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ABSTRACT
The power flow equations relate the power injections and
voltages in an electric power system and are therefore key
to many power system optimization and control problems.
Research efforts have developed a wide variety of relaxations
and approximations of the power flow equations with a
range of capabilities and characteristics. This monograph
surveys relaxations and approximations of the power flow
equations, with a particular emphasis on recently proposed
formulations.
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1
Introduction

The power flow equations model the relationship between voltage phasors
and power injections at nodes (buses) in an electric power system. These
equations are fundamental in the analysis and operation of power sys-
tems. Accordingly, they form the key constraints in many optimization
and control problems relevant to electric power systems, including opti-
mal power flow (OPF), unit commitment, state estimation, contingency
evaluation, voltage stability assessment, and dynamic stability analy-
sis. The power flow equations are nonlinear and result in non-convex
optimization problems. Moreover, at least some optimization problems
containing the power flow equations (e.g., OPF problems) are gener-
ally NP-Hard [1], even for systems with radial network topologies [2],
and may have multiple local solutions [3]. This inherent complexity is
immediately apparent in the simple examples presented at the end of
Chapter 2.

There exists a voluminous literature regarding the power flow equa-
tions. The intent of this monograph is to review various representations
of the power flow equations, with a particular focus on those proposed
in the last decade.
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The power flow representations in this monograph are primarily
presented in the context of optimization problems. However, note that
while optimization plays an important role in many problems relevant
to the design and operation of power systems (e.g., OPF, state esti-
mation, unit commitment, transmission switching, expansion planning,
etc. [4, 5]), various power flow representations are relevant to other
important problems (stability analyses, dynamic simulations, analysis
of control strategies such as volt/var control and automatic generation
control, etc. [6, 7]). Moreover, while much of the literature develops
power flow representations in the context of certain applications, this
monograph focuses on the power flow representations themselves rather
than specific problems. The reader interested in a specific problem or
solution algorithm is referred to the surveys and tutorials that exist for
power flow [8, 9], different formulations of optimal power flow [10–21]
(and various extensions to consider, e.g., security constraints [22–25]
and transient-stability constraints [26, 27]), unit commitment [28–31],
state estimation [32–35], transmission switching [36], infrastructure
planning [19], voltage stability analysis [37–40], cascading failure [41],
distributed optimization and control methods [42–45], complex network
theory [46], and more general power system stability concepts [6]. Sev-
eral recent references of particular relevance are the surveys in [47]
and [48] as well as the video lectures in [49], all of which review some
of the topics covered in this monograph. Also note that reference imple-
mentations for several of the power flow representations presented in
this monograph are provided in the software packages Matpower [50]
and PowerModels.jl [51].

The power flow representations surveyed in this monograph are
categorized as either relaxations or approximations. Figure 1.1 shows
conceptual examples of a relaxation and an approximation of a non-
convex feasible space. Relaxations enclose the non-convex feasible spaces
associated with the power flow equations in a larger space. The larger
space is typically chosen to be convex to enable the application of theory
and algorithms developed for convex optimization problems.

Approximations use assumptions regarding certain quantities to sim-
plify the power flow equations. Power flow approximations are capable
of closely representing system behavior when the associated assumptions
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Figure 1.1: Conceptual illustrations showing a convex relaxation (blue region on
the left) and an approximation (red region on the right) for the gray non-convex
space.

are valid. Many power flow approximations are reasonably accurate for
“typical” operating conditions.

In general, solutions to optimization problems that use power flow
relaxations and approximations do not exactly satisfy the actual power
flow equations. Rather, relaxations and approximations are typically
employed in attempts to obtain tractable formulations which adequately
represent the actual power flow physics. Optimization problems that use
convex relaxations additionally provide bounds on the optimal objective
value for the original non-convex problem as well as sufficient conditions
for certifying problem infeasibility. Some convex relaxations also have
associated sufficient conditions which guarantee their ability to provide
global optima for certain limited classes of power system optimization
problems. Some of these sufficient conditions can be evaluated prior
to solving the relaxation based solely on the problem parameters and
network topology, while other conditions are checked after solving a
relaxation. In contrast, note that approximations do not provide any of
the aforementioned theoretical guarantees provided by relaxations.

Solutions to relaxations and approximations may not exactly satisfy
the power flow equations. This may be unacceptable for some applica-
tions, necessitating the deployment of algorithms that return a feasible
power flow solution, possibly at the cost of increased computational dif-
ficulty or the lack of theoretical guarantees. A wide variety of nonlinear
programming techniques have been applied to power system optimiza-
tion problems. Starting from specified initializations, these techniques
typically seek local optima for power system optimization problems,

Figure 1.1: Conceptual illustrations showing a convex relaxation (blue region on
the left) and an approximation (red region on the right) for the gray non-convex
space.

are valid. Many power flow approximations are reasonably accurate for
“typical” operating conditions.

In general, solutions to optimization problems that use power flow
relaxations and approximations do not exactly satisfy the actual power
flow equations. Rather, relaxations and approximations are typically
employed in attempts to obtain tractable formulations which adequately
represent the actual power flow physics. Optimization problems that use
convex relaxations additionally provide bounds on the optimal objective
value for the original non-convex problem as well as sufficient conditions
for certifying problem infeasibility. Some convex relaxations also have
associated sufficient conditions which guarantee their ability to provide
global optima for certain limited classes of power system optimization
problems. Some of these sufficient conditions can be evaluated prior
to solving the relaxation based solely on the problem parameters and
network topology, while other conditions are checked after solving a
relaxation. In contrast, note that approximations do not provide any of
the aforementioned theoretical guarantees provided by relaxations.

Solutions to relaxations and approximations may not exactly satisfy
the power flow equations. This may be unacceptable for some applica-
tions, necessitating the deployment of algorithms that return a feasible
power flow solution, possibly at the cost of increased computational dif-
ficulty or the lack of theoretical guarantees. A wide variety of nonlinear
programming techniques have been applied to power system optimiza-
tion problems. Starting from specified initializations, these techniques
typically seek local optima for power system optimization problems,
which are feasible points with objective values that are superior to all
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Figure 1.2: Conceptual illustration showing local optima (blue triangles) and the
global optimum (green star).

nearby points but potentially inferior to the global optimum. Figure 1.2
provides a conceptual example showing the distinction between local
and global optima. While surveying the power system optimization
literature regarding local solution techniques is largely beyond the scope
of this monograph, a brief summary of traditional nonlinear program-
ming techniques is presented in §6. The interested reader is directed to
other reviews of traditional local solution techniques, such as [13–17]
for further details. Additionally, some of the power flow representations
considered in this monograph form the basis of recently developed algo-
rithms for computing local optima or “nearly globally optimal” feasible
points. This monograph also reviews several such algorithms in §6.

The capabilities of various power flow relaxations and approxima-
tions are, in many ways, complementary rather than competitive with
the capabilities of local solution algorithms. Local solution algorithms
can benefit from the outputs resulting from power flow relaxations and
approximations (e.g., using the decision variable values and the set
of binding constraints to initialize certain local solution algorithms).
Moreover, optimization problems may combine various power flow repre-
sentations in order to balance accuracy and computational tractability.
For instance, an optimization problem may have a “base case” that uses
a detailed model of the power flow physics and multiple “scenarios” that
use simplified power flow representations for the sake of computational
tractability. As another example, an algorithm could decompose the
solution of a complicated mixed-integer nonlinear program into two
steps: first solve a mixed-integer problem with a simplified power flow
model to select values for the discrete variables, and then apply a local
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6 Introduction

solution algorithm to the continuous optimization problem that results
from fixing the discrete variables and employing a higher-fidelity power
flow model.

The theoretical guarantees provided by relaxations also complement
the capabilities of local solution algorithms. Infeasibility of a relaxation
certifies that the original optimization problem is infeasible, but fea-
sibility of a relaxation is not sufficient to guarantee feasibility of the
original problem. Conversely, a local solution algorithm can show that
a problem is feasible, but failure of a local algorithm to converge to a
feasible point does not guarantee that the original problem is infeasible.
Thus, relaxations and local solution algorithms have complementary
capabilities with respect to the question of problem feasibility. Fur-
thermore, many global solution algorithms compute an optimality gap
by comparing the objective value bound from a relaxation with the
achievable objective value from a feasible point obtained via a local
solution algorithm. In order to provably obtain a global optimum, these
algorithms then use a variety of techniques to shrink the optimality gap.
Also note that the objective value bounds can be directly useful, for
instance, in algorithms that aim to achieve robustness with respect to
a set of possible uncertainty realizations, compute bounds on voltage
stability margins, etc. The references at the end of §7.2 provide examples
of these and other synergistic uses of various power flow representations.

The remainder of this monograph is organized as follows. Chapter 2
describes the power flow equations. Chapter 3 overviews the optimization
tools which form the basis for the power flow representations. Chapters 4
and 5 review the literature of power flow relaxations and approximations,
respectively. Chapter 6 overviews various techniques for obtaining a
feasible point, focusing on recent developments. Chapter 7 concludes
the monograph and discusses open research topics.
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2
Overview of the Power Flow Equations

This chapter first presents the power flow equations in a variety of
representations and then summarizes typical applications including
solving the power flow problem for specified parameter values and
embedding the power flow equations within optimization problems.
Various test cases are used to illustrate the feasible spaces associated
with the power flow equations.

The remainder of the monograph uses the following notation. Con-
sider an n-bus electric power system, where N = {1, . . . , n} denotes
the set of buses and (i, k) denotes the line from bus i to bus k, with
the set of all lines denoted by L. Each line (i, k) ∈ L is modeled with a
Π circuit that has a series impedance of Rik + jXik and a total shunt
susceptance of bc,ik, where j =

√
−1. The corresponding mutual admit-

tance is gik + jbik = 1/(Rik + jXik). Some power flow representations
are presented for the more general line model used by Matpower [50]
that incorporates an ideal transformer with a voltage tap ratio τik and
phase shift θshift,ik. (See Figure 2.1.) Also, let gsh,i + jbsh,i denote the
shunt admittance at bus i ∈ N .
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8 Overview of the Power Flow Equations
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Figure 2.1: Π-circuit line model with an ideal transformer. This is the line model
used by Matpower [50].

This monograph presents some power flow representations using
admittance matrix formulations that implicitly model the circuit ele-
ments for each line. The n×n complex network admittance matrix Y is
denoted in rectangular coordinates as Y = G+ B and polar coordinates
as Y = |Y| ejψ ≡ |Y|∠ψ, where ∠ denotes the angle of a complex quan-
tity. The admittance matrix describes the linear relationship between
the bus voltage phasors and bus current injection phasors. This matrix
is constructed using the electrical parameters and network topology:

Yik =





gsh,i + jbsh,i +
∑

m : (i,m)∈L

(
gim + j

(
bim + bc,im

2

))
/τ2
im

+
∑

m : (m,i)∈L

(
gmi + j

(
bmi + bc,mi

2

))
, i = k,

− (gik + jbik) /
(
τik e−jθshift,ik

)
, (i, k) ∈ L,

− (gik + jbik) /
(
τik ejθshift,ik

)
, (k, i) ∈ L,

0, otherwise,

(2.1)

where the notation Yik indicates the (i, k) element of the matrix Y.
Each line (i, k) ∈ L contributes terms to the diagonal entries Yii and
Ykk as well as the off-diagonal entries Yik and Yki. Accordingly, Y
inherits the sparsity pattern of the power system network. Typical
large-scale power system networks are very sparse, often having less
than 0.5% of the possible connections between buses. Asymmetries in Y
are due to the presence of phase-shifting transformers (θshift,ik 6= 0
for some (i, k) ∈ L). If θshift,ik = 0 for all lines (i, k) ∈ L, then Y is
symmetric, i.e., Y = Yᵀ, where ( · )ᵀ is the transpose operator.
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2.1. Power Flow Representations 9

For notational convenience and to match the development of many of
the relaxations and approximations that are reviewed in this monograph,
the power flow equations are presented using a balanced single-phase
equivalent network representation. More generally, and particularly for
distribution networks, an unbalanced three-phase representation is most
appropriate. In this latter case, each variable has an associated phase
(i.e., ‘a’, ‘b’, and ‘c’ for a three-phase system). Where available, this
monograph provides references to unbalanced three-phase representa-
tions of the surveyed power flow relaxations and approximations.

2.1 Power Flow Representations

The chapter begins by discussing typical representations of the power
flow equations: bus injection models in various coordinate systems and
the DistFlow equations for radial systems.

Note that developing novel representations of the power flow equa-
tions is an active research topic. Recent work has proposed a variety of
new power flow representations, such as an elliptical power flow repre-
sentation that is used to compute multiple power flow solutions in [52]
and multiple local solutions for optimal power flow problems in [53]. As
another example, the power divider formulation in [54] (with extensions
proposed in [55]) relates the bus power injections to the power flows
on each line in order to study network allocation, loss allocation, and
active power flow satisfaction problems. Additionally, references [56, 57]
use a power flow formulation that emphasizes Laplacian structural
characteristics in order to identify patterns in the Lagrange multipliers
of power system optimization problems.

2.1.1 Bus Injection Models

Bus injection models of the power flow equations relate the electrical
quantities at each bus. After introducing notation, this section first
discusses the I–V power flow formulation that relates the voltages,
current injections, and power injection variables. This section then
presents bus injection models that are posed solely in terms of the
voltage phasors and complex power injections.
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10 Overview of the Power Flow Equations

Notation

For a balanced, single-phase equivalent network representation, each
bus has several associated complex values: a voltage phasor, a current
injection phasor, and a complex power injection. The complex voltage
phasors V ∈ Cn can be represented in polar coordinates V = |V | ejθ ≡
|V |∠θ, where |V | > 0 ∈ Rn and θ ∈ (−π, π]n radians,1 or in rectangular
coordinates V = Vd + jVq, with Vd, Vq ∈ Rn. Similarly, the current
injection phasors I ∈ Cn can be represented in polar coordinates I =
|I| ejφ ≡ |I|∠φ, where |I| > 0 ∈ Rn and φ ∈ (−π, π]n radians, or in
rectangular coordinates I = Id + jIq, with Id, Iq ∈ Rn. Each bus i ∈ N
also has complex power injections Si = Pi + jQi, where P, Q ∈ Rn

denote the active and reactive power injections, respectively. Let ( · )
denote the complex conjugate.

Note that regardless of the particular mathematical formulation,
there is a rotational degeneracy in the power flow equations associated
with invariantness to the addition of a constant offset to all angles.
This degeneracy is typically addressed by choosing a reference bus
and defining the angle of its voltage phasor to be 0◦. Without loss of
generality, let bus 1 provide the angle reference so that ∠V1 = θ1 = 0.
Equivalently, an angle reference can be set in rectangular coordinates
by specifying Vq1 = 0.

The I–V Formulation

The I–V formulation of the power flow equations is based on two funda-
mental characteristics of AC power systems: 1) the linear relationship
between the voltage phasors and current injection phasors and 2) the def-
inition of complex power. Mathematically stating these characteristics
for each bus i ∈ N yields the I–V power flow formulation:

Ii =
n∑

k=1
YikVk, (2.2a)

Pi + jQi = Vi Ii. (2.2b)

1Even though the exponential form ejθ is only strictly valid for θ expressed in
radians, it is common practice for θ to be stated in degrees.
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2.1. Power Flow Representations 11

A variety of reformulations are obtained using different choices for
converting the complex quantities in (2.2) to real quantities.

The I–V formulation of the power flow equations has characteristics
that can be advantageous in various contexts. For instance, observe
that the nonlinearities in the I–V formulation are isolated to the bilin-
ear products in (2.2b). Moreover, each bilinear term consists solely of
quantities associated with a single bus. As will be shown later in this
section, this contrasts with other power flow formulations that have
nonlinearities which couple variables associated with different buses. Ad-
ditionally, note that modifications to the I–V formulation facilitate the
straightforward representations of devices whose current flows cannot
be expressed solely as functions of their terminal voltages, such as ideal
transformers and ideal circuit breakers [58]. Such devices are more com-
plicated to explicitly model in other power flow representations. Several
recent publications [58–65] exploit features of the I–V formulation. On
the other hand, maintaining both voltage and current variables results
in the I–V formulation having more variables than other power flow
representations, which can have computational implications.

Voltage-Based Formulations

Substituting the current injection equation (2.2a) into the power injec-
tion equation (2.2b) yields a system of polynomial equations in terms
of the complex voltage phasors and their conjugates, V and V :

Pi + jQi = Vi

n∑

k=1
YikV k. (2.3a)

Squared voltage magnitudes are

|Vi|2 = ViV i. (2.3b)

Formulating the power flow equations in complex variables can be useful
for various forms of analysis, such as holomorphic embedding meth-
ods [66], computing bounds on the number of power flow solutions [67],
and, as will be discussed in detail in §4.1.2, constructing certain power
flow relaxations.
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12 Overview of the Power Flow Equations

Table 2.1: Typical formulations of the power flow equations in the bus injection
model.

Representations Power Flow
of Y and V Equations

Y = G + jB,
V = Vd + jVq

Pi =
n∑

k=1
Vdi (GikVdk −BikVqk) + Vqi (BikVdk + GikVqk) ,

(2.4a)

Qi =
n∑

k=1
Vdi (−BikVdk −GikVqk) + Vqi (GikVdk −BikVqk) ,

(2.4b)
|Vi|2 = V 2

di + V 2
qi. (2.4c)

Y = G + jB,
V = |V | ejθ

Pi = |Vi|
n∑

k=1
|Vk| (Gik cos (θi − θk) + Bik sin (θi − θk)) ,

(2.5a)

Qi = |Vi|
n∑

k=1
|Vk| (Gik sin (θi − θk)−Bik cos (θi − θk)) .

(2.5b)

Y = |Y| ejψ,
V = |V | ejθ

Pi = |Vi|
n∑

k=1
|Vk| |Yik| cos (θi − θk − ψik) , (2.6a)

Qi = |Vi|
n∑

k=1
|Vk| |Yik| sin (θi − θk − ψik) . (2.6b)

A variety of power flow formulations are derived by converting (2.3)
to real-valued quantities using different representations of the complex-
valued admittance matrix, voltage phasors, and power injections. Ta-
ble 2.1 presents several typical formulations. Observe that these formu-
lations are equivalent yet exhibit significantly different mathematical
representations. For instance, using rectangular coordinates for both the
voltage phasors and the admittance matrix yields a system of quadratic
polynomials in (2.4), while using polar coordinates for the voltage pha-
sors results in a system of coupled trigonometric functions in (2.5)
and (2.6). As will be discussed in later chapters, many of the distinc-
tions among the power flow relaxations and approximations described
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2.1. Power Flow Representations 13

in this monograph are related to various mechanisms for exploiting
these different mathematical features.

The power flow equations in rectangular voltage coordinates (2.4)
have several interesting characteristics due to their quadratic nature
[68]. Let (2.4) be rewritten in the generic form f(x) = y + h(x) = 0,
where x = [V ᵀ

d V ᵀ
q ]ᵀ ∈ R2n and y ∈ R2n is a vector of parameters

formed from power injections Pi + jQi and voltage set-points |Vi| at
specified buses. Solution properties include:

• Variation of x along a straight line through a pair of distinct
solutions of the problem f(x) = 0, for fixed y, results in the
mismatch vector f(x) always lying on a straight line.

