in the direction of the specified power injection profile
(uniform power injection changes for these examples).

In Fig. 2, these results are verified by tracing the P-V curve
while enforcing generator reactive power limits for the IEEE
14-bus system. When a generator reaches a reactive power
limit, the bus is converted to a PQ bus with reactive power

1 1.1 1.2 1.3 1.4
0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025
14−Bus System Power vs. Voltage

Injection Multiplier

V
5

 

 

P−V Curve

ηmax

Infeasibility Certificate Found

Fig. 2. IEEE 14-bus Power Injection Margin with Generator Reactive Power
Limits

System Trace ηmax η̄max ηmax Infeasibility
Nose Point Certificate

14-bus 1.3522 1.3522 5.3589 1.3522 1.36
30-bus 2.8609 2.8609 3.3218 N/A 2.86
57-bus 1.6486 1.6486 4.4261 1.6486 1.65

TABLE I
STABILITY MARGINS FOR IEEE TEST SYSTEMS CONSIDERING

REACTIVE POWER LIMITED GENERATORS

injection determined by the binding reactive power limit. The
“nose point” of the P-V curve for this system occurs when
all generators, including the generator at the slack bus, reach
upper reactive power limits. Without the ability to enforce
reactive power balance, the power flow solution disappears
in a limit-induced bifurcation at a power injection multiplier
of 1.3522, thus verifying both of the proposed sufficient
conditions for power flow insolvability.

Table I shows the results of the proposed sufficient conditions
for several of the IEEE test systems considering reactive power
limited generators. The columns of Table I show 1) the system
name, 2) the nose point identified by tracing the P-V curve
of the high-voltage, stable power flow solution, 3) the value
of ηmax for a global solution to (8) calculated using branch-
and-bound techniques, 4) an upper bound η̄max resulting from
relaxing the integer constraints with (13), 5) a lower bound
ηmax, and 6) the smallest power injection multiplier for which
an infeasibility certificate is found using constant (degree
zero) polynomials and only upper limits on reactive power
generation. A case for which no lower bound ηmax could be
estimated (i.e., the solution did not satisfy the rank condition
(7)) is denoted with “N/A” in the fifth column of Table I.

Note that the only method with a guarantee of the actual
distance to the power flow solvability boundary is a global
solution to the mixed-integer semidefinite programming for-
mulation (8) that satisfies the rank condition (7). (The rank
condition is satisfied by solutions to the IEEE 14, 30, and 57-
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bus systems.) The remaining methods provide upper bounds
(η̄max, ηmax with a solution that does not satisfy the rank
condition (7), and infeasibility certificates) and lower bounds
(tracing the P-V curve and ηmax with a solution that satisfies
the rank condition (7)) on the actual distance to the power
flow solvability boundary.

The results in Table I verify the proposed sufficient conditions
for power flow insolvability. The voltage margin ηmax from
(8) matches the nose points of the P-V curves. Although the
upper bound η̄max does not give a result close to the nose
point, the lower bound ηmax, when calculable, matches the
actual value ηmax. Finally, infeasibility certificates identify the
nose point for each test case.

Infeasibility certificates can also be found without considering
reactive power limits on generators. As shown in [42] for
the IEEE 118-bus system, there may be loadings for which
no power flow solution is found but the sufficient conditions
for power flow insolvability are not satisfied. Using (22), the
smallest injection multiplier certified infeasible with constant
(degree zero) polynomials is equal to the power injection
margin calculated using the semidefinite-programming-based
sufficient condition for power flow insolvability, which is
equivalent to (8) without limits on reactive power gener-
ation. (Specifically, while the nose point resulting from a
continuation trace of the high-voltage, stable solution is at
an injection multiplier of 3.18, neither sufficient condition for
insolvability is satisfied until an injection multiplier of 3.27.)
This suggests the possibility of a deeper connection between
the infeasibility certificates with degree-zero polynomials and
the semidefinite-programming-based sufficient condition for
power flow insolvability, at least for cases without reactive
power limited generators. (Note that computational limitations
preclude use of higher-order polynomials, which may more
closely identify the nose point.)

Conclusion and Future Work

This paper has presented two sufficient conditions for power
flow insolvability considering reactive power limited genera-
tors. The first condition formulates a mixed-integer semidef-
inite program to determine a global voltage stability margin.
This margin gives a bound on the distance to the power flow
solvability boundary and can be applied to both solvable and
insolvable sets of power injections. For solutions that satisfy
a rank condition, the proposed formulation gives the exact
distance to the solvability boundary (i.e., a guarantee of the
“nose point” of the P-V curve). The margin gives a sufficient
condition for power flow insolvability with consideration of
reactive power limited generators.

The second sufficient condition creates infeasibility certificates
to prove power flow insolvability. Writing the power flow
equations, including reactive power limits on generators, as

a system of polynomial equalities and inequalities allows for
application of the Positivstellensatz theorem from the field
of real algebraic geometry. If a specified polynomial can
be written in sum of squares form, which is determined
using semidefinite programming, the power flow equations are
proven insolvable.

Both sufficient conditions, along with several approximations
to improve computational tractability, are applied to IEEE
test systems. The results show that the sufficient conditions
are capable of identifying the distance to the power flow
solvability boundary.

Future work includes improving the computational tractability
of both sufficient conditions in order to apply the proposed
methods to large-scale system models. The first sufficient
condition may benefit from the application of large-scale
mixed-integer semidefinite program algorithms, such as [30]
and [31]. For the second sufficient condition, exploiting power
system sparsity may allow for use of higher-order polynomials,
which may be necessary to prove insolvability for some power
flow equations.

Future work also includes the numerous other potential ap-
plications for mixed-integer semidefinite programming and
real algebraic geometry in the field of electric power sys-
tems. Mixed-integer semidefinite programming can be directly
applied to problems that have integer constraints (e.g., the
unit commitment problem where a power system dispatch is
optimized over time with the ability to commit and decommit
generators [43] and the optimal transmission switching prob-
lem where a generation dispatch and transmission topology
is determined to meet a given load [44]). Existing work in
this area includes the application of mixed-integer semidefinite
programming to the transmission expansion problem [45].
Infeasibility certificates may be applicable to proving insolv-
ability for other power systems problems, such as the optimal
power flow and the unit commitment problems.
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