• Consider a straight line connecting a pair of distinct solutions
denoted by x1 and x2. The Jacobian J = ∂f

∂x is singular at the
midpoint of that line. Furthermore, that line coincides with the
right eigenvector of J corresponding to the zero eigenvalue.

• The maximum number of solutions of f(x) = 0 on any straight
line in x-space is two.

These and other properties are derived in [68].

2.1.2 The DistFlow Equations

In two seminal papers [69, 70], Baran and Wu proposed a power flow
representation named the “DistFlow” equations that is valid for ra-
dial systems. Baran and Wu also referred to this representation as the
“branch flow equations”. In contrast to the bus injection model’s formu-
lation in terms of the quantities at each bus, the DistFlow equations
focus on the quantities flowing on the lines.

Let L denote the set of branches, with i→ k representing a branch
connecting buses i and k where bus k is located “downstream” (further
from the substation in a radial distribution system) from bus i. For
the line from bus i to bus k, define real variables Pik and Qik for the
sending-end active and reactive power flows. Let `ik denote the squared
magnitude of the current flow from bus i to bus k. With lines modeled
as series impedances Rik+jXik (see Figure 2.2), the DistFlow equations
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14 Overview of the Power Flow Equations

i

|Vi|2

k

|Vk|2
|Iik|2
=

Pk + jQk

Rik `ik
Xik

Pik + jQik

∑
m:k→m(Pkm + jQkm)

Figure 2.2: Explanation of the variables in the DistFlow equations for line (i, k) ∈ L.

are defined for each line (i, k) ∈ L as

Pik = Rik`ik − Pk +
∑

m : k→m
Pkm, (2.7a)

Qik = Xik`ik −Qk +
∑

m : k→m
Qkm, (2.7b)

|Vk|2 = |Vi|2 − 2 (RikPik +XikQik) +
(
R2
ik +X2

ik

)
`ik, (2.7c)

`ik |Vi|2 = P 2
ik +Q2

ik. (2.7d)

Note that (2.7a)–(2.7c) are linear in the squared voltage magnitudes
|Vi|2, ∀i ∈ N . Some presentations of the DistFlow equations rewrite (2.7)
by introducing new variables, vi = |Vi|2, to emphasize this linearity. This
monograph refrains from using this notation in order to ease comparison
among different power flow formulations.

Also note that more general line models can be incorporated in both
the bus injection model and the DistFlow equations (e.g., the line model
employed in Matpower [50], which allows for shunt susceptances, non-
unity transformer voltage ratios, and non-zero transformer phase shifts).
Extension of the DistFlow equations to this line model is presented
in [71].

The DistFlow equations (2.7) fully represent the power flows for a
balanced, single-phase equivalent model of a radial network. For mesh
networks, one could assign an arbitrary orientation to each branch and
apply (2.7). However, such an approach does not enforce consistency in
the angle summations around cycles in the network (i.e., the summation
of the angles around a cycle must be a multiple of 2π radians for true
solutions). Thus, applying (2.7) to mesh networks results in a relaxation
of the power flow equations. Note that this relaxation is non-convex
due to (2.7d).

The version of record is available at: http://dx.doi.org/10.1561/3100000012



2.2. Applications of the Power Flow Equations 15

One obtains a set of equations that fully represents the power flows
in mesh networks by augmenting the DistFlow equations (2.7) with
constraints which ensure that there exist phase angles which, 1) are
consistent with the squared voltage magnitudes, |Vi|2, and power flows,
Pik and Qik, and 2) sum to a multiple of 2π radians around every
cycle [72–75]. Ensuring consistency in the angles around all cycles can
be accomplished using a “cycle basis” for the network, i.e., a set of
cycles such that any other cycle in the network can be constructed
via an appropriate combination of the cycles in the basis [76, 77]. As
one way to construct a cycle basis, select any spanning tree of the
network graph. A cycle basis is formed from the cycles which share
all but one of their edges with the spanning tree. Let C denote the
cycle basis associated with an arbitrary spanning tree. Enforcing the
constraint ∑(i,k)∈Ci ∠

(
|Vi|2 − (Rik − jXik) (Pik + jQik)

)
= 0 mod 2π

for all cycles Ci ∈ C ensures the existence of a consistent set of angles
for all cycles in the DistFlow model [74].

2.2 Applications of the Power Flow Equations

The power flow equations are at the heart of many power system analysis
and control problems. This section reviews two common applications of
the power flow equations: 1) solving the equations for unknown voltage
phasors given certain specified power injections and voltage magni-
tude set-points, and 2) embedding the equations within optimization
problems.

2.2.1 Solving the Power Flow Equations

A typical application of the power flow equations is to specify certain
voltage magnitude set-points and power injections and solve the re-
sulting non-linear system of equations to obtain a corresponding set
of voltages, currents, and power flows. As expected for systems of
non-linear equations, there may exist multiple power flow solutions.
A “high-voltage/small-angle-difference” solution is typically of greatest
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16 Overview of the Power Flow Equations

interest as it corresponds to a desirable operating point. Other “low-
voltage/large-angle-difference” solutions are of interest for certain appli-
cations, such as stability analysis. Upper bounds on the number of power
flow solutions grow exponentially with the size of the system [67, 78, 79],
and there exist example systems for which these bounds are achievable
asymptotically with increasing network size [80]. However, the number
of power flow solutions for typical operating conditions appears to be
significantly smaller than these bounds [52, 81–83].

To represent typical equipment behavior, each bus is traditionally
classified as PQ, PV, or slack.2 PQ buses, which typically correspond
to loads, treat Pi and Qi as specified quantities and enforce the active
and reactive power equations. PV buses, which typically correspond to
generators, enforce the active power and squared voltage magnitude
equations with specified Pi and |Vi|. Finally, a single slack bus is selected
with specified Vi (typically chosen such that the reference angle ∠Vi =
0◦, i.e., Vqi = 0). The active power Pi and reactive power Qi at the
slack bus are determined from the active and reactive power equations,
respectively; network-wide conservation of complex power is thereby
satisfied. Thus, solving the power flow equations means determining:

• Voltage phasors Vi, ∀i ∈ N , for the bus injection model, or

• Squared current magnitudes and power flows `ik, Pik, and Qik,
∀ (i, k) ∈ L, and squared voltage magnitudes |Vi|2, ∀i ∈ N , for
the branch flow model,

such that the enforced equations are satisfied at every bus. A vari-
ety of non-linear solution algorithms are applicable to the power flow
equations [8, 9].

Rather than selecting a single generator bus to serve as the slack bus,
a “distributed slack” variant of the power flow problem proportionally
allocates the role of balancing the active power injections among all of
the generators. This is accomplished by modeling the power injections

2This traditional classification of buses is convenient but not necessary. For
example, it is possible to define a QV bus with specified reactive power injection Qi
and voltage magnitude |Vi|. The important requirement is that the number of
equations must equal the number of variables.

The version of record is available at: http://dx.doi.org/10.1561/3100000012



2.2. Applications of the Power Flow Equations 17

at each generator bus i as Pi = P •i + αi δP , where α is a specified
“participation factor” vector with non-negative entries that sum to unity,
P •i is the specified nominal active power injection at bus i, and δP is
a new variable that is shared among all of the active power injection
equations. In the distributed slack formulation, note that the phase
angle reference θi = 0◦ is enforced at a single reference bus i and all
generator buses have specified voltage magnitudes. Also note that the
distributed slack formulation simplifies to the slack bus formulation
discussed above by choosing αi = 1 for a single generator bus i and
αk = 0 for all other generator buses k.

Power flow applications often involve regulating transformers that
vary their tap ratio τik and/or phase shift θshift,ik to meet specified
set-point requirements. For example, a transformer may vary its tap
ratio to ensure its controlled-bus voltage equals the set-point, or the
phase shift may vary to ensure the active power flow at a specified
location equals its set-point. A power flow solution requires that each
transformer variable must be associated with a corresponding set-point
constraint.

2.2.2 Embedding within Optimization Problems

The power flow equations are often embedded in optimization problems
where the power injections and voltage magnitude set-points are allowed
to vary in order to optimize some objective function while satisfying
engineering constraints. These constraints are often equalities (e.g.,
Pi = −PDi for a specified demand PDi) or box constraints (e.g., Pmini ≤
Pi ≤ Pmaxi for specified upper and lower bounds Pmaxi and Pmini ). More
complicated constraints that couple Pi, Qi, and |Vi| are appropriate
for representing generator capability curves and voltage-dependent
loads [84–86]. Some device models may impose discrete constraints on
these quantities (e.g., Qi = zi bsh,i |Vi|2 for a switched capacitor with
shunt susceptance bsh,i and associated binary variable zi ∈ {0, 1}; or
zi P

min
i ≤ Pi ≤ zi Pmaxi modeling the ability to shut down a generator in

a unit commitment problem, where zi ∈ {0, 1} represents the generator’s
on/off status).
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18 Overview of the Power Flow Equations

Optimal power flow (OPF) is a particularly relevant power system
optimization problem which forms the basis for many applications. The
OPF problem minimizes a specified cost function subject to both the
power flow equations and engineering limits.

The OPF problem has a long history. An abridged presentation
follows, with further details of the early history of the OPF problem
provided in the surveys [10, 13]. For systems with negligible losses
and no network constraints, it was recognized in the early 1930s
that the least-cost operating point is achieved when all the gener-
ators have equal marginal costs [87, 88]. The 1940s and 1950s saw
significant progress on loss factors that were incorporated into eco-
nomic dispatch formulations [89]. Growing computational capabili-
ties in the 1950s and 1960s facilitated the digital solution of power
flow problems [90–93], which would eventually replace the “network
analyzers” previously used to model power systems with analog cir-
cuits [94]. In 1960, [95] proposed an optimization formulation that
minimized generation costs while accounting for losses using an AC
power flow model. However, this formulation did not consider bounds
on the variables. Shortly thereafter in 1962, [96] proposed what is
generally considered the first OPF formulation by augmenting an AC
power flow model and a generation-cost-minimizing objective function
with engineering limits. In the several decades since, a wide variety
of optimization algorithms have been applied to OPF problems [10–
25].

This section next formally defines a prototypical formulation of the
OPF problem. Let G denote the set of generators. Define PGi and QGi,
respectively, as the active and reactive power outputs of the generator at
bus i such that PGi = Pi +PDi and QGi = Qi +QDi where PDi + jQDi
is the complex power demand at bus i. Consider a typical OPF problem
where each generator i has a cost function for active power generation
denoted as fCi (PGi). Define upper and lower limits on active and
reactive power generation, Pmax, Pmin, Qmax, and Qmin, which are all
equal to zero at buses without generators. Specified limits on voltage
magnitudes and phase angle differences are denoted as V min, V max and
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2.2. Applications of the Power Flow Equations 19

θmin, θmax, respectively. The OPF problem is

min
∑

i∈G
fCi (PGi) (2.8a)

subject to
PminGi ≤ PGi ≤ PmaxGi , ∀i ∈ N , (2.8b)
QminGi ≤ QGi ≤ QmaxGi , ∀i ∈ N , (2.8c)
(V min
i )2 ≤ |Vi|2 ≤ (V max

i )2, ∀i ∈ N , (2.8d)
θminik ≤ ∠Vi − ∠Vk ≤ θmaxik , ∀ (i, k) ∈ L, (2.8e)
∠V1 = 0, (2.8f)
A representation of the power flow equations, (2.8g)
Limits on line flows. (2.8h)

At each bus i ∈ N , constraints (2.8b) and (2.8c) limit the active and
reactive power generation and constraint (2.8d) limits the voltage magni-
tude. Constraint (2.8e) limits the angle difference across each line. Angle
difference limits are occasionally used as proxy constraints for transient
stability requirements. Certain convex relaxations also rely on specified
voltage angle limits, in which case the bounds θmax and θmin in (2.8e)
should be large enough so that they do not restrict the OPF problem’s
feasible space. Constraint (2.8f) sets the reference bus angle to zero. The
power flow equations in (2.8g) may take a variety of forms, as described
earlier in this chapter. Moreover, any of the power flow relaxations and
approximations surveyed in the remainder of this monograph may be
applied to obtain a relaxation or approximation of the OPF problem.

The limits on line flows in (2.8h) are typically specified either in
terms of apparent power flows or current flows, with active power flow
serving as a surrogate for approximate models that do not incorporate
reactive power (e.g., the DC power flow discussed in §5.2.3). The expres-
sions for the apparent power and current flow constraints depend on the
choice of power flow model, with e.g., [97, 98] providing various line flow
expressions. Also, note that more general OPF formulations may include
other types of constraints, such as contingency constraints, stability
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20 Overview of the Power Flow Equations

constraints, and generator capability characteristics, as discussed in
e.g., [18, 22–24, 50, 99].

More detailed descriptions of OPF and other power system optimiza-
tion problems are presented in, e.g., [4, 5, 7, 19]. While the particulars
of power system optimization problems and their associated constraints
are very important for specific applications, this monograph focuses
on the power flow representation itself rather than its embedding in a
particular optimization problem. Therefore, the remainder of this mono-
graph omits formulation-specific details except where they are necessary
to illustrate certain representations of the power flow equations.

2.3 Examples of Power Flow Feasible Spaces

The feasible space for a system of equations refers to the set of points
which satisfy those equations. For specified power injection and voltage
magnitude set-point parameter values, as described in §2.2.1, the feasible
space for the power flow equations generically consists of a finite set
of isolated points corresponding to the power flow solutions. Power
system optimization problems where power injection and voltage set-
point parameters are allowed to vary, as described in §2.2.2, generally
give rise to higher-dimensional feasible spaces. An optimization problem
seeks a point in that feasible space which has least cost according to a
specified objective function.

The feasible spaces defined by the power flow equations are generi-
cally non-convex. Certain optimization problems that incorporate the
power flow equations, including OPF problems, may have multiple local
optima [3] and are generally NP-Hard [1, 2], even for networks with
radial topologies [2]. Many publications have studied the characteristics
of the feasible spaces of power flow and optimal power flow problems,
e.g., [3, 98, 100–114].

Many optimization solvers benefit from constraint qualification
conditions that ensure strong duality (i.e., zero gap between the optimal
objective values of the primal and dual problems). In order to ensure
satisfaction of Slater’s constraint qualification condition [115], recent
work [116] derives sufficient conditions for the existence of an interior
point in the feasible spaces of power system optimization problems with
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2.3. Examples of Power Flow Feasible Spaces 21

radial network topologies. Other recent work in [117] uses tools from
differential topology to show that OPF problems used in various contexts
almost surely satisfy the Linear Independence Constraint Quantification
(LICQ) condition [118]. Thus, there generically exist unique sets of
multipliers that satisfy the Karush–Kuhn–Tucker (KKT) conditions for
all local optimizers to these problems. Additional related work in [119]
studies critical cases of OPF problems where small parameter changes
result in sharp discontinuities in the solution.

This section provides five illustrative examples of non-convex power
flow feasible spaces. The one-line diagrams for all test cases in this
section give values for the line impedances and shunt susceptances, power
injections, and voltage magnitude set-points in per unit representation.3
A 100 MVA base power is used throughout this monograph. Note that
other useful visualizations provided in [120] show the active and reactive
power flows through a line as functions of various parameters.

Figure 2.3a shows the one-line diagram for the three-bus system
studied in [100]. The voltage magnitudes are all fixed at 1.05 per unit and
the active and reactive power injections are unconstrained. A cut through
the corresponding feasible space is presented in Figure 2.3b. (Half of
the surface is removed to reveal the inner folds.) This feasible space was
constructed using the continuation method proposed in [100]. Observe
that this feasible space is connected but non-convex as evidenced by the
hole through the space seen in the projection of active and reactive power
injection at bus 2 (i.e., the PG2–QG2 plane at the rear of the figure).

The next example corresponds to the three-bus system in [121, 122].
Figure 2.4a shows the one-line diagram for this system. Figure 2.4b
provides the feasible space for this system constructed using the con-
tinuation approach in [100]. The feasible space is non-convex, with a

3Test case descriptions are available at http://bettergrids.org:
• Figure 2.3a: http://item.bettergrids.org/handle/1001/418
• Figure 2.4a: http://item.bettergrids.org/handle/1001/419
• Figure 2.5a: http://item.bettergrids.org/handle/1001/420
• Figure 2.6a: http://item.bettergrids.org/handle/1001/422
• Figure 2.7a: http://item.bettergrids.org/handle/1001/421
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22 Overview of the Power Flow Equations

Table 2.2: Generation cost functions for the nine-bus system “case9mod” from [3].

Bus c2i [$/(per unit-hr)2] c1i [$/(per unit-hr)] c0i [$/hr]
1 1100.0 500 150
2 85.0 120 600
3 122.5 100 335

hole through the space seen via a projection of active power injections
PG1, PG2, and PG3.

The third example corresponds to the five-bus system in [101].
Figure 2.5a shows the one-line diagram for the system and Figure 2.5b
illustrates a projection of the feasible space in terms of active power
injections. This example demonstrates, through the projection, that the
feasible space of a lossless system may be non-convex.

The final two examples correspond to the five-bus system “WB5”
and the nine-bus system “case9mod” in [3]. The feasible spaces for
these examples were constructed using the algorithm proposed in [107].
This algorithm is guaranteed to yield a discretization of the entire
feasible space to within a specified discretization tolerance. For these
two examples, the feasible spaces are disconnected and have multiple
local optima.

Figures 2.6a and 2.7a show the one-line diagrams for the WB5 and
case9mod systems, respectively. The voltage magnitudes in WB5 are
constrained to the range |Vi| ∈ [0.95, 1.05] per unit and there are no
line flow limits. The voltage magnitudes in case9mod are constrained to
the range |Vi| ∈ [0.90, 1.10] per unit and limits on the apparent power
line flows are 250 MVA for all lines except for (5, 6) and (6, 7), which
are limited to 150 MVA, and (3, 6), which is limited to 300 MVA. In
order to better illustrate certain characteristics of the relaxations and
approximations, the cost function for WB5 is modified to 10000P 2

G1 −
43000PG1 + 10000P 2

G5 − 36000PG5 + 78625$/hr (for power generation
values in per unit), which has an unconstrained minimizer at the point
(PG1, PG5) = (2.15, 1.80) per unit. For case9mod, the coefficients of the
quadratic functions c2iP 2

Gi + c1iPGi + c0i assigned to each generator
i = 1, 2, 3 are given in Table 2.2.
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Figure 2.3: The three-bus system from [100]. The voltage magnitudes are all fixed to
1.05 per unit. The active and reactive power injections at each bus are unconstrained.
The feasible space was constructed using the continuation approach in [100]. Half of
the feasible space’s surface is removed to reveal the inner folds. The feasible space is
connected but non-convex.
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Figure 2.4: The three-bus system from [121, 122]. The voltage magnitudes at
buses 1 and 2 are fixed at 1.0 and 1.3 per unit, respectively, while the voltage
magnitude at bus 3 is unconstrained. The active power injections at each bus and
the reactive power injections at buses 1 and 2 are unconstrained, while the reactive
power injection at bus 3 is fixed to zero. The feasible space, which was constructed
using the continuation approach in [100], is connected but non-convex.

injections. This example demonstrates, through the projection, that the
feasible space of a lossless system may be non-convex.

Figure 2.4: The three-bus system from [121, 122]. The voltage magnitudes at
buses 1 and 2 are fixed at 1.0 and 1.3 per unit, respectively, while the voltage
magnitude at bus 3 is unconstrained. The active power injections at each bus and
the reactive power injections at buses 1 and 2 are unconstrained, while the reactive
power injection at bus 3 is fixed to zero. The feasible space, which was constructed
using the continuation approach in [100], is connected but non-convex.
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Figure 2.5: The five-bus system from [232]. The voltage magnitudes at each bus are
fixed to 1.0 per unit. The active power injections at buses 1 and 2 are non-negative,
the active power injection at bus 3 is non-positive, and the active power injections at
buses 4 and 5 are zero. The reactive power injections at each bus are unconstrained.
The particular symmetry in the parameters results in an analytical expression for
the feasible space [232]. This analytical expression was exploited to create the figure.
This test case demonstrates, through a projection of active power injections, that
the feasible spaces of lossless systems may be non-convex.

Figure 2.5: The five-bus system from [101]. The voltage magnitudes at each bus are
fixed to 1.0 per unit. The active power injections at buses 1 and 2 are non-negative,
the active power injection at bus 3 is non-positive, and the active power injections at
buses 4 and 5 are zero. The reactive power injections at each bus are unconstrained.
The particular symmetry in the parameters results in an analytical expression for
the feasible space [101]. This analytical expression was exploited to create the figure.
This test case demonstrates, through a projection of active power injections, that
the feasible spaces of lossless systems may be non-convex.
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Figure 2.6: The five-bus system from [55]. The feasible space was constructed using
the approach in [291]. The colors represent the generation cost. The gray plane shows
the lower reactive power limit QG5 ≥ −0.30 per unit. This limit splits the feasible
space into the two disconnected components which are above the gray plane. The
green star shows the global solution and the blue triangle indicates a local optimum.
This test case demonstrates that OPF problems with reasonable parameter values
may have feasible spaces with multiple disconnected components.

Figure 2.6: The five-bus system from [3]. The feasible space was constructed using
the approach in [107]. The colors represent the generation cost. The gray plane shows
the lower reactive power limit QG5 ≥ −0.30 per unit. This limit splits the feasible
space into the two disconnected components which are above the gray plane. The
green star shows the global solution and the blue triangle indicates a local optimum.
This test case demonstrates that OPF problems with reasonable parameter values
may have feasible spaces with multiple disconnected components.
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Figure 2.7: The nine-bus system “case9mod” from [55]. The feasible space was
constructed using the approach in [291]. The colors represent the generation cost.
The feasible space is split into three disconnected components by the black line,
which signifies the set of points for which the limits QG1 ≥ −0.05, QG2 ≥ −0.05,
QG3 ≥ −0.05, and |V9| ≥ 0.9 per unit are simultaneously binding. The green star
shows the global solution and the blue triangles indicate local optima. This test
case demonstrates that OPF problems with reasonable parameter values may have
feasible spaces with multiple disconnected components.

Figure 2.7: The nine-bus system “case9mod” from [3]. The feasible space was
constructed using the approach in [107]. The colors represent the generation cost.
The feasible space is split into three disconnected components by the black line,
which signifies the set of points for which the limits QG1 ≥ −0.05, QG2 ≥ −0.05,
QG3 ≥ −0.05, and |V9| ≥ 0.9 per unit are simultaneously binding. The green star
shows the global solution and the blue triangles indicate local optima. This test
case demonstrates that OPF problems with reasonable parameter values may have
feasible spaces with multiple disconnected components.
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The WB5 system in Figure 2.6 will be used at various points through-
out the remainder of the monograph to illustrate certain salient charac-
teristics of power flow relaxations and approximations.
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Optimization Tools

As discussed in §2.3, the feasible spaces associated with the power flow
equations can be non-convex, resulting in power system optimization
problems that may have multiple local optima [3] and are generally
NP-Hard [1, 2]. To circumvent the computational challenges involved
with solving such optimization problems, a variety of power flow relax-
ations and approximations have been developed. These relaxations and
approximations typically employ tools from convex optimization.

This chapter overviews four commonly used convex optimization
tools relevant to both relaxations and approximations of the power
flow equations: linear programming (LP), quadratic programming (QP),
second-order cone programming (SOCP), and semidefinite programming
(SDP) [123, 124]. This section presents these tools in their primal forms;
their dual forms can be found in, e.g., [123].

3.1 Linear and Quadratic Programming

Linear programming is the most mature but least general optimization
tool. Let x ∈ Rm denote the vector of decision variables. Linear programs
enforce non-negativity of the decision variables: x ≥ 0. Further linear
constraints Ax = b can be imposed, where A is a specified matrix

29
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30 Optimization Tools

with m columns and b is a specified vector. LPs have a linear objective
function cᵀx. The canonical form of an LP is

min
x∈Rm

cᵀx (3.1a)

subject to
Ax = b, (3.1b)
x ≥ 0. (3.1c)

Note that inequality constraints can be formulated by introducing non-
negative slack variables, i.e., Ãx ≥ b̃ is equivalently represented as the
constraints Ãx+ y = b̃ and y ≥ 0.

A particularly relevant set of linear inequality constraints known
as McCormick envelopes [125] are used in a variety of the power flow
relaxations. McCormick envelopes, denoted as 〈x y〉M , form the convex
hulls of bilinear products x y, where x and y are generic variables with
bounds xmin, xmax and ymin, ymax. These envelopes are:

〈x y〉M =





t :





t ≥ xmin y + ymin x− xmin ymin,
t ≥ xmax y + ymax x− xmax ymax,
t ≤ xmin y + ymax x− xmin ymax,
t ≤ xmax y + ymin x− xmax ymin.





. (3.2)

Figure 3.1 visualizes the lower bounding planes defined by the first two
linear inequalities of (3.2). The upper bounding planes defined by the
last two linear inequalities of (3.2) are similar.

A generalization of linear programming known as quadratic program-
ming allows for a quadratic objective function:

min
x∈Rm

xᵀCx+ cᵀx (3.3a)

subject to
Ax = b, (3.3b)
x ≥ 0, (3.3c)

where C is a m×m matrix. If C is positive semidefinite, then (3.3) is
a convex quadratic program.
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xy

Figure 3.1: Visualization of the lower bounds for the McCormick envelopes defined
in (3.2). The black region is the bilinear product x y which is lower bounded by the
gray planes corresponding to the McCormick envelope. The upper bounding planes
from the McCormick envelope (not shown) are similar.

A major advantage of linear and quadratic programming formu-
lations is the existence of mature solvers, such as CPLEX, Gurobi,
and MOSEK. These solvers also allow the modeling of mixed-integer
linear programs (MILP) and mixed-integer quadratic programs (MIQP),
which augment (3.1) and (3.3), respectively, with discrete variables that
linearly enter the constraints and the objective function.

3.2 Second-Order Cone Programming

Second-order cone programs generalize linear programs. In addition to
allowing linear constraints, Ax = b, an SOCP has second-order cone
constraints of the form ||Eix+ bi||2 ≤ g

ᵀ
i x+ di, where || · ||2 denotes the

two-norm of a vector argument, Ei is a matrix, gi and bi are vectors,
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and di is a scalar. The canonical form of an SOCP is

min
x∈Rm

cᵀx (3.4a)

subject to
||Eix+ bi||2 ≤ g

ᵀ
i x+ di, i = 1, . . . , r, (3.4b)

Ax = b, (3.4c)
x ≥ 0, (3.4d)

where r is the number of SOCP constraints. Various applications of
second-order cone programming are described in [126, 127], including
robust linear programming and certain operations on norms.

Observe that linear programming (3.1) is a special case of second-
order cone programming (3.4). More generally, convex quadratic con-
straints can be represented as SOCP constraints. Consider the convex
quadratic constraint

xᵀDx+ eᵀx+ f ≤ 0, (3.5)

where D is a positive semidefinite symmetric matrix and therefore has
a Cholesky factorization D = D̂ᵀD̂, e is a vector, and f is a scalar.
An equivalent representation of (3.5) takes the form of an SOCP con-
straint: ∣∣∣∣∣

∣∣∣∣∣

[
(1 + eᵀx+ f) /2

D̂x

]∣∣∣∣∣

∣∣∣∣∣
2
≤ (1− eᵀx− f) /2. (3.6)

Note that while (3.4) specifies a linear objective function, a con-
vex quadratic objective function (3.3a) can be formulated by minimiz-
ing an auxiliary variable α and augmenting (3.4) with the constraint
α ≥ xᵀCx+ cᵀx. Applying (3.6) yields an equivalent representation in
canonical form:

∣∣∣∣∣

∣∣∣∣∣

[
(1 + cᵀx− α) /2

Ĉx

]∣∣∣∣∣

∣∣∣∣∣
2
≤ (1− cᵀx+ α) /2, (3.7)

where Ĉ is the Cholesky factorization of C, i.e., C = ĈᵀĈ. Convex
quadratic programming (i.e., (3.3) with a positive semidefinite matrix
C) is therefore a special case of second-order cone programming.
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In addition to convex quadratic constraints, “rotated SOCP con-
straints” are also particularly useful SOCP representations. A rotated
SOCP constraint couples non-negative scalar variables x ≥ 0 and y ≥ 0
and the vector variable z:

x · y ≥ ||z||22 , (3.8a)
x ≥ 0, y ≥ 0. (3.8b)

Rotated SOCP constraints can be written in canonical form (3.4) as1

∣∣∣∣∣

∣∣∣∣∣

[
(x− y) /2

z

]∣∣∣∣∣

∣∣∣∣∣
2
≤ (x+ y) /2, (3.9a)

x ≥ 0, y ≥ 0. (3.9b)

While x and y in a rotated SOCP constraint must be real-valued,
complex-valued vectors z are admissible. To obtain an equivalent real-
valued formulation for a rotated SOCP constraint with a complex-valued

vector z, substitute (3.8a) with x · y ≥
∣∣∣∣∣

∣∣∣∣∣

[
Re (z)
Im (z)

]∣∣∣∣∣

∣∣∣∣∣

2

2
.

Several commercial solvers are capable of solving SOCPs, includ-
ing CPLEX, Gurobi, and MOSEK. These solvers are also applicable
to SOCP problems augmented with discrete variables; however, the
commercialization of solvers for mixed-integer SOCP problems is fairly
recent compared to MILP solvers.

3.3 Semidefinite Programming

Semidefinite programs generalize second-order cone programs. In con-
trast to LPs and SOCPs, which have decision variables organized as a
vector x, the decision variables in a semidefinite program take the form
of a symmetric matrix X. Let X � 0 indicate positive semidefiniteness

1To see this equivalence, observe that (3.9) implies that (x−y)2

4 + ||z||22 ≤
(x+y)2

4 .
Expanding both sides yields x2−2xy+y2

4 + ||z||22 ≤ x2+2xy+y2

4 , which simplifies to
||z||22 − xy ≤ 0. Adding xy to both sides yields (3.8).
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of the matrix X. The canonical form of a semidefinite program is

min
X

tr (CX) (3.10a)

subject to
tr (AiX) = bi, i = 1, . . . , r, (3.10b)
X � 0, (3.10c)

where tr (·) denotes the trace operator, Ai and C are specified square,
symmetric matrices, and bi are specified scalars. Since tr (AB) =∑
i

∑
k AikBki, the constraints (3.10b) are linear in the entries of the ma-

trix variable X. Various applications of semidefinite programming (e.g.,
certain operations on eigenvalues, singular values, and determinants)
are discussed in [127].

Recall that positive semidefiniteness of a matrix implies non-nega-
tivity of all its diagonal entries [128]. Thus, scalar inequality constraints
can be formulated in a semidefinite program by augmenting the positive
semidefinite matrix X with a 1 × 1 diagonal block to serve as a non-
negative slack variable (i.e., the constraints tr

(
ÃiX

)
≥ b̃ and X � 0

can be written as tr
(
ÃiX

)
+x = b̃ and

[
X 0
0 x

]
� 0 where x is a scalar

slack variable). This implies that semidefinite programming generalizes
linear programming.

Moreover, SOCP constraints (3.4b) can be formulated as SDP con-
straints, and semidefinite programming thus generalizes second-order
cone programming. Specifically, (3.4b) is equivalent to

[
(gᵀi x+ di) I (Eix+ bi)
(Eix+ bi)ᵀ (gᵀi x+ di)

]
� 0, (3.11)

where I is an appropriately sized identity matrix (i.e., dimension equal
to the number of rows of E) [126].

Typical SDP solvers allow a mix of SDP, SOCP and LP constraints.
Since linear and SOCP constraints generally result in performance that
is superior to SDP constraints, it is best to formulate constraints in the
simplest possible representation, i.e., only formulate a constraint as an
SDP if it is not possible to formulate it as an SOCP or linear constraint.
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Similarly, only formulate a constraint as an SOCP if it is not possible
to write it as a linear constraint.

Complex variables are particularly relevant to the power flow equa-
tions due to the phasor representations of voltages. Although all cur-
rently available SDP solvers use real-valued operations in their internal
computations, there can be both theoretical and practical advantages
in complex-valued SDP formulations. (Further details can be found
in §4.1.2 and [129, 130].)

Let ( ·)H denote the complex conjugate transpose operator. Consider
a positive semidefinite Hermitian matrix Z � 0. (Recall that the eigen-
values of a Hermitian matrix are real-valued, so positive semidefiniteness
is well-defined.) The complex analogue of (3.10) is

min
Z

tr
(
ČZ

)
(3.12a)

subject to

tr
(
ǍiZ

)
= b̌i, i = 1, . . . , r, (3.12b)

Z � 0, (3.12c)

where b̌i is a real scalar and Ǎi and Č are specified Hermitian matrices,
which results in tr

(
ǍiZ

)
and tr

(
ČZ

)
being real-valued quantities.

To convert (3.12) to real-valued canonical form (3.10), use the follow-
ing equivalence: the Hermitian matrix Z ∈ Cn×n is positive semidefinite

if and only if the matrix
[
Re (Z) − Im (Z)
Im (Z) Re (Z)

]
∈ R2n×2n is positive

semidefinite [123, 127]. Creating real-valued matrix variables represent-
ing the real and imaginary parts of Z and using this equivalence on
the positive semidefinite constraint (3.12c) allows the reformulation
from (3.12) in terms of a n× n Hermitian matrix variable to an equiv-
alent representation in the form of (3.10) with a 2n × 2n real-valued
symmetric matrix variable. Note that this conversion is done automati-
cally in modeling languages such as YALMIP [131] and CVX [132].

While SDP solvers are generally less mature than LP and SOCP
solvers, there are a several commercial packages available, including
MOSEK [133] and PENSDP [134], as well as a variety of academic
packages (e.g., SeDuMi [135], SDPT3 [136], SDPA [137], CSDP [138],
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etc.).2 There are also a small number of packages capable of handling
mixed-integer SDP problems, including YALMIP [131], SCIP-SDP [139],
and Pajarito [140].

2A list of convex optimization solvers is available at https://yalmip.github.
io/allsolvers/.
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4
Convex Relaxations of the Power Flow Equations

This chapter overviews convex relaxations of the power flow equations.
The first three sections of this chapter are organized based on the
associated optimization tool (SDP, SOCP, or QP/LP). The final section
reviews a variety of techniques for tightening the relaxations.

Convex relaxations enclose, within a convex space, the non-convex
feasible space associated with the power flow equations. The solution
to the resulting convex problem bounds the optimal objective value
of the original non-convex problem. Specifically, a relaxation provides
a lower bound for a minimization problem and an upper bound for a
maximization problem. Furthermore, relaxations can certify problem
infeasibility since infeasibility of a convex relaxation guarantees that no
feasible points exist for the original non-convex optimization problem.
This is a sufficient but not necessary condition: a relaxation may be
feasible when the original non-convex problem is infeasible.

Some power flow relaxations are exact for certain power system
optimization problems. An exact relaxation provides a bound that is
equal to the globally optimal objective value (i.e., there is no relaxation
gap between the objective value of the global solution to the non-convex
problem and the objective value of an exact relaxation). An exact

37
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38 Convex Relaxations of the Power Flow Equations

relaxation may or may not provide globally optimal decision variables
(i.e., decision variables for which the original non-convex optimization
problem achieves the globally optimal objective value).1

For many cases where relaxations do not provide the globally optimal
voltage phasors, the power injections and line flows resulting from the
relaxations may be close to those of the true global solution. However,
there are no known guarantees that this will be the case. Empirical and
analytical investigations regarding the quality of solutions provided by
relaxations is an active area of research.

The convex relaxations in this monograph address the non-convexity
resulting from the power flow equations. Other sources of non-convexity
(e.g., on/off generator statuses in unit commitment problems and binary
variables associated with switched capacitors) may result in a non-convex
optimization problem even after applying a convex relaxation of the
power flow equations. Regardless, a formulation that eliminates the non-
convexity associated with the power flow equations often has theoretical
and computational advantages. For instance, a linear relaxation of the
power flow equations may result in a mixed-integer linear program, for
which there exist efficient commercial solvers capable of obtaining a
globally optimal solution to the relaxed problem.

In addition to the power flow equations, the ability to represent
certain convex non-linear constraints in SDP and SOCP formulations
facilitates the modeling of many other features relevant to power system
optimization problems, such as limits on the squared magnitudes of
current and apparent power flows as well as maximum phase angle dif-
ferences across lines [71, 98, 141–143]. Further, steady-state induction
machine models [144], approximations of ZIP load models (i.e., loads
with constant-power, constant-current, and constant-impedance compo-
nents) [145, 146], an approximation of Unified Power Flow Controller

1The solution set for a relaxation may be a connected subset of the relaxation’s
feasible space for which all points share the same objective value. If the relaxation is
exact, the objective value shared across this subset is the globally optimal objective
value of the original non-convex problem, and one or more points in this subset corre-
spond to decision variables that are feasible in the original non-convex optimization
problem. Such points are global optima for the original non-convex problem. As
one trivial example, all feasible points for an optimization problem with a constant
objective (i.e., min 0) are globally optimal.
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(UPFC) devices [147], High-Voltage DC (HVDC) lines [148–151], de-
vices modeled with discrete decision variables such as on/off loads and
switchable transmission lines [152–156], and both voltage magnitude
and phase shift regulating transformers [146, 147, 150, 152, 156–161] can
be incorporated or approximated in many of the relaxations discussed
in this chapter.

4.1 Semidefinite Programming Relaxations of the Power Flow
Equations

When expressed in rectangular coordinates (2.4), the power flow equa-
tions are quadratic polynomials in the voltage components Vd and Vq.
This enables the application of polynomial optimization theory, in-
cluding the Shor relaxation and hierarchies of moment/sum-of-squares
relaxations. Related relaxations can also be formulated using the power
flow equations with complex voltage phasors (2.3).

4.1.1 The Shor Relaxation

In 1987, [162] proposed an SDP relaxation of non-convex quadrati-
cally constrained quadratic programs (QCQPs), a class of optimization
problems that is highly relevant to the power flow equations. The first
application of SDP to electric power systems was in [163], which presents
a relaxation of the OPF problem. The work in [164] (with the core ideas
initially presented in [165]) popularized the approach of using SDPs to
solve OPF problems by showing that a related SDP relaxation provides
both an exact bound on the optimal objective value and the globally
optimal decision variables for many of the IEEE OPF test cases [166].

This section presents the mathematical formulation for the SDP
relaxation of [164] and related variants, discusses the exactness of the
relaxation, and summarizes computational developments.

Mathematical Formulation

The approach in [164] develops a Shor relaxation by first writing a
formulation of the power flow equations where all non-convexity is con-
tained within a rank constraint. An SDP relaxation is then constructed
by not enforcing the rank constraint.
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Let ek denote the kth standard basis vector in Rn. For each bus i ∈ N ,
define the matrices LP,k, LQ,k, Mk, and Nk:

LP,k = 1
2

[
Re
(
Yᵀeke

ᵀ
k + eke

ᵀ
kY
)

Im
(
Yᵀeke

ᵀ
k − eke

ᵀ
kY
)

Im
(
eke

ᵀ
kY−Yᵀeke

ᵀ
k

)
Re
(
Yᵀeke

ᵀ
k + eke

ᵀ
kY
)
]
, (4.1a)

LQ,k = −1
2

[
Im
(
Yᵀeke

ᵀ
k + eke

ᵀ
kY
)

Re
(
eke

ᵀ
kY−Yᵀeke

ᵀ
k

)

Re
(
Yᵀeke

ᵀ
k − eke

ᵀ
kY
)

Im
(
Yᵀeke

ᵀ
k + eke

ᵀ
kY
)
]
, (4.1b)

Mk =
[
eke

ᵀ
k 0

0 eke
ᵀ
k

]
, (4.1c)

Nk =
[
0 0
0 eke

ᵀ
k

]
. (4.1d)

The power flow equations can then be equivalently represented as

Pi = tr (LP,kW) , (4.2a)
Qi = tr (LQ,kW) , (4.2b)
|Vi|2 = tr (MkW) , (4.2c)

0 = tr (N1W) , (4.2d)
W = xxᵀ, (4.2e)

where x =
[
Vd1 . . . Vdn Vq1 . . . Vqn

]ᵀ
. Observe that (4.2d) sets

the angle at the reference bus to zero. One can alternatively enforce
the angle reference by deleting Vq1 from x as well as the (n+ 1)-th row
and column from the W matrix, with corresponding modifications to
the matrices in (4.1a)–(4.1c) and elimination of (4.2d). This improves
computational tractability by reducing the size of the semidefinite
optimization problem.

The Shor relaxation is applicable to optimization problems with
objective functions that are quadratic in x, or, equivalently, linear in
the entries of W. This includes linear functions of active and reactive
power injections as well as squared voltage magnitudes. More general
objectives, such as convex quadratic functions of active power injections,
can also be formulated using a lifted variable in combination with an
SOCP constraint as described in §3.2.
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To form an SDP relaxation, the approach in [164] replaces the rank
constraint (4.2e) with the less stringent constraint

W � 0. (4.3)

If the solution W∗ to the SDP relaxation satisfies the rank condition

rank (W∗) = 1, (4.4)

then the SDP relaxation is exact and globally optimal decision variables
can be recovered. Let λ be the non-zero eigenvalue of the solution W∗

with associated unit-length eigenvector ν. Denote νd and νq as the
vectors consisting of the entries of ν from ν1 to νn and from νn+1 to
ν2n, respectively. The globally optimal voltage phasors are

V ∗ =
√
λ (νd + jνq) . (4.5)

A complex-valued Shor relaxation is formulated using the Hermitian
matrices

HP,k = YHeke
ᵀ
k + eke

ᵀ
kY

2 , (4.6a)

HQ,k = YHeke
ᵀ
k − eke

ᵀ
kY

2j . (4.6b)

The corresponding power flow formulation is

Pi = tr (HP,k Z) , (4.7a)
Qi = tr (HQ,k Z) , (4.7b)
|Vi|2 = tr

(
eke

ᵀ
kZ
)
, (4.7c)

Z = zzH , (4.7d)

where z = [ V1 ... Vn ]ᵀ contains the complex voltage phasors. As will be
discussed later in this section, rather than explicitly enforcing the angle
reference constraint, the complex Shor relaxation sets the angle reference
by rotating the voltage vector corresponding to a rank-one solution.

The SDP relaxation is formed by replacing the rank constraint (4.7d)
with a positive semidefinite constraint on the n× n Hermitian matrix
Z:

Z � 0. (4.8)
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Recall that §3.3 discusses the mechanism for converting from a positive
semidefinite constraint on a complex-valued Hermitian matrix to a real-
valued symmetric positive semidefinite matrix constraint appropriate
for input to typical SDP solvers.

If the solution Z∗ satisfies the rank condition

rank(Z∗) = 1, (4.9)

then the globally optimal voltage phasors are

V ∗ =
√
λ ν, (4.10)

where λ is the non-zero eigenvalue of Z∗ with corresponding unit-length
eigenvector ν, rotated such that ∠ν1 = 0◦.

The real and complex Shor relaxations, (4.2a)–(4.2d), (4.3) and
(4.7a)–(4.7a), (4.8), are “equivalent” in the sense that 1) both relaxations
provide the same optimal objective value and 2) an optimal solution to
each relaxation can easily be constructed from the optimal solution to
the other relaxation [129, Appendices B and C].

Note that the Shor relaxations presented here assume a balanced
single-phase equivalent network model. These relaxations can be ex-
tended to unbalanced three-phase network models [146, 159, 167–169].

Exactness

The Shor relaxation satisfies (4.4) and is therefore exact for many of the
OPF problems corresponding to the IEEE test cases [164] and several
large-scale models of European electric grids [129, 141].2 (Test case
descriptions are provided in [50, 166].)

Despite being exact for some OPF test cases, there exist OPF prob-
lems for which the Shor relaxation proposed in [164] is not exact. This
was first demonstrated using the three-bus OPF test case in [170]. A
variety of other test cases for which the Shor relaxation fails to be exact
are explored for optimal power flow problems in [3, 103, 107, 121, 171–
174] and state estimation problems in [175]. Developing further insights

2Exactness is obtained for a slight modification of these systems which enforces
a small minimum series resistance (e.g., 1× 10−4 per unit) on each line. Note that
this modification’s success seems to be related to the test cases’ objectives, which
minimize increasing functions of active power generation.

The version of record is available at: http://dx.doi.org/10.1561/3100000012



4.1. Semidefinite Programming Relaxations 43

regarding the tightness of the Shor relaxation is largely an empirical
task. Most of the related literature has focused on characterizing the
exactness (or lack therefore) of the Shor relaxation with respect to OPF
problems; less is known regarding exactness for other power system opti-
mization problems. Many existing empirical studies regarding exactness
of the Shor relaxation, e.g., [176, 177], have relied on the limited set of
publicly available power system test cases, such as the NESTA [178]
and PGLib [179] test case archives. More rigorous empirical statements
will require experimentation with additional test systems, potentially
leveraging forthcoming OPF benchmark problems [180]. Notable recent
work in this direction is presented in [174], which finds that an optimal
power flow problem for a 706-bus system used by the French Trans-
mission Operator RTE can exhibit large optimality gaps (both for the
Shor relaxation and the QC relaxation discussed in §4.2.1). Moreover,
this problem undergoes “phase transitions” between large and small
optimality gaps as the loading varies.

Exactness of the Shor relaxation is influenced by the choice of
objective function, with objectives that minimize increasing functions of
active power generation (e.g., generation cost, losses) tending to more
often result in an exact relaxation [104]. Note that there are practical
power system optimization problems whose objectives are not increasing
functions of active power generation, such as tracking an active power
setpoint, achieving a specified voltage profile, minimizing load shedding,
and optimizing volt/var setpoints [181–183]. The problem’s constraints
also play an important role, with constraint formulations that are similar
in the non-convex problem possibly exhibiting significantly different
characteristics in the relaxations (e.g., line-flow limits based on angle
differences, apparent power flows, and active power flows can perform
very differently in the Shor relaxation [98]).

Notice that the rank conditions (4.4) and (4.9) can only be checked
after solving the relaxation. There have been efforts to find sufficient
conditions for which the Shor relaxation is a priori guaranteed to be
exact. Many of the resulting a priori sufficient conditions follow from
conditions for a (generally weaker) SOCP relaxation. These conditions
will be discussed in §4.2 and are reviewed in [75]. There are also sev-
eral known a priori sufficient conditions that are specific to the Shor
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relaxation. These conditions are stated with the help of two definitions
related to the network topology. A “length-k loop network” consists of
a single cycle with length k. A “weakly cyclic network” (also referred
to a “cactus network”) is a network where every line belongs to at most
one cycle. Using these definitions, the known exactness conditions for
Shor relaxations of OPF problems are:

• Weakly-cyclic meshed networks where each cycle has length equal
to three, with line-flow limits specified in terms of the magnitudes
of the differences in the terminal voltage phasors and a “load
oversatisfaction” assumption [98].3

• Lossless networks that are cycles with at most one chord (or
potentially multiple such cycles that are connected by a tree topol-
ogy) and the only inequality constraints are voltage magnitude
limits [184].

• Length-3 loop networks where all lines have equal resistance-to-
reactance ratios, there are no lower bounds on active and reactive
power injections, and line-flow limits are specified in terms of the
magnitudes of the differences in the terminal voltage phasors [185].

• Lossless, length-4 loop networks without upper or lower limits on
reactive power injections and no line-flow limits [185].

• Lossless, arbitrary-length loop networks without upper or lower
limits on active power injection, without lower limits on reactive
power injections, and line-flow limits specified in terms of the
magnitudes of the differences in the terminal voltage phasors [185].

• Lossless networks without lower limits on reactive power genera-
tion, limits on active power injections at every bus that include

3Rather than fixed power injections modeled with equality constraints, the “load
oversatisfaction” assumption results in load models that are inequality constraints
with upper limits on the active and reactive power injections equal to the specified load
demands and no lower limits (i.e., power consumption can arbitrarily increase beyond
the specified demands). See §4.2.3 for further discussion on the load oversatisfaction
assumption.
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zero, and an objective that is an increasing function of reactive
power generation [185].

Note that there exist bounds on the rank of the solution matrix based on
a characteristic of the network topology called the treewidth [186]. The
treewidth of a network is relevant to the computational aspects of SDPs
and will be further discussed in the following section on computational
developments. Other bounds regarding the rank of the solution matrix
are derived in [185] for optimization problems which have weakly cyclic
network topologies and do not enforce certain limits on active and
reactive power injections.

The fact that the Shor relaxation is exact for many problems which
do not satisfy any known sufficient conditions suggests the potential for
developing more broadly applicable sufficient conditions. One natural
speculation is that such sufficient conditions may be related to physical
aspects of the power flow equations (e.g., proximity to voltage collapse).
However, a small test case in [122] dampens enthusiasm for this avenue
of research. The test case in [122] has two mathematically equivalent
formulations. The Shor relaxation is exact for one formulation, but
is not exact for the other. Thus, strictly physically based sufficient
conditions cannot predict the relaxation’s success or failure to be exact
for all problems. Developing more general sufficient conditions is an
open problem.

There have also been approaches that seek to modify the non-convex
optimization problem such that the resulting Shor relaxation is exact for
the modified problem (e.g., the penalization approaches in [98, 187] and
the Laplacian objective approach in [188]). These modified formulations
are not relaxations of the original non-convex problem. These approaches
are therefore discussed in §6, which focuses on methods for finding
feasible points for the power flow equations.

When the Shor relaxation is not exact, it can generally be tightened
via augmentation with certain convex inequalities as well as constraints
from relaxations that are not dominated by the Shor relaxation. See §4.4
for further discussion on such approaches. Other tightening approaches
include the “moment/sum-of-squares” relaxations presented in §4.1.2,
which generalize the Shor relaxation.
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It may also be the case that a solution to the Shor relaxation does
not satisfy the rank constraint (4.4) but the objective value from the
relaxation is, in fact, the global optimum of the original non-convex prob-
lem. This situation occurs when the global solution for the non-convex
problem is contained within a larger set of solutions to the relaxation
(i.e., there exists a rank-one solution within a set of solutions to the
relaxation, some of which have higher rank). The iterative approach
in [189] searches for such “hidden” rank-one solutions when the rank
condition (4.4) is not satisfied.

Computational Developments

Significant efforts have addressed the computational challenges associ-
ated with solving the Shor relaxation. The computational challenges
result from the positive semidefinite constraint on the 2n×2n real-valued
matrix in (4.3) (or the n× n Hermitian matrix in (4.8)). The number
of variables in the positive-semidefinite-constrained matrix grows as
O (n2). Directly implementing the positive semidefinite constraint on
the 2n× 2n matrix typically results in computational intractability for
systems with more than a few hundred buses.

Fortunately, a method exists for exploiting the chordal sparsity of
the network which enables the solution of problems with thousands of
buses. The positive semidefinite matrix completion theorem of [190]
provides a necessary and sufficient condition for positive semidefiniteness
of a matrix where the relevant entries are defined with respect to an
underlying graph (i.e., the graph corresponding to the power system
network).4 Several graph theoretic definitions are needed to state this
matrix completion theorem. In particular, a clique is a completely
connected subgraph (i.e., a set of nodes which are all adjacent to
each other). A maximal clique is a clique which is not a subset of
another clique. A maximum clique is a clique which has the largest
size among all cliques in the graph. A chord is an edge connecting
two non-adjacent nodes in a cycle. A chordal graph has the property
that all cycles with more than three nodes have a chord. A chordal

4Theorem 10.1 in [191] uses arguments based on linear algebra to provide a
simplified proof of the positive semidefinite matrix completion theorem.
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extension of a graph is a supergraph (i.e., a graph that includes all
of the original edges plus some additional edges) that is chordal. A
chordal extension can be constructed using the sparsity pattern of
the Cholesky factorization of the network’s adjacency matrix [141]. A
minimum degree ordering [192] assists in obtaining a sparse chordal
extension (i.e., reducing the number of additional edges in the chordal
supergraph). Note that the maximal cliques of a chordal graph can be
obtained in linear time [193]. Figure 4.1a illustrates these definitions
with a small test case.

Using these definitions, the matrix completion theorem of [190]
states that the W matrix in (4.3) is positive semidefinite if and only
if all submatrices associated with the maximal cliques of a chordal
extension of the network graph are positive semidefinite. Figure 4.1b
illustrates this theorem for the small test case in Figure 4.1a.

Since typical power systems have a small treewidth, which is a
scalar defined as one less than the size of the smallest maximum clique
among all possible chordal extensions of the network graph, the largest
submatrix is usually much smaller than the full matrix. Thus, the
matrix completion theorem [190] allows for the decomposition of the
constraint W � 0 into positive semidefinite constraints on many smaller
submatrices. Figure 4.2 shows an illustration of the relative matrix
sizes for the original and decomposed matrices for the IEEE 300-bus
system [166]. Even though exploiting sparsity results in many more
positive semidefinite matrix constraints, the decomposed matrices are
significantly smaller than the original 2n× 2n matrix in (4.3), resulting
in substantial computational advantages.

Note that for systems modeled with balanced single-phase equivalent
networks that have radial topologies, exploiting chordal sparsity for the
Shor relaxation in complex voltage phasors (i.e., (4.7a)–(4.7c) and (4.8))
yields Jabr’s SOCP relaxation [194], which will be described in §4.2.1.
For Shor relaxations of problems with meshed networks, note that the
positive semidefinite constraints on the submatrices associated with
size-two maximal cliques can be formulated using SOCP constraints
rather than more computationally expensive SDP constraints.

Since a completion theorem similar to that in [190] holds for the
rank of a positive semidefinite matrix defined over a graph [195], the
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(c) Constraints after clique merging

Figure 4.1: Exploitation of chordal sparsity for a four-bus system. The network
in Figure 4.1a shown by the black lines is not chordal since the cycle {1, 2, 4, 3}
does not have a chord. The red dashed line in Figure 4.1a is a chord for this cycle
since it connects buses 2 and 3, which are in the cycle but not adjacent. Addition of
the red dashed line thus yields a chordal extension of the network topology. This
chordal extension has the two maximal cliques denoted C1 and C2. Figure 4.1b shows
the decomposition of the positive semidefinite constraint (4.8) in a chordal-sparsity
exploiting Shor relaxation. Superscripts ( · )(1) and ( · )(2) refer to the clique number.
The highlighted blue matrix entries indicate terms which correspond to the same
term in the original Z matrix and therefore require equality constraints as shown in
the figure. Note that the Hermitian structure enforces Z(1)

32 = Z(2)
32 by construction.

Figure 4.1c demonstrates the possible computational advantages of merging max-
imal cliques. Merging cliques C1 and C2 (i.e., constructing a supergraph that has
an additional connection between buses 1 and 4) yields the constraint shown in
Figure 4.1c, with the prime superscript ( · )′ indicating terms in the merged clique.
Observe that merging the maximal cliques eliminates the equality constraints. More-
over, merging the maximal cliques results in a single positive semidefinite matrix
constraint on a 4 × 4 matrix rather than positive semidefinite constraints on two
3× 3 matrices, reducing the total number of matrix entries from 3× 3 + 3× 3 = 18
to 4× 4 = 16. (Note that while applying clique merging to this example results in
a formulation that is equivalent to the Shor relaxation without exploiting sparsity,
this is not the case in general.) Further details can be found in [303].

Figure 4.1: Exploitation of chordal sparsity for a four-bus system. The network
in Figure 4.1a shown by the black lines is not chordal since the cycle {1, 2, 4, 3}
does not have a chord. The red dashed line in Figure 4.1a is a chord for this cycle
since it connects buses 2 and 3, which are in the cycle but not adjacent. Addition of
the red dashed line thus yields a chordal extension of the network topology. This
chordal extension has the two maximal cliques denoted C1 and C2. Figure 4.1b shows
the decomposition of the positive semidefinite constraint (4.8) in a chordal-sparsity
exploiting Shor relaxation. Superscripts ( · )(1) and ( · )(2) refer to the clique number.
The highlighted blue matrix entries indicate terms which correspond to the same
term in the original Z matrix and therefore require equality constraints as shown in
the figure. Note that the Hermitian structure enforces Z(1)

32 = Z(2)
32 by construction.

Figure 4.1c demonstrates the possible computational advantages of merging max-
imal cliques. Merging cliques C1 and C2 (i.e., constructing a supergraph that has
an additional connection between buses 1 and 4) yields the constraint shown in
Figure 4.1c, with the prime superscript ( · )′ indicating terms in the merged clique.
Observe that merging the maximal cliques eliminates the equality constraints. More-
over, merging the maximal cliques results in a single positive semidefinite matrix
constraint on a 4 × 4 matrix rather than positive semidefinite constraints on two
3× 3 matrices, reducing the total number of matrix entries from 3× 3 + 3× 3 = 18
to 4× 4 = 16. (Note that while applying clique merging to this example results in
a formulation that is equivalent to the Shor relaxation without exploiting sparsity,
this is not the case in general.) Further details can be found in [141].
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Size of the matrix
without decomposition.

Sizes of the submatrices resulting from
the matrix completion decomposition.

Figure 4.2: Relative sizes of the matrix for the original Shor relaxation (top) and
the submatrices resulting from the matrix completion decomposition (bottom) for
the IEEE 300-bus system [166]. Observe that even though exploiting sparsity results
in many more positive semidefinite matrix constraints, the decomposed matrices are
significantly smaller than the original 2n× 2n matrix in (4.3).
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rank condition (4.4) (or (4.9) for the Hermitian matrix representation)
can be evaluated using analogous conditions on the submatrices. An
approach related to (4.5) (and (4.10) for the complex representation)
can extract globally optimal solutions when each submatrix satisfies
rank conditions analogous to (4.4) or (4.9) [141].

Detailed presentations on exploiting chordal sparsity in general
semidefinite programs are provided in [191, 196]. Exploiting chordal
sparsity was first proposed for SDP relaxations of OPF problems with
balanced single-phase equivalent networks in [197] and for unbalanced
three-phase radial networks in [168]. Additional computational improve-
ments were demonstrated in [141] (and further analyzed in [198]) by
merging selected maximal cliques. Merging maximal cliques of a chordal
extension results in another, denser chordal extension.5 This can be
computationally advantageous in some instances. Firstly, certain merges
can reduce the total number of entries in the positive-semidefinite-
constrained matrices. Furthermore, it eliminates the need to enforce
equality constraints between terms in the submatrices corresponding
to the merged maximal cliques which refer to the same term in the
full matrix. An illustrative example is provided in Figure 4.1c. A de-
tailed computational complexity analysis of chordal-sparsity-exploiting
interior point solvers is presented in [199]. Reference[199] also proposes
variants that use the dualization approach of [200] and auxiliary vari-
ables to speed solution times. Other recent work in [177] compares
various formulations of the sparsity-exploiting Shor relaxations of OPF
problems.

Computational improvements can be achieved at the cost of tight-
ness by further relaxing the sparsity-exploiting Shor relaxation. The
approach in [142] further relaxes the decomposed problem by not en-
forcing equality constraints between all terms in the submatrices that
refer to the same term in the full matrix. The approach in [201] forms
a further relaxation of the chordal-sparsity-based constraints by only

5Merging two maximal cliques can be accomplished by forming a chordal super-
graph which connects all buses in the merged cliques.
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enforcing positive semidefinite constraints on submatrices correspond-
ing to a cycle basis of the graph.6 Reference [202] enforces positive
semidefinite constraints on the 3× 3 submatrices of Z in (4.8) whose
rows and columns correspond to the reference bus, bus i, and bus k,
for all (i, k) ∈ L. The further-relaxed approaches in [142, 201, 202] can
speed computations of the relaxations. However, there exist cases for
which the Shor relaxation is exact, but the approaches in [142, 201, 202]
result in a non-zero relaxation gap.

Another approach for further relaxing the Shor relaxation is pre-
sented in [203]. Specifically, this approach exploits the fact that non-
negativity of a matrix’s principal minors (i.e., non-negative determinants
of certain submatrices) is a necessary condition for positive semidefi-
niteness. Corresponding necessary conditions are enforced for the 2× 2
and 3 × 3 submatrices of the matrix W in (4.3). When considered
individually, non-negativity of the determinant of 3× 3 (or larger) ma-
trices yields non-convex polynomial constraints; however, the resulting
optimization problem is convex as long as non-negativity constraints
for the determinants of all smaller submatrices are enforced [204, 205].
Using this approach, [203] demonstrates the potential for significantly
faster solution times (more than an order-of-magnitude faster than
the solution times obtained using the SDP solver SDPT3 [136]) with
minimal degradation in tightness relative to the Shor relaxation.

Knowledge of the dual variable values from a local solution can
also help improve the tractability of the Shor relaxation. The approach
in [206] fixes certain dual variables to their values from a local solution
in order to improve the computational speed of the Shor relaxation at
the expense of a weaker objective value bound. The fixed dual variables
are chosen via a heuristic based on the eigenvalues of submatrices from
the matrix completion decomposition, evaluated using the dual variable
values from a local solution.

Typical SDP solvers (e.g., MOSEK [133], SeDuMi [135], and SDPT3
[136]) use interior point algorithms which require information on second
derivatives (i.e., these solvers use second-order algorithms, in contrast

6A “cycle basis” for a network is a set of cycles such that any other cycle in
the network can be constructed via an appropriate combination of the cycles in the
basis [77].
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to first-order algorithms that only use information on first derivatives).
(Note that “order” in this context is unrelated to the order of the
moment/sum-of-squares relaxations that will be discussed in §4.1.2.)
Other research efforts regarding computational improvements consider
solving semidefinite programs using modified interior point algorithms.
Relevant research includes parallelizing interior point methods to de-
velop SDP solvers that can run on high-performance computing infras-
tructures [207], which has the potential to significantly improve the
tractability of the Shor relaxation. Additionally, in contrast to existing
solvers which solely operate on real-valued quantities, recent research
in [130] prototypes a solver that performs interior point computations
in complex variables to exploit the structure of complex-valued SDP
problems such as those resulting from the power flow equations. Pre-
liminary results suggest the potential for up to a factor-of-four speed
improvement over real-valued interior point solvers.

Other research efforts aim to improve the computational tractability
of the Shor relaxation through the use of alternate solution algorithms
besides interior point methods. These include [208], which applies a
first-order coordinate descent algorithm, and [209], which proposes a
hybrid method that switches between first- and second-order algorithms.
Distributed solution algorithms have also been developed, many of
which are based on the Alternating Direction Method of Multipliers
(ADMM), for both balanced single-phase equivalent networks [210–
213] and unbalanced three-phase networks [167, 214]. (Discussion of an
ADMM-based solution algorithm for an SOCP formulation is provided
in §4.2.4 and [215].) These approaches allow for distributed computation
techniques which can be performed in parallel. Reference [45] surveys
the power systems literature regarding distributed optimization and
control algorithms.

For large problems with meshed networks, none of these methods
have yet demonstrated computational competitiveness in comparison to
MOSEK with a chordal-sparsity exploiting formulation. Extrapolations
that calculate the best possible parallel speed suggest that implementa-
tions of these methods have the potential to significantly surpass interior
point methods in the future. However, it remains to be seen whether
these parallel methods can achieve such speeds for large problems in
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practice due to factors such as communication overhead between the
computing nodes. For instance, [208] reports a solver time of 90 seconds
when the proposed coordinate descent algorithm (implemented in C
with OpenMP) is applied to the IEEE 300-bus system [166]. In com-
parison, the solver time required for MOSEK with a chordal-sparsity
exploiting relaxation [129] is approximately two seconds. Similarly,
while an implementation of the ADMM-based method in [213] requires
18 minutes to achieve a moderately accurate solution to the 9241-bus
PEGASE system [216], the solver time required for MOSEK with a
chordal-sparsity exploiting relaxation [129] is approximately 4 minutes.
Note that computational speed is not the only relevant consideration;
the distributed nature of certain solution algorithms can be advan-
tageous for some applications, even when a centralized algorithm is
computationally faster.

To be computationally competitive with existing non-linear program-
ming solvers that seek a local optimum, significant effort is required
to improve SDP solvers and relaxation formulations. This applies to
both computational speed and numerical convergence, which can be the
limiting factor in SDP relaxations of OPF problems. Recent research
in [217] explores the numerical convergence challenges associated with
chordal-sparsity-exploiting algorithms. The need for equality constraints
between duplicated variables which appear in multiple submatrices can
lead to poor numeric conditioning. So-called “facial reduction” tech-
niques can help address these numerical conditioning issues [218]. An-
other approach to improving numerical convergence characteristics is
presented in [219], where low-impedance lines are eliminated in order
to reduce the differences in the magnitudes of the coefficient values in
the resulting SDP relaxations.

An approach that sidesteps the computational challenges with cur-
rent SDP solvers is proposed in [220]. Specifically, this approach tests
whether a candidate solution from a primal/dual local solution algo-
rithm satisfies the KKT conditions which are necessary and sufficient
for global optimality of a solution to the Shor relaxation.7 Satisfaction

7A locally optimal candidate solution satisfies the KKT conditions for the non-
convex optimization problem. The approach in [220] checks whether the candidate
solution also satisfies the KKT conditions for the Shor relaxation.
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of the KKT conditions for the Shor relaxation is a sufficient (but not
necessary) condition which certifies that the candidate solution is a
global optimum. The required mathematical operations rely on sparse
linear algebra computations that can be performed very quickly relative
to directly solving the Shor relaxation.

4.1.2 Moment/Sum-of-Squares Relaxation Hierarchies

While the Shor relaxation in [164] is exact for certain power system
optimization problems, there are also cases for which the relaxation
fails to be exact. One approach for globally solving such cases is to
use generalizations of the Shor relaxation that are developed using
the Lasserre hierarchy for polynomial optimization problems [221, 222].
Relaxations from the Lasserre hierarchy are formulated as SDPs with
matrices of increasing size. For polynomial optimization problems that
satisfy certain technical conditions, including many problems relevant
to power systems such as OPF, the relaxations’ solutions converge
to the globally optimal objective value at a finite relaxation order
in the Lasserre hierarchy [223, 224]. In addition to the Lasserre hi-
erarchy, several other closely related moment/sum-of-squares relax-
ation hierarchies have also been developed with differing characteris-
tics.

The moment/sum-of-squares relaxations have a deep theoretical
grounding based on truncated moment series in the primal formulation
and sum-of-squares polynomials of increasing degrees in the dual for-
mulation [221, 222, 225]. The presentation in this section focuses on a
conceptual understanding of the moment/sum-of-squares relaxations.
Additional theoretical and technical details are provided in [222, 226].
With a focus on the moment (primal) formulation and for notational
convenience, the term “moment” relaxations is hereafter used as a
synonym for “moment/sum-of-squares” relaxations.

This section presents a mathematical overview of the moment re-
laxation hierarchies, discusses the exactness of the relaxations and
the relationships among the relaxation hierarchies, and summarizes
computational challenges and recent advances.

The version of record is available at: http://dx.doi.org/10.1561/3100000012



4.1. Semidefinite Programming Relaxations 55

The Lasserre Hierarchy in Real Variables

The moment relaxations can be understood using the observation that
constraints which are redundant in a non-convex optimization problem
may serve to tighten a relaxation. Moment relaxation theory can thus
be viewed as a systematic method for choosing appropriate constraints
to enforce in the relaxation.

The Lasserre hierarchy [222] requires a polynomial optimization
problem in terms of real variables. Thus, development of the moment
relaxations proceeds from the power flow formulation (2.4) with real
variables Vdi and Vqi, i = 1, . . . , n. Define the vector of decision variables
x̂ ∈ R2n as

x̂ =
[
Vd1 . . . Vdn Vq1 . . . Vqn

]ᵀ
. (4.11)

Using a vector of non-negative integers α ∈ N2n, a monomial is

x̂α = V α1
d1 V

α1
d2 · · ·V α2n

qn . (4.12)

A polynomial h (x̂) is

h (x̂) =
∑

α∈N2n

hα x̂
α, (4.13)

where hα is the scalar multiplier of the monomial x̂α.
Define a linear functional Ly {·} which takes a polynomial argument.

This functional replaces the monomials x̂α in a polynomial with “lifted”
scalar variables yα:

Ly {h} =
∑

α∈N2n

hα yα. (4.14)

Thus, Ly {h} converts a polynomial h (x̂) to a linear combination of
scalars y. For a matrix argument H (x̂), the functional Ly {H} is applied
componentwise to each element.

Consider, for example, the polynomial h (x̂) = V 2
d2 + V 2

q2 − 0.81.
The constraint h (x̂) ≥ 0 enforces a lower limit of 0.9 per unit on
the voltage magnitude at bus 2. Applying the linear functional yields
Ly (h) = y0200 + y0002 − 0.81y0000. The term y0000 corresponds to the
fact that x̂0 = 1.

Let γ be an integer that denotes the order of the relaxation in the
moment hierarchy. The relaxation order γ must generally be greater
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than or equal to half of the largest degree of the polynomials in the
constraints and the objective function. All polynomials in the power
flow equations (2.4) are quadratic, and thus only require γ ≥ 1. More
generally, the expressions for other quantities may involve higher-degree
polynomials in terms of the voltage components Vd and Vq.8 When
these constraints are convex, they can often be represented using SOCP
formulations as discussed in §3.2. Thus, first-order moment relaxations,
i.e., γ = 1, are typically well-defined even if some polynomials have
degree greater than two. Further details are provided in [122].

For the order-γ moment relaxation in the Lasserre hierarchy, define
a vector xγ consisting of all monomials of the voltage components Vd
and Vq up to order γ:

xγ =
[

1 Vd1 . . . Vqn V 2
d1 Vd1Vd2 . . .

. . . V 2
qn V 3

d1 V 2
d1Vd2 . . . V γ

qn

]ᵀ
. (4.15)

Note that xγ is used to indicate the vector of monomials in (4.15) as
opposed to the γ-th entry of the vector x.

The moment relaxations are formulated using positive semidefinite
constraints on so-called moment and localizing matrices. The order-γ
symmetric moment matrix Mγ is composed of entries yα corresponding
to monomials with degree up to 2γ:

Mγ {y} = Ly
{
xγ x

ᵀ
γ

}
. (4.16)

Symmetric localizing matrices are defined for each constraint h (x̂) ≥
0 in the polynomial optimization problem. Consider a polynomial h (x̂)
with degree 2η. (For typical power system optimization problems, the
constraint and cost-function polynomials have even degree.) The local-
izing matrix associated with h (x̂) ≥ 0 is

Mγ−η {h y} = Ly
{
hxγ−η x

ᵀ
γ−η

}
. (4.17)

8For instance, apparent power line flows and quadratic costs of active power
generation are quadratic expressions in terms of the active and reactive power flows
and the active power injections, respectively, which are themselves quadratic in the
voltage components. Thus, expressions for apparent power line flows and quadratic
costs of power injections are quartic in the voltage components.
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The vector x2 and the moment matrix M2 {y} associated with a
two-bus system are shown in (4.18) and (4.19), respectively, for the
second-order moment relaxation. An example localizing matrix for the
voltage magnitude constraint h (x̂) = V 2

d2 + V 2
q2 − 0.81 is given in (4.20).

Example moment and localizing matrices for a three-bus system are
considered in [122].

While the moment relaxations can accommodate more general poly-
nomial constraints on the power injections and voltage magnitudes,
consider for illustrative purposes an optimization problem with box
constraints on these quantities: Pmini ≤ Pi ≤ Pmaxi , Qmini ≤ Qi ≤ Qmaxi ,
and (V min

i )2 ≤ |Vi|2 ≤ (V max
i )2. Also consider an objective function

that minimizes the generic polynomial fC(x̂). The order-γ moment
relaxation is:

min
y

Ly {fC} (4.21a)

subject to

Mγ−1
{(
fPi − Pmini

)
y
}
� 0, ∀k ∈ N , (4.21b)

Mγ−1
{(
Pmaxi − fPi

)
y
}
� 0, ∀k ∈ N , (4.21c)

Mγ−1
{(
fQi −Qmini

)
y
}
� 0, ∀k ∈ N , (4.21d)

Mγ−1
{(
Qmaxi − fQi

)
y
}
� 0, ∀k ∈ N , (4.21e)

Mγ−1
{(
fV i − (V min

i )2
)
y
}
� 0, ∀k ∈ N , (4.21f)

Mγ−1
{(

(V max
i )2 − fV i

)
y
}
� 0, ∀k ∈ N , (4.21g)

Mγ {y} � 0, (4.21h)
y00...0 = 1, (4.21i)
y?···?ρ?···? = 0, ρ = 1, . . . , 2γ, (4.21j)

where fPi, fQi, and fV i are polynomial expressions in the voltage compo-
nents Vd and Vq for active power injection, reactive power injection, and
squared voltage magnitude, respectively, at bus i, i.e., the right-hand
sides of (2.4). The positive semidefinite constraints (4.21b)–(4.21g) are
applied to the localizing matrices, (4.21h) corresponds to the moment
matrix, and (4.21i) results from the fact that x̂0 = 1.
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In (4.21j), ρ is in the index n+ 1 and ? is used to denote any integer.
Thus, (4.21j) enforces the angle reference constraint by setting to zero
all terms corresponding to monomials which contain Vq1. Alternatively,
the angle reference can be enforced by eliminating all monomials con-
taining the term Vq1 from xγ while also deleting the corresponding
rows and columns from the moment and localizing matrices. Eliminat-
ing Vq1 reduces the size of the semidefinite program, thus improving
computational tractability.

Note that power system optimization problems often have several
characteristics that can be exploited to improve the computational
aspects of the moment relaxations (e.g., equality constraints and the
lack of odd-order monomials). Further details and illustrative examples
are provided in [122, 129, 227].

Observe that the moment relaxations form a hierarchy. The upper
left submatrices in the moment and localizing matrices for the order-γ
relaxation are equivalent to the matrices in the order-(γ − 1) relaxation.
Since a necessary condition for positive semidefiniteness of a matrix
is positive semidefiniteness of its principal submatrices, the higher-
order relaxations generalize the lower-order relaxations. In particular,
note that the entries in the first five rows and columns of the second-
order moment matrix in (4.19) and the (1, 1) entry of the second-order
localizing matrix in (4.20) correspond to the moment and localizing
matrices for the first-order relaxation. Moreover, note that the first-
order moment relaxation is equivalent to the Shor relaxation of [164]
given in (4.2).

Conceptually, formulation of the higher-order relaxations can be
viewed as the addition of constraints that are redundant in the non-
convex problem but strengthen the moment relaxations. Consider a
generic polynomial constraint g (x̂) ≥ 0 with degree 2η. The rank-
one matrix xγ−η x

ᵀ
γ−η is positive semidefinite by construction, and the

scalar g (x̂) is non-negative due to the constraint g (x̂) ≥ 0. Thus, their
product g (x̂)xγ−η x

ᵀ
γ−η is a rank-one positive semidefinite matrix, and

the constraint g (x̂)xγ−η x
ᵀ
γ−η � 0 is redundant with the constraint

g (x̂) ≥ 0. Relaxing to Ly
{
g (x̂)xγ−η x

ᵀ
γ−η

}
� 0 (i.e., formulating this

constraint in terms of the “lifted” variables yα and dropping the rank
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constraint) results in the localizing matrix constraint Mγ−η {g y} � 0,
which can tighten the moment relaxation. Likewise, the constraint
xγx

ᵀ
γ � 0 is always satisfied by construction, so adding a relaxed version

of this constraint (i.e., the moment matrix constraint Mγ {y} � 0
in (4.21h)) is valid. Observe that the objective function (4.21a) is also
relaxed, the constraint (4.21i) is a relaxation of x0 = 1, and (4.21j) is
implied by the angle reference constraint Vq1 = 0. Thus, the moment
hierarchy (4.21) provides relaxations of the original non-convex power
system optimization problem.

A “flat extension condition” is sufficient to certify exactness of the
order-γ moment relaxation [222, 228]. The order-γ relaxation satisfies
the flat extension condition if the upper-left block of the moment matrix
corresponding to the order-(γ − 1) relaxation has the same rank as the
full moment matrix:

rank (Mγ {y}) = rank (Mγ−1 {y}) . (4.22)

Define r = rank (Mγ {y}). References [222, 228] provide an algorithm
for recovering r unique global optima from a solution satisfying (4.22).
Thus, the Lasserre hierarchy is capable of providing multiple global
optima. Even though typical power system optimization problems, such
as OPF, may often yield multiple local optima [3], it is unusual to have
multiple global optima. Atypical cases with multiple global optima are
discussed in [227].

A more specific sufficient condition for exactness of the order-γ
relaxation is provided by

rank (Mγ {y}) = 1. (4.23)

A solution that satisfies (4.23) provides a single global optimum which
can be recovered in a similar manner as for the Shor relaxation of [164].
In this case, the global solution V ∗ is determined by a spectral decom-
position of the diagonal block of the moment matrix corresponding
to the second-order monomials (i.e., |α| = 2, where | · | indicates the
one-norm). Let ν be the unit-length eigenvector corresponding to the
non-zero eigenvalue λ of Mγ{y}. Denote νd and νq as the vectors con-
sisting of the entries of ν from ν2 to νn+1 and from νn+2 to ν2n+1,
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respectively.9 Then the vector

V ∗ =
√
λ (νd + jνq) (4.24)

gives the globally optimal voltage phasors.10

A Hierarchy in Complex Variables

A related relaxation hierarchy that employs SDP constraints in complex
variables is proposed in [129]. (Alternative presentations of this complex
moment hierarchy are given in [226, 229] and further mathematical
details are available in [230].) As will be discussed in the following section,
at a given relaxation order, the complex moment hierarchy in [129]
produces relaxations that have computational advantages over the
relaxations from the Lasserre hierarchy. These computational advantages
come at the cost of tightness for some optimization problems.

In contrast to the real variables used in the Lasserre hierarchy (4.21),
the complex moment relaxation hierarchy in [129] is constructed directly
from polynomials in the voltage phasors V and their complex conjugates
V . Specifically, let ẑ be the vector of complex voltage phasors:

ẑ =
[
V1 · · · Vn

]ᵀ
. (4.25)

Define a generic polynomial h (ẑ) as

h (ẑ) =
∑

α,β∈Nn
hα,β ẑ

α ẑβ, (4.26)

where hα,β is a complex scalar and the integer vectors α and β corre-
spond to the exponents of the non-conjugated and conjugated voltage

9If the reference angle constraint Vq1 = 0 is used to eliminate Vq1, the vector νq
is redefined as νq = [0 ν̃ᵀq ]ᵀ, where ν̃q consists of the entries of ν from νn+2 to ν2n.

10One can attempt to recover a solution even if the rank condition (4.23) is not
satisfied by applying (4.24) with ν as the eigenvalue corresponding to the largest
(but not the only non-zero) eigenvalue of Mγ{y}. A global solution is obtained if this
yields a feasible voltage profile with a corresponding objective value that matches the
bound from the solution to the moment relaxation. While there are no guarantees
that the resulting voltage profile will be feasible (much less globally optimal), it may
be sufficiently close to the global solution in order to be practically useful for some
problems.
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phasors, respectively. Note that the polynomials’ outputs are real-valued
quantities, i.e., hα,β = hβ,α.

Let γ denote the relaxation order, with the same requirements on
the choice of γ as in the Lasserre hierarchy. Let zγ denote the vector of
monomials without complex conjugate terms (i.e., β = 00 · · · 0) up to
order γ:

zγ :=
[

1 V1 . . . Vn V 2
1 V1 V2 . . .

. . . V 2
n V 3

1 V 2
1 V2 . . . V γ

n

]ᵀ
. (4.27)

As for xγ in the Lasserre hierarchy, zγ is used to indicate the vector of
monomials in (4.27) as opposed to the γ-th entry of the vector z.

Define the linear functional L̂ŷ {·} which replaces the monomial
ẑαẑβ with the complex scalar variable ŷα,β:

L̂ŷ {h} =
∑

α,β∈Nn
hα,β ŷα,β. (4.28)

Analogous to (4.16), the Hermitian moment matrix for the order-γ
relaxation in the complex moment hierarchy proposed in [129] is

M̂γ {ŷ} = L̂ŷ
{
zγ z

H
γ

}
. (4.29)

Let the generic polynomial constraint h (ẑ) ≥ 0 have the largest degree
|α+ β| among all monomials equal to 2η. Analogous to (4.17), the
Hermitian localizing matrix associated with this constraint is

M̂γ−η {h ŷ} = L̂ŷ
{
h zγ−η z

H
γ−η

}
. (4.30)

As an illustrative example for the second-order complex moment
relaxation of a two-bus problem, (4.31), (4.32), and (4.33) provide
z2, the moment matrix M̂2 {ŷ}, and the example localizing matrix
M̂1

{(
V2V 2 − 0.81

)
ŷ
}
for the constraint h (ẑ) = V2V 2 − 0.81 ≥ 0:

z2 =
[

1 V1 V2 V 2
1 V1V2 V 2

2
]ᵀ
, (4.31)
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M̂2 {ŷ}

= L̂ŷ
{
z2 z

H
2
}

=




ŷ00,00 ŷ00,10 ŷ00,01 ŷ00,20 ŷ00,11 ŷ00,02

ŷ10,00 ŷ10,10 ŷ10,01 ŷ10,20 ŷ10,11 ŷ10,02

ŷ01,00 ŷ01,10 ŷ01,01 ŷ01,20 ŷ01,11 ŷ01,02

ŷ20,00 ŷ20,10 ŷ20,01 ŷ20,20 ŷ20,11 ŷ20,02

ŷ11,00 ŷ11,10 ŷ11,01 ŷ11,20 ŷ11,11 ŷ11,02

ŷ02,00 ŷ02,10 ŷ02,01 ŷ02,20 ŷ02,11 ŷ02,02




,

(4.32)

M̂1
{(
V2V 2 − 0.81

)
ŷ
}

= L̂ŷ
{(
V2V 2 − 0.81

)
zγ−1 z

H
γ−1

}

=




ŷ01,01 − 0.81ŷ00,00 ŷ01,11 − 0.81ŷ00,10 ŷ01,02 − 0.81ŷ00,01

ŷ11,01 − 0.81ŷ10,00 ŷ11,11 − 0.81ŷ10,10 ŷ11,02 − 0.81ŷ10,01

ŷ02,01 − 0.81ŷ01,00 ŷ02,11 − 0.81ŷ01,10 ŷ02,02 − 0.81ŷ01,01


 .

(4.33)

For illustrative purposes, consider again the set of box constraints
on the power injections and voltage magnitudes as well as a generic
objective function f̂C(ẑ). The complex moment relaxation hierarchy
proposed in [129] is formed using the constraints

min
ŷ

L̂ŷ
{
f̂C
}

(4.34a)

subject to

M̂γ−1
{(
f̂Pi − Pmini

)
ŷ
}
� 0, ∀i ∈ N , (4.34b)

M̂γ−1
{(
Pmaxi − f̂Pi

)
ŷ
}
� 0, ∀i ∈ N , (4.34c)

M̂γ−1
{(
f̂Qi −Qmini

)
ŷ
}
� 0, ∀i ∈ N , (4.34d)

M̂γ−1
{(
Qmaxi − f̂Qi

)
ŷ
}
� 0, ∀i ∈ N , (4.34e)

M̂γ−1
{(
f̂V i − (V min

i )2
)
ŷ
}
� 0, ∀i ∈ N , (4.34f)

M̂γ−1
{(

(V max
i )2 − f̂V i

)
ŷ
}
� 0, ∀i ∈ N , (4.34g)

M̂γ{ŷ} � 0, (4.34h)
ŷ0...0,0...0 = 1, (4.34i)
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where f̂Pi, f̂Qi, and f̂V i are polynomial expressions in the complex
voltage phasors V for active power injection, reactive power injection,
and squared voltage magnitude, respectively, at bus i, i.e., the right-hand
sides of (2.3). The positive semidefinite constraints (4.34b)–(4.34g) are
applied to the localizing matrices, (4.34h) corresponds to the moment
matrix, and (4.34i) results from the fact that ẑ0 ẑ0 = 1.

Similar to the Lasserre hierarchy, characteristics of the power flow
equations and typical power system optimization problems facilitate
certain simplifications to the complex moment hierarchy. In particu-
lar, [129] describes how to exploit the presence of equality constraints
and the fact that all monomials have a balanced number of conjugated
and non-conjugated variables, i.e, |α| = |β| for all monomials ẑα ẑβ in
the power flow equations.

Similar to the “flat extension condition” (4.22) for certifying exact-
ness of the Lasserre hierarchy, [129] provides a sufficient condition for
exactness of the order-γ relaxation in the complex moment hierarchy:

rank
(
M̂γ {ŷ}

)
= rank

(
M̂γ−2 {ŷ}

)
. (4.35)

Both the flat extension condition (4.22) for the Lasserre hierarchy
and condition (4.35) for the complex hierarchy compare the rank of
the full moment matrix for the order-γ relaxation with the rank of a
certain upper-left block of the moment matrix. Specifically, the flat
extension condition (4.22) considers the block corresponding to the
order-(γ − 1) moment matrix, Mγ−1 {y}, while condition (4.35) for the
complex hierarchy considers the smaller block corresponding to the
order-(γ − 2) moment matrix, M̂γ−2 {ŷ}. Define r̂ = rank

(
M̂γ {ŷ}

)
.

An algorithm proposed in [231] enables the recovery of r̂ unique global
optima from a solution satisfying (4.35), as is done in [232]. Thus, like
the Lasserre hierarchy, the complex moment hierarchy is also capable
of providing multiple global optima.

Furthermore, a global solution can be extracted from a solution to
the order-γ relaxation in the complex moment hierarchy (4.34) which
satisfies the condition

rank
(
M̂γ {ŷ}

)
= 1. (4.36)
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Analogous to the Lasserre hierarchy, the global solution V ∗ is then deter-
mined by a spectral decomposition of the diagonal block of the moment
matrix corresponding to the second-order monomials (i.e., |α+ β| = 2).
Specifically, let ν denote a unit-length eigenvector corresponding to the
non-zero eigenvalue λ of M̂γ{ŷ}. Let ν̃ denote the vector consisting
of the entries of ν from ν2 to νn+1. Then the globally optimal voltage
phasors are

V ∗ =
√
λ ν̃, (4.37)

rotated such that ∠ν̃1 = 0◦.11

Note that the complex hierarchy (4.34) does not enforce a constraint
analogous to the angle reference constraint (4.21j) in the Lasserre hier-
archy (4.21). To explain this, observe that the complex moment matrix
M̂γ {ŷ} is invariant to rotations of its constituent eigenvectors. Specifi-
cally, consider the eigendecomposition M̂γ {ŷ} = ∑r̂

i=1 λi νi ν
H
i . Observe

that ∑r̂
i=1 λi

(
νi e

jφi
)(
νi e

jφi
)H = λi e

jφi e−jφi νi ν
H
i = ∑r̂

i=1 λi νi ν
H
i =

M̂γ {ŷ}, where scalars φi describe arbitrary rotations to the eigenvectors
νi. In the context of power system optimization problems, this invariance
implies that a moment matrix satisfying (4.36) is consistent with any
uniform rotation of the angles for the voltage vector defined in (4.37).
Hence, ν in (4.37) can be rotated to match the specified reference angle
without explicitly enforcing an angle reference constraint analogous
to (4.21j).

Alternatively, the angle reference could be enforced by including
positive-semidefinite-constrained localizing matrices corresponding to
the constraint V1 − V 1 = 0 in (4.34). However, the fact that the terms
in this constraint are linear in the voltage phasors alters the otherwise
purely quadratic dependence of the power flow equations on the volt-
age phasors. Thus, explicitly including an angle reference constraint
would preclude the ability to exploit the structure related to odd-order
monomials described in [129]. Since exploiting this structure is most
relevant for larger problems, tightening the higher-order relaxations via
the constraint V1 − V 1 = 0 may be advantageous for small problems
where computational speed is less of a concern.

11For cases where rank
(
M̂γ {ŷ}

)
> 1, footnote 10 also applies for the complex

moment hierarchy with (4.23) and (4.24) replaced by (4.36) and (4.37).
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As will be further discussed in the following section, the complex
moment hierarchy (4.34) has smaller matrices and is therefore more
computationally tractable than the Lasserre hierarchy (4.21) of the
same relaxation order when applied to complex polynomial optimiza-
tion problems. For general polynomial optimization problems, this
improved tractability comes at the cost of tightness: there exist gen-
eral complex polynomial optimization problems for which the order-γ
relaxation in the Lasserre hierarchy is strictly tighter than the order-
γ relaxation in the complex moment hierarchy [129]. Regardless, the
complex hierarchy often has superior performance compared to the
Lasserre hierarchy for typical power system optimization problems [129].
Further computational improvements may potentially be realized by
developing specialized SDP solvers that better exploit complex variable
structures [130].

A Mixed SDP/SOCP Hierarchy

The “mixed SDP/SOCP” hierarchy proposed in [233] is formulated
using a combination of SDP and SOCP constraints. This hierarchy is
intended to be tighter than the first-order moment relaxation but more
computationally tractable than the higher-order moment relaxations
which use SDP constraints.

Necessary (but not sufficient) conditions for positive semidefiniteness
of a matrix can be expressed as rotated SOCP constraints. For a generic
symmetric matrix A, the SOCP-based necessary conditions for A � 0
are

Aii ≥ 0, (4.38a)
AiiAkk ≥ |Aik|2 , ∀ {(i, k) | k > i} . (4.38b)

To form a relaxation that is at least as tight as the first-order
moment relaxation, the mixed SDP/SOCP hierarchy applies a positive
semidefinite constraint to the moment matrix M1 {y} in the first-order
relaxation (4.21h). The higher-order moment and localizing constraints
are relaxed using the SOCP condition in (4.38).

Specifically, the mixed SDP/SOCP hierarchy enforces a positive
semidefinite constraint on the square submatrix of Mγ {y} consisting
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of the rows and columns indexed 2 through 2n + 1, with the SOCP
constraints (4.38) applied to the remaining terms in the moment ma-
trix Mγ {y}. SOCP constraints (4.38) are formulated for all the lo-
calizing matrices (4.21b)–(4.21g). Note that network sparsity can be
exploited to eliminate unnecessary SOCP constraints. See [122] for
an illustrative example of the mixed SDP/SOCP hierarchy applied
to a small test case. Also note that a similar mixed SDP/SOCP ap-
proach could also be applied to the complex moment hierarchy of [129]
(i.e., relaxing (4.34) using the SOCP necessary condition for positive
semidefiniteness (4.38)).

The SDSOS Relaxation Hierarchy

The approach in [234, 235] formulates a hierarchy of relaxations that
are based on so-called Scaled Diagonally Dominant Sum-of-Squares
(SDSOS) polynomials of increasing degree [236]. Relaxations in the
SDSOS hierarchy take the form of SOCP problems.12 While typically
presented in a “sum-of-squares” representation that is the dual of the
moment hierarchies discussed in this section, the SDSOS hierarchy used
in [234, 235] is equivalent to relaxing the SDP constraints in the Lasserre
hierarchy (4.21) to SOCP constraints using the necessary conditions
for positive semidefiniteness of a matrix described in (4.38) [237]. The
approach in [234, 235] is thus similar to the mixed SDP/SOCP hier-
archy, with the difference being that the constraints associated with
the first-order relaxation are also relaxed from an SDP to an SOCP
formulation. In particular, the first-order relaxation in the SDSOS hi-
erarchy is equivalent to the dual of the SOCP relaxation that will be
discussed in §4.2.1 [235]. Thus, the mixed SDP/SOCP hierarchy is
generally tighter than the SDSOS hierarchy, while the SDSOS hierarchy
is computationally faster than the mixed SDP/SOCP hierarchy at the
same relaxation order.

Note that a related Diagonally Dominant Sum-of-Squares (DSOS)
hierarchy composed of linear programming relaxations is applied to the

12The SDSOS hierarchy does not include any SDP constraints and therefore only
requires an SOCP solver. The SDSOS hierarchy is nevertheless discussed in this
section due to its close relationship to the moment relaxation hierarchies.

The version of record is available at: http://dx.doi.org/10.1561/3100000012



68 Convex Relaxations of the Power Flow Equations

OPF problem in [235]. The DSOS hierarchy is a further relaxation of
the SDSOS hierarchy.

Also note that a related approach that constructs an alternative
SDSOS hierarchy is proposed in [238] but has not yet been applied to
power system optimization problems due to computational challenges
related to an exponential number of SOCP constraints in its formulation.
A recent approach proposed in [239, 240] iteratively generates these
SOCP constraints, which may enable application of the hierarchy in [238]
to power system optimization problems.

Exactness and Comparisons Among Relaxation Hierarchies

Applications of the moment relaxations to power system optimization
have focused on the OPF problem [122, 129, 227, 233, 241–245], although
recent developments include consideration of chance-constrained OPF
problems [246], unit commitment problems [247], techniques for ensuring
voltage constraint satisfaction [248], and transient stability analyses
[249–251]. This section focuses on results for OPF problems. Application
of the moment relaxations to other power system optimization problems
is an open research area that would likely prove fruitful.

Observe that the first-order moment relaxation (i.e., γ = 1) is equiv-
alent to the Shor relaxation. Thus, the higher-order moment relaxations
inherit the sufficient conditions for exactness of the Shor relaxation
described in §4.1.1 and the SOCP relaxations described later in §4.2.3.

For polynomial optimization problems that satisfy a certain technical
condition, moment relaxations in the Lasserre hierarchy (4.21) converge
to the global optima at a finite order [222].13 While the best known
upper bound on this relaxation order is impractically large [222], low-
order moment relaxations suffice for globally solving many power system
optimization problems of practical interest.

Figure 4.3 uses the five-bus system “WB5” from [3] (with the modi-
fied objective function discussed in §2.3) to demonstrate the ability of
relaxations from the Lasserre hierarchy to find the global optimum to a

13A compact feasible space is sufficient for satisfying this technical condition. Typ-
ical power system optimization problems include upper limits on voltage magnitudes,
and thus power system optimization problems generally satisfy this condition.
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challenging OPF problem. This problem has an objective that is a convex
quadratic function of the active power generation. The unconstrained
minimizer of this objective function is at an infeasible point inside the
convex hull of the feasible space for the OPF problem’s constraints.
Focusing solely on tightening the constraints of a convex relaxation to
more closely approximate the convex hull of the OPF problem’s con-
straints is not sufficient to yield the globally optimal solution. Rather,
the relaxations must address the objective function. In contrast to the
other relaxations discussed in this monograph, the moment relaxations
discussed in this section can obtain the global optima to such problems
due to their treatment of the higher-order terms in the objective func-
tions. Further discussion on this topic and another illustrative test case
are provided in [245]. See also [241] and [122] for other illustrations that
explore the ability of low-order moment relaxations to globally solve a
variety of challenging power system optimization problems, including
problems with multiple local optima and disconnected feasible spaces.

For problems that include a sphere constraint, relaxations in the
complex moment hierarchy are guaranteed to converge to the global
optima with increasing relaxation order [129].14 For a given relaxation
order, the Lasserre hierarchy (4.21) is at least as tight as the complex
moment hierarchy (4.34) [129], and there exist general complex polyno-
mial optimization problems for which the Lasserre hierarchy is tighter.
Nevertheless, numerical experiments suggest that the complex hierarchy
is often exact at the same relaxation order as the Lasserre hierarchy for
typical power system optimization problems [129].

For a given order, the mixed SDP/SOCP hierarchy proposed in [233]
is a relaxation of the Lasserre hierarchy. Therefore, relaxations from
the mixed SDP/SOCP hierarchy are generally weaker than those of the
same order from the Lasserre hierarchy. (See [122] for example OPF
problems where the mixed SDP/SOCP hierarchy is less tight than the

14A sphere constraint can be explicitly added to a power system optimization
problem by summing the upper limits on voltage magnitudes at each bus and
converting to an equality constraint: |ψ|2 +

∑
i∈N ViV i =

∑
i∈N (V maxi )2, where ψ

is a slack variable. Since typical power system optimization problems include upper
limits on the voltage magnitudes, explicitly including this sphere constraint in the
problem formulation generally does not restrict the applicability of the convergence
theorem in [129].
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Lasserre hierarchy.) Likewise, since the SDSOS hierarchy in [234] is a
further relaxation of the mixed SDP/SOCP hierarchy, it is generally not
as tight at a given relaxation order as the other hierarchies discussed in
this monograph. Note that neither solutions resulting from the mixed
SDP/SOCP hierarchy nor those from the SDSOS hierarchy in [234] are
guaranteed to converge to the globally optimal objective value of an
optimization problem with increasing relaxation order [237], although
other related SOCP and LP hierarchies may be constructed which do
have such convergence guarantees [238, 252].

Computational Developments

The computational burden of the moment relaxations grows quickly
with both increasing relaxation order and with system size. As one
measure of the computational burden, the moment matrices for the
Lasserre hierarchy (4.21) and the complex moment hierarchy (4.34) for
the order-γ relaxation of an n-bus system have number of rows and
columns equal to κR and κC , respectively:

κR = (2n− 1 + γ)!
(2n− 1)! γ! , (4.39a)

κC = 2(n+ γ)!
n! γ! . (4.39b)

The size of the moment matrix for the Lasserre hierarchy is based on
elimination of Vq1 using the angle reference constraint Vq1 = 0. The size
of the moment matrix for the complex moment hierarchy is based on a
conversion to a real-valued representation using the approach in §3.3.
This accounts for the factor of 2 in (4.39b).

Figure 4.4 illustrates the relative sizes of these matrices for a 10-bus
system at various relaxation orders. Observe that the matrices for the
complex moment hierarchy are significantly smaller than the matrices for
the Lasserre hierarchy, which explains the complex moment hierarchy’s
advantage in computational tractability. For example, n = 10 and γ = 3
correspond to κR = 1540 and κC = 572.

The rapid growth in the size of the matrices limits the computa-
tional tractability of dense formulations of the second-order moment
relaxations to systems with no more than approximately 10 buses. As
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γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1

γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2

γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3
(a) Lasserre hierarchy (4.21)

γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1γ = 1
γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2γ = 2
γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3γ = 3

(b) Complex moment
hierarchy (4.34)

Figure 4.4: Relative sizes of the moment matrices for the order-γ relaxation of a
10-bus system for the Lasserre hierarchy (4.21h) and the complex moment hierar-
chy (4.34h) given by κR in (4.39a) and κC in (4.39b), respectively. The small white
squares in the upper left corners correspond to γ = 1, the blue squares correspond
to γ = 2, and the red squares correspond to γ = 3.

for the Shor relaxation discussed in §4.1.1, computational tractabil-
ity of the moment relaxations depends on the ability to exploit the
network’s chordal sparsity. Similar to the approach used for the Shor
relaxation discussed in §4.1.1, the positive semidefinite constraints on
the moment and localizing matrices can be decomposed into constraints
on smaller matrices corresponding to the maximal cliques of a certain
chordal extension. This approach was first proposed for moment relax-
ations of general polynomial optimization problems in [253] and for
OPF problems in [227]. The chordal sparsity exploiting approach is
applicable to all the aforementioned moment hierarchies. Note that the
SOCP constraints associated with the moment matrix for the mixed
SDP/SOCP and the SDSOS hierarchies benefit from two sources of
sparsity: 1) the chordal sparsity enables a decomposition that only
considers certain submatrices, and 2) only terms in the moment matrix
which appear in localizing matrices require SOCP constraints. Moreover,
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74 Convex Relaxations of the Power Flow Equations
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Figure 4.5: The power injection mismatches Smis defined in (4.40) for the first-
order Lasserre relaxation (4.21) applied to the IEEE 300-bus system. (Note that
a minimum resistance of 1 × 10−4 per unit is enforced on all lines.) Figure 4.5a
shows the power injection mismatches sorted in increasing order. Observe that most
buses have small mismatch while a few buses have large mismatch. Figure 4.5b plots
the mismatches on the network graph with the size of each bus i corresponding to
Smisi . Applying the second-order constraints from the Lasserre relaxation to the two
buses indicated by blue arrows, with the first-order relaxation’s constraints elsewhere,
yields the global solution to the OPF problem. (All mismatches for this solution are
less than 0.002 MVA.)

problems exploits the observation that the first-order relaxation is often
sufficiently accurate for most constraints in large-scale problems [303].
By only enforcing the computationally expensive higher-order con-
straints associated with certain “problematic” buses, the multi-ordered
relaxation approach in [299, 304, 200] is capable of globally solving
problems with hundreds to thousands of buses. The problematic buses
are iteratively identified using a heuristic based on power injection
mismatches between the solution to the relaxation and the injections
associated with the closest rank-one moment matrix. Specifically, the
power injection mismatch vector Smis ∈ Rn is

Smisi = |(Ly {fPi} − fPi (V ∗)) + j (Ly {fQi} − fQi (V ∗))| , (4.40)

Figure 4.5: The power injection mismatches Smis defined in (4.40) for the first-
order Lasserre relaxation (4.21) applied to the IEEE 300-bus system. (Note that
a minimum resistance of 1 × 10−4 per unit is enforced on all lines.) Figure 4.5a
shows the power injection mismatches sorted in increasing order. Observe that most
buses have small mismatch while a few buses have large mismatch. Figure 4.5b plots
the mismatches on the network graph with the size of each bus i corresponding to
Smisi . Applying the second-order constraints from the Lasserre relaxation to the two
buses indicated by blue arrows, with the first-order relaxation’s constraints elsewhere,
yields the global solution to the OPF problem. (All mismatches for this solution are
less than 0.002 MVA.)

recall that the SOCP constraints in the higher-order relaxations of the
mixed SDP/SOCP hierarchy and in the SDSOS hierarchy are more
computationally tractable than the SDP constraints in the Lasserre
hierarchy of the same order.

While exploiting chordal sparsity does not affect the tightness of
the first-order relaxation (or, equivalently, the Shor relaxation), higher-
order moment relaxations that exploit chordal sparsity are generally
not as tight as their dense counterparts. However, low-order moment
relaxations are still capable of solving many relevant problems.

The tractability of the chordal-sparsity-exploiting moment relax-
ations depends on the network topology. The IEEE 39-bus system is
the largest standard test case that is tractable for the sparse second-
order moment relaxation in the Lasserre hierarchy. Extension to larger
problems exploits the observation that the first-order relaxation is often
sufficiently accurate for most constraints in large-scale problems [141].
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By only enforcing the computationally expensive higher-order con-
straints associated with certain “problematic” buses, the multi-ordered
relaxation approach in [129, 219, 227] is capable of globally solving
problems with hundreds to thousands of buses. The problematic buses
are iteratively identified using a heuristic based on power injection
mismatches between the solution to the relaxation and the injections
associated with the closest rank-one moment matrix. Specifically, the
power injection mismatch vector Smis ∈ Rn is

Smisi = |(Ly {fPi} − fPi (V ∗)) + j (Ly {fQi} − fQi (V ∗))| , (4.40)

where V ∗ is defined in (4.24) with the eigenvector ν corresponding to
the largest eigenvalue. If there is only one non-zero eigenvalue, the
relaxation satisfies the rank condition (4.23) and therefore provides
the globally optimal solution. Conversely, if there are multiple non-
zero eigenvalues, the approach in [129, 227] effectively considers the
mismatch computed using the power injections associated with the high-
rank solution relative to the power injections associated with the closest
rank-one moment matrix. Typically, the power injection mismatches are
small at the majority of buses, with a few buses (i.e., the “problematic”
buses) having large mismatches [129, 141, 227]. This suggests that there
exists a non-convexity associated with some subregion of the network. To
exploit this observation, an iterative algorithm in [129, 227] successively
enforces higher-order constraints at buses where the power injection
mismatches are high in order to progressively tighten the relaxation. The
algorithm retains the aforementioned convergence guarantees provided
by the hierarchies.

Figure 4.5 illustrates the application of this approach to the IEEE
300-bus system [227]. Also, [229] provides further analysis of the key
parameter in this approach (i.e., the number of additional buses at
which to apply the higher-order constraints at each iteration). Finally,
note that an analogous approach is applicable to the other hierarchies.
Reference [129] provides specific details regarding application to the
complex moment hierarchy and to more general polynomial optimization
problems.
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Despite this progress, further work in improving the formulations and
SDP solution algorithms is needed to achieve computational competitive-
ness with existing local solution algorithms. Note that the distributed
computing algorithms and other proposed computational approaches
for the Shor relaxation described in §4.1.1 are generally extendable to
the moment relaxations.

4.2 Second-Order Cone Programming Relaxations of the Power
Flow Equations

Convex relaxations of power system optimization problems using SOCP
formulations were first proposed prior to the development of SDP-based
relaxations. In 2006, Jabr formulated an SOCP relaxation and tested it
using OPF problems for radial networks [194]. A variety of subsequent
research has developed related SOCP relaxations and studied their char-
acteristics. This section presents various SOCP relaxations, discusses
their relative tightness and sufficient conditions which guarantee their
exactness, and summarizes their computational characteristics.

4.2.1 Bus Injection Model Relaxations

The first group of SOCP relaxations are based on the bus injection
model of the power flow equations discussed in §2.1.1. This section
summarizes Jabr’s relaxation [194] and the Quadratic Convex (QC)
relaxation [143, 155, 176, 254]. Note that the “Strong SOCP” relaxation
proposed in [255] (along with related work in [256]) strengthens Jabr’s
relaxation with a variety of linear constraints and is therefore discussed
in conjunction with other tightening approaches in §4.4.2. Also note that
despite being discussed in §4.1.2 with the other relaxation hierarchies,
relaxations in the SDSOS hierarchy are formulated as SOCPs.

Jabr’s Relaxation

Jabr’s SOCP relaxation [194] is based on the bus injection model of
the power flow equations (2.3). This relaxation defines new variables
for the squared voltage magnitude at bus i, cii = |Vi|2 = V 2

di + V 2
qi,

the real part of the product of the voltage phasors at buses i and k,
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cik = |Vi| |Vk| cos (θi − θk) = VdiVdk+VqiVqk, and the negative imaginary
part of the product of the voltage phasors at buses i and k, sik =
− |Vi| |Vk| sin (θi − θk) = VdiVqk − VqiVdk.15 This change of variables,
which was first proposed in [257], results in the following representation
of the power flow equations for a radial network:

Pi = Giicii +
∑

k=1,...,n
k 6=i

Gikcik −Biksik, ∀i ∈ N , (4.41a)

Qi = −Biicii +
∑

k=1,...,n
k 6=i

−Bikcik −Giksik, ∀i ∈ N , (4.41b)

cik = cki, ∀ (i, k) ∈ L, (4.41c)
sik = −ski, ∀ (i, k) ∈ L, (4.41d)
c2
ik + s2

ik = ciickk, ∀ (i, k) ∈ L. (4.41e)

While an exact representation for radial networks, the formulation (4.41)
is a relaxation for mesh networks due to the fact that it does not
ensure the ability to recover a set of voltage angles that sum to zero
(mod 2π radians) around each loop. Let θi denote the voltage angle
associated with bus i. Augmenting (4.41) with the non-convex constraint
tan (θk − θi) = sik

cik
, ∀ (i, k) ∈ L results in a formulation that is equivalent

to the power flow equations for mesh networks [255].
The formulation (4.41) is non-convex due to the equality con-

straint (4.41e). A convex relaxation is formed by replacing (4.41e) with
a less-stringent inequality constraint:

c2
ik + s2

ik ≤ ciickk, ∀ (i, k) ∈ L. (4.42)

Observe that (4.42) is a rotated SOCP of the form (3.8), so standard
SOCP solution techniques can be applied to the resulting problem. The
formulation defined by (4.41a)–(4.41d), (4.42) is hereafter denoted as
“Jabr’s relaxation”.

The formulation (4.41) can also be derived by applying a necessary
condition for positive semidefiniteness of a Hermitian matrix to the

15To better match the subsequent literature [143, 255], the formulation (4.41) is
a slight modification of that used in [194]; the voltage magnitudes in (4.41) are not
divided by a factor of

√
2 and the term sij is defined with the opposite sign.
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Shor relaxation in complex variables. Specifically, a necessary condition
for Z � 0 in (4.8) takes the form of rotated SOCP constraints on the
2× 2 submatrices associated with each line:

Zii ≥ 0, i = 1, . . . , n, (4.43a)
ZiiZkk ≥ |Zik|2 , ∀ (i, k) ∈ L. (4.43b)

This necessary condition is implied by the non-negativity of the diagonal
entries and all 2× 2 determinants of positive semidefinite matrices.

Replacing the SDP constraint (4.8) in the complex Shor relaxation
with the less stringent constraints (4.43) yields an SOCP formulation
that is equivalent to Jabr’s relaxation.16 Note that the relaxation formed
by applying the necessary condition (4.43) directly to the real matrix W
in (4.3) is weaker and less computationally tractable than the SOCP re-
laxation (4.43) derived from the Hermitian matrix Z [129, Appendix E].

The QC Relaxation

The “Quadratic Convex” (QC) relaxation, which was initially proposed
in [258, 259] and studied for OPF applications in [143], augments
Jabr’s relaxation with new variables for the voltage angles θi and
voltage magnitudes, |Vi|, ∀i ∈ N . Using these additional variables,
the QC relaxation formulates linear and SOCP constraints that relax
the trigonometric terms in the polar representation of the power flow
equations (2.5). The QC relaxation is particularly effective when applied
to problems with small admissible ranges for both voltage magnitudes
and angle differences between connected buses. Also, since the QC
relaxation’s constraints implicitly formulate a relaxation of the angle
consistency condition around cycles, the QC relaxation is designed to
be applicable to mesh networks.

16To see this equivalence, let cik = Re (Zik) and sik = Im (Zik). Observe that
Re (Zik) = Re (Zki) and Im (Zik) = − Im (Zki) due to the fact that Z is a Hermitian
matrix. Thus, (4.41c) and (4.41d) are satisfied. Further observe that the diagonal
entries Zii of the Hermitian matrix Z are real. Notice that (4.43b) is equivalent
to ZiiZkk ≥ Re (Zik)2 + Im (Zik)2, and thus (4.42) is satisfied. Since tr (HkZ) and
tr(H̄kZ) (where Hk and H̄k are defined in (4.6)) are equivalent to the right-hand
sides of (4.41a) and (4.41b), the remaining constraints in Jabr’s relaxation are
satisfied. Hence, applying (4.43) yields an SOCP formulation equivalent to Jabr’s
relaxation.
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The QC relaxation relies on convex envelopes around various non-
convex functions. These envelopes are described in terms of a generic
decision variable x, which is later replaced with variables representing
the voltage magnitudes and the angle differences. Let xmax and xmin
denote specified upper and lower limits, respectively, on a decision
variable x. Also let xm = max

{∣∣xmin
∣∣ , |xmax|}. Then define the set-

valued functions:17

〈
x2
〉T

=



t :




t ≤ (xmin + xmax

)
x− xmin xmax

t ≥ x2



 , (4.44a)

〈sin (x)〉S =



t :




t ≤ cos

(
xm

2

) (
x− xm

2

)
+ sin

(
xm

2

)

t ≥ cos
(
xm

2

) (
x+ xm

2

)
− sin

(
xm

2

)



 , (4.44b)

〈cos (x)〉C

=



t :




t ≤ 1− 1−cos(xm)

(xm)2 x2

t ≥ cos(xmin)−cos(xmax)
xmin−xmax

(
x− xmin)+ cos

(
xmin

)



 .

(4.44c)

The functions (4.44a)–(4.44c) are convex envelopes for:

• The square of a variable,
〈
x2〉T ,

• The sine function, 〈sin (x)〉S , and

• The cosine function, 〈cos (x)〉C .

Figure 4.6 provides illustrations of these envelopes. The convex envelope
in (4.44a) encloses the square function using a quadratic inequality
constraint and a linear function that lies above the square function. The
convex envelope in (4.44b) encloses the sine function in a polyhedral set.
The convex envelope in (4.44c) uses quadratic and linear functions that
lie above and below the cosine function. The QC relaxation also uses
McCormick envelopes [125] denoted as 〈x y〉M for the bilinear product

17The definitions in (4.44) from [176, 254] allow for asymmetric upper and lower
bounds on the angle differences, i.e., xmin is not necessarily equal to −xmax. These
definitions thus generalize the QC formulation in [143], which requires that xmin =
−xmax when x represents an angle difference.
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〈 x

2〉
T

x

(a)
〈
x2〉T from (4.44a)

〈s
in

(x
)〉
S

x (deg)

(b) 〈sin (x)〉S from (4.44b)

〈c
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(x
)〉
C

x (deg)

(c) 〈cos (x)〉C from (4.44c)

Figure 4.6: Convex envelopes defined in (4.44). In Figures 4.6a–4.6c, the solid lines
represent the non-convex functions and the gray regions outlined by the dashed lines
represent the convex envelopes.

x y, where x and y are generic variables. The McCormick envelopes are
defined in (3.2).

The convex envelopes for sine and cosine presented in (4.44b)
and (4.44c), i.e., 〈sin (x)〉S and 〈cos (x)〉C , assume that the angle x
has upper and lower bounds xmin and xmax that satisfy −π

2 ≤ xmin ≤
xmax ≤ π

2 . Lower bounds xmin that are non-negative and upper bounds
xmax that are non-positive can be further exploited to improve the con-
vex envelopes for the trigonometric functions [176, 254]. (Such bounds
can be obtained using bound tightening techniques, such as those that
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will be discussed in §4.4.1.) Specifically, [176, 254] proposes the following
tighter sine envelope 〈sin (x)〉S′ :

〈sin (x)〉S′ = 〈sin (x)〉S

∩





t :





t ≥ sin(xmin)−sin(xmax)
xmin−xmax

(
x− xmin)+ sin

(
xmin

)
,

if xmax ≥ xmin ≥ 0

t ≤ sin(xmin)−sin(xmax)
xmin−xmax

(
x− xmin)+ sin

(
xmin

)
,

if xmin ≤ xmax ≤ 0





.

(4.45)

Recent work in [155] extends [176, 254] to form tighter envelopes
〈sin (x)〉S′′ and 〈cos (x)〉C′′ by enclosing the trigonometric functions us-
ing convex quadratic constraints. Similar to (4.45), the tighter envelopes
proposed in [155] are applicable to variables associated with lines for
which 0 ≤ xmin ≤ xmax ≤ π

2 or −π
2 ≤ xmin ≤ xmax ≤ 0. For each such

line (i, k) ∈ L, define scalars αik, βik, and γik that are functions of three
parameters denoted as a, b, and c:

αik (a, b, c) = (sin (a+ c)− sin (a)) · (a− b)− c · (sin (a)− sin (b))
c · (a− b) · (a− b+ c) ,

(4.46a)

βik (a, b, c) = sin (a)− sin (b)
a− b − αik (a, b, c) · (a+ b) , (4.46b)

γik (a, b, c) = αik (a, b, c) · a · b+ sin (a)− a · (sin (a)− sin (b))
a− b .

(4.46c)

Let 0 < ε < π
2 − xmax be a small positive constant. Using (4.46), define

α
(sp)
ik , β(sp)

ik , and γ(sp)
ik as αik, βik, and γik evaluated at

(a, b, c) =
(
xmax, xmin, ε

)
;

α
(sn)
ik , β(sn)

ik , and γ(sn)
ik as αik, βik, and γik evaluated at

(a, b, c) =
(
xmin, xmax,−ε);

α
(cp)
ik , β(cp)

ik , and γ(cp)
ik as αik, βik, and γik evaluated at

(a, b, c) =
(
π
2 − xmin, π2 − xmax, ε

)
; and
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α
(cn)
ik , β(cn)

ik , and γ(cn)
ik as αik, βik, and γik evaluated at

(a, b, c) =
(
π
2 + xmax, π2 + xmin, ε

)
.

The tighter envelopes proposed in [155] are

〈sin (x)〉S
′′

= 〈sin (x)〉S
′

∩
{
t :
{
t ≤ αspikx2 + βspik x+ γspik , if 0 ≤ xmin ≤ xmax

t ≥ αsnik x2 + βsnik x+ γsnik , if xmin ≤ xmax ≤ 0

}
, (4.47a)

〈cos (x)〉C
′′

= 〈cos (x)〉C

∩
{
t :
{
t ≤ αcpik

(
π
2 − x

)2 + βcpik
(
π
2 − x

)
+ γcpik , if 0 ≤ xmin ≤ xmax

t ≤ αcnik
(
π
2 + x

)2 + βcnik
(
π
2 + x

)
+ γcnik , if xmin ≤ xmax ≤ 0

}
.

(4.47b)

Figure 4.7 provides an illustrative example of the tighter envelope for
the sine function, 〈sin (x)〉S′′, when 0 ≤ xmin ≤ xmax. Note that the
convex quadratic expressions in (4.47) can be formulated as SOCP
constraints using the conversion described in §3.2.

The QC relaxation uses the convex envelopes defined above to
formulate a relaxation of the power flow equations:

cii ∈
〈
|Vi|2

〉T
, ∀i ∈ N , (4.48a)

cik ∈
〈
〈|Vi| |Vk|〉M · 〈cos (θi − θk)〉C

′′〉M
, ∀ (i, k) ∈ L, (4.48b)

sik ∈
〈
〈|Vi| |Vk|〉M · 〈sin (θi − θk)〉S

′′〉M
, ∀ (i, k) ∈ L, (4.48c)

Equations (4.41a)–(4.41d), (4.42). (4.48d)

The angle θi at the reference bus is fixed to zero.
Note that forming the convex envelopes defined in (4.44) requires

upper and lower bounds on voltage magnitudes, V min
i and V max

i ,
∀i ∈ N , and voltage angle differences θminik and θmaxik , ∀ (i, k) ∈ L,
where θik = θi − θk. The voltage magnitude bounds are enforced using(
V min
i

)2 ≤ cii ≤ (V max
i )2, ∀i ∈ N , and the angle difference bounds

are enforced using tan
(
θminik

)
cik ≤ sik ≤ tan (θmaxik ) cik, ∀ (i, k) ∈ L.

Under typical operating conditions, the voltage angle differences be-
tween connected buses are small. Additionally, restrictions associated
with system stability may also require enforcing explicit phase angle
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〈s
in

(x
)〉
S
′′

x (deg)

Figure 4.7: The tighter convex envelope for the sine function, 〈sin (x)〉S′′
, proposed

in [155, 176, 254] that is applicable when 0 ≤ xmin ≤ xmax. The solid black curve is
the sine function. The dotted red lines correspond to the original envelope specified
in [143] (i.e., the dashed black lines in Figure 4.6b), which does not exploit non-
negativity of the bounds. The dashed black line in Figure 4.7 is the improved lower
bound proposed in [176, 254]. The dash-dot blue curve in Figure 4.7 is the upper
bound proposed in [155], which takes the form of an SOCP constraint. The gray
region formed by their intersection is the resulting tighter convex envelope 〈sin (x)〉S′′

.
See (4.45) and (4.47) for the mathematical descriptions of this envelope and similar
envelopes for the sine function when xmin ≤ xmax ≤ 0 and the cosine function when
0 ≤ xmin ≤ xmax or xmin ≤ xmax ≤ 0.

difference constraints between certain buses. Thus, it is often reasonable
to consider upper and lower bounds on voltage angle differences.

Using “nested-McCormick” envelopes, as in (4.48b) and (4.48c),
generally does not yield the convex hull of a trilinear product. In
contrast, Meyer and Floudas envelopes [260, 261] and extreme point
envelopes [262] provide hyperplane and vertex forms, respectively, for
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the convex hulls of trilinear products. References [263] and [264] demon-
strate that applying these envelopes to the QC relaxation reduces the
optimality gaps for a variety of OPF test cases. Further analysis in [265]
shows that while the Meyer and Floudas envelopes and the extreme point
envelopes yield equivalently tight relaxations, their distinct mathemati-
cal formulations lead to differing computational performance. Empirical
results in [265] indicate that the extreme point envelopes often yield su-
perior computational performance for OPF problems. Additional recent
work in [266] further improves the extreme point envelopes by enforcing
the consistency between the voltage magnitude products Vi Vk that are
shared in the terms Vi Vk cos (θi − θk) and Vi Vk sin (θi − θk).

The QC relaxation presented in (4.48) can also be strengthened
using a variety of other convex constraints [176, 254, 263] as well as
bound tightening techniques [267]. Similarly, the approaches in [255, 256]
augment Jabr’s relaxation with a variety of linear constraints that are
implied by various non-linear relationships to form a “Strong SOCP”
relaxation. Further details are provided in §4.4.2.

In an effort to improve computational tractability at the cost of
decreased tightness, related research [268] uses weaker linear envelopes
that enclose the second-order cone constraints to further relax a formu-
lation that is similar to the QC relaxation (4.48). The resulting linear
program provides reasonable accuracy relative to the original relaxation
with comparable or superior computation times.

4.2.2 Branch Flow Model Relaxations

Other SOCP relaxations are based on the branch flow model of the
power flow equations (2.7). This section summarizes the branch flow
relaxation derived from the DistFlow equations [69] and the SOCP
relaxation in [269, 270].

Relaxation of the DistFlow Equations

Similar to (4.41), the DistFlow equations (2.7) neglect the voltage phase
angles and are thus an exact representation for radial networks but a
relaxation of mesh networks. The DistFlow equations (2.7a)–(2.7c) are
linear in the flows of squared current magnitude `ik, active power Pik,
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and reactive power Qik on line (i, k) ∈ L as well as the squared voltage
magnitude |Vi|2 at each bus i ∈ N . The Branch Flow Relaxation is
formed by replacing (2.7d) with an inequality that takes the form of a
rotated SOCP constraint:

`ik |Vi|2 ≥ P 2
ik +Q2

ik, ∀ (i, k) ∈ L. (4.49)

Note that (4.49) is sometimes presented in the literature via introduction
of new variables for the squared voltage magnitudes, i.e., vi = |Vi|2, in
order to yield `ikvi ≥ P 2

ik +Q2
ik.

As shown in [74, 271], the feasible space of the branch flow relax-
ation (2.7a)–(2.7c), (4.49) has a one-to-one mapping to the feasible
space of Jabr’s relaxation (4.41a)–(4.41d), (4.42), indicating an equiva-
lence between these relaxations. This result is extended to more general
line models in [71].

Note that both the bus injection and branch flow models can be
extended to develop relaxations of the power flow equations for unbal-
anced three-phase networks, using both phase components [167–169]
and symmetrical components [146]. Even for radial network topologies,
the relaxations of the power flow equations for unbalanced three-phase
network models require formulations with SDP constraints due to the
coupling between the variables associated with different phases.

By avoiding the subtraction of variables with similar values, the
branch flow relaxation has numerical convergence characteristics that
are superior to those of the bus injection relaxation [143, 168]. The
numerical superiority of the branch flow model is particularly evident
for relaxations of three-phase power flow models [168] and large-scale
single-phase systems [143].

SOCP Formulation of ∆ Inequalities, Loss Inequalities, and Circle
Inequalities

Other SOCP constraints can be formulated from the branch flow model.
These include the so-called “∆ inequalities”, “loss inequalities”, and
“circle inequalities” proposed in [269, 270]. Note that related derivations
are presented in [71].
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The ∆ and loss inequalities in [270] are formulated with lifted
variables representing the magnitudes of the differences in voltage com-
ponents between connected buses. This section derives these inequalities
for the active power flow equations with series admittance line models.
(The derivation can be extended for reactive power flows and formula-
tions with more general line models [269].)

The active power flow through a line with admittance gik + jbik is

Pik = (Vdi − Vdk) (gikVdk + bikVqk) + (Vqi − Vqk) (−bikVdk + gikVqk) .
(4.50)

Let µik and νik denote upper bounds on the quantities (gikVdk + bikVqk)
and (−bikVdk + gikVqk), respectively. One possible upper bound for both
µik and νik is

√
g2
ik + b2ikV

max
i . A valid inequality is

|Pik| ≤ µik |Vdi − Vdk|+ νik |Vqi − Vqk| . (4.51)

Replacing the expressions |Vdi − Vdk| and |Vqi − Vqk| with the “lifted”
variables dd,ik and dq,ik, respectively, yields the ∆ inequalities

|Pik| ≤ µik dd,ik + νik dq,ik, ∀ (i, k) ∈ L, (4.52a)
dd,ik ≥ 0, dq,ik ≥ 0, ∀ (i, k) ∈ L. (4.52b)

By themselves, the ∆ inequalities are trivially satisfied with suffi-
ciently large values for the lifted variables dd,ik and dq,ik. The ∆ inequal-
ities are relevant when combined with the loss inequalities described
next. The losses on the line (i, k) are

Pik + Pki = gik
(
(Vdi − Vdk)2 + (Vqi − Vqk)2

)
. (4.53)

Relaxing the equality in (4.53) to an inequality and substituting the
lifted variables dd,ik and dq,ik yields the loss inequality constraint

Pik + Pki ≥ gik
(
d2
d,ik + d2

q,ik

)
. (4.54)

The loss inequality (4.54) is formulated as an SOCP constraint that
effectively enforces upper bounds on the lifted variables dd,ik and dq,ik.

The circle inequality constraints in [270] are related to the “sending”
and “receiving” circles associated with the power flowing through a
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line [272, p. 104]. The power flow through the line (i, k) ∈ L must satisfy
the “circle constraint”
(
Pik − gik |Vi|2

)2
+
(
Qik + bik |Vi|2

)2
≤ |Vi|2 |Vk|2

(
g2
ik + b2ik

)
. (4.55)

Observe that (4.55) is a rotated SOCP constraint (cf (3.8)) in terms of
the squared voltage magnitudes |Vi|2 and |Vk|2. The circle constraints
can be extended to more general line models [269].

The SOCP relaxation in [269, 270] is formulated with most of
the same variables as the branch flow relaxation (2.7a)–(2.7c), (4.49)
(squared voltage magnitudes |Vi|2, ∀i ∈ N , and flows of active power Pik
and reactive power Qik on lines (i, k) ∈ L) and the additional “lifted”
variables dd,ik and dq,ik, ∀ (i, k) ∈ L, as well as the ∆ inequality, loss
inequality, and circle inequality constraints (4.52), (4.54), and (4.55),
respectively. The approach in [269] also leverages the flexibility provided
by the choice of the reference bus to develop constraints that tighten the
SOCP relaxations. Note that there is currently no known comparison
of the tightness and computational characteristics of this relaxation
relative to other relaxations.

4.2.3 Exactness

A variety of research efforts have developed a priori sufficient conditions
which guarantee that Jabr’s SOCP relaxation (4.41a)–(4.41d), (4.42)
and the branch flow relaxation (2.7a)–(2.7c), (4.49) are exact. Note
that satisfaction of sufficient conditions for exactness of these SOCP
relaxations also guarantees exactness for tighter relaxations (e.g., the
Shor relaxation in §4.1.1, the moment relaxations in §4.1.2, the QC
relaxation in §4.2.1, the SDSOS relaxations in §4.2.1, and the “Strong
SOCP” relaxation in §4.3). This section summarizes the known sufficient
conditions for exactness of these relaxations. Most of the literature
has focused on characterizing the exactness of the SOCP relaxations
with respect to OPF problems; less is known regarding exactness for
other problems. Also note that no simple algorithm can solve all OPF
problems since these problems are generally NP-Hard [1], even for radial
networks [2].
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Many of these sufficient conditions use a load oversatisfaction as-
sumption that allows the active and reactive load demands to be arbi-
trarily increased or, equivalently, there is no lower limit on the power
injections Pi and Qi. The load oversatisfaction assumption provides
attractive theoretical features which facilitate the development of many
of the following sufficient conditions for exactness of the power flow
relaxations. However, the load oversatisfaction assumption does not
match the behavior of many realistic load models, which often consider
demands that are constants or functions of the voltage magnitudes
(e.g., ZIP models). Various problem formulations allow loads to be
curtailed at a high cost or time-shifted to achieve some system ob-
jective [273]. Curtailment is the converse of the load oversatisfaction
assumption. Time-shifting is loosely related to the load oversatisfaction
assumption in the sense that loads increase their consumption at one
time period. However, this increase is not arbitrary as modeled by the
load oversatisfaction assumption but is rather matched by a decrease in
some other time period, and there are typically limits on the quantity
of time-shifted load demands. References [274] and [275] discuss other
limits regarding the practical applicability of many existing sufficient
conditions for exactness of various SOCP relaxation.

Known sufficient conditions for exactness of Jabr’s SOCP relax-
ation (4.41a)–(4.41d), (4.42) and the branch flow relaxation (2.7a)–
(2.7c), (4.49) take one of the following forms:

• Meshed networks with many controllable phase-shifting trans-
formers and a load oversatisfaction assumption [276] or other non-
trivial technical assumptions [277]. The controllable phase-shifting
transformers must be located so that there exists a spanning tree
of the power system network for which there is a phase-shifting
transformer on every branch in the network that is not in the
spanning tree. This is a significantly higher deployment than is
present in typical power systems. Additionally, the sufficient con-
ditions require an idealized model of phase-shifting transformers
(continuously actuatable without limits on phase shifts).
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• Radial networks that also satisfy at least one of a variety of non-
trivial technical assumptions. One possible assumption is load
oversatisfaction, but others are more general [75, 277].

• Radial networks for which there is either no reverse power flow or
reverse power flow that consists only of reactive power or only of
active power [278].

• Mesh networks that are purely resistive (i.e., zero reactances,
zero susceptances, and no reactive injections) and either a load
oversatisfaction assumption or other conditions on the voltage
and power injection limits [279, 280].

Note that these sufficient conditions are only applicable to problems
that use balanced single-phase equivalent network models, even for the
conditions that rely on radial network topologies. A detailed survey of
many of the known sufficient conditions is provided in [75].

4.2.4 Computational Developments

SOCP formulations often have significant computational advantages
over the SDP formulations, due to both the inherently superior compu-
tational complexity of SOCP problems [126] and the relative maturity of
SOCP solvers. In addition to a variety of academic solvers, SOCP prob-
lems can also be addressed using commercial solvers, such as CPLEX,
Gurobi, and MOSEK. The computational advantages of SOCP solvers
are evident in both run-times and numerical precision. Further, by lever-
aging the mixed-integer capabilities of the commercial solvers, SOCP
representations of the power flow equations can be augmented with
a moderate number of discrete variables for small- to moderate-size
problems.

Similar to corresponding efforts for the Shor relaxation described
in §4.1.1, distributed computation techniques are also applicable to the
SOCP relaxations. For instance, [215] applies ADMM to the branch flow
relaxation (2.7a)–(2.7c), (4.49). The subproblems in the ADMM formu-
lation have closed-form solutions that can be quickly evaluated. For a
realistic 2065-bus radial test case, the distributed solution algorithm
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in [215] converges in 1114 iterations, which requires 1153 seconds when
implemented on a single machine. With an average solution time per
iteration of 0.56 seconds, a parallel implementation may significantly
speed computation time given sufficient computing machinery with
low-latency communications. Related work in [281, 282] analyzes the
performance of an ADMM algorithm on OPF problems with various
representations of the power flow equations, including the QC relax-
ation, Jabr’s relaxation, and the DistFlow relaxation as well as several
approximations discussed in §5 (DC power flow and LPAC). Another
decomposition technique proposed in [283] solves (in parallel) SOCP
relaxations for certain segments of the network, with a modified Ben-
der’s decomposition used to ensure consistency between the voltage
phasors on the tie-lines between network segments. Additional recent
work in [284] proposes an adaptive penalty scheme and other modifica-
tions to speed the execution of an ADMM algorithm for solving SOCP
relaxations of OPF problems. Further work is needed to evaluate these
and other distributed algorithms, particularly to analyze their practical
performance after accounting for factors such as communication delay
between the computation nodes.

4.3 Linear Relaxations of the Power Flow Equations

Although they often yield weaker objective value bounds, linear relax-
ations can have computational and theoretical advantages over SDP and
SOCP relaxations. This section describes linear relaxations developed
using constraints that are implied by the power flow equations with
specified bounds on certain quantities. Note that the linear relaxations
may be formulated as either linear programs or quadratic programs
depending on the form of the objective function.

4.3.1 The Network Flow Relaxation

The power flow equations require that flows entering and leaving a
node obey Ohm’s and Kirchhoff’s laws. In contrast, the network flow
relaxation [285, 286] allows the flows entering a node to be arbitrarily
distributed so long as the active and reactive power losses on each line
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are non-negative. Let gsh,i + jbsh,i denote the shunt admittance at bus i.
Denote the total shunt susceptance associated with the Π-circuit model
of the line (i, k) as bc,ik. The network flow relaxation is formulated in
terms of the active power flows Pik and the reactive power flows Qik for
each line (i, k) ∈ L and the squared voltage magnitudes |Vi|2 at each
bus i ∈ N :

Pi = gsh,i |Vi|2 +
∑

(i,k)∈L
Pik +

∑

(k,i)∈L
Pki, ∀i ∈ N , (4.56a)

Qi = −bsh,i |Vi|2 +
∑

(i,k)∈L
Qik +

∑

(k,i)∈L
Qki, ∀i ∈ N , (4.56b)

Pik + Pki ≥ 0, ∀ (i, k) ∈ L, (4.56c)

Qik +Qki ≥ −
bc,ik

2
(
|Vi|2 + |Vk|2

)
, ∀ (i, k) ∈ L. (4.56d)

The network flow formulation in (4.56) is a valid relaxation for
systems where all lines have series impedances with non-negative re-
sistances and non-negative reactances [285, 286]. Negative resistances
are not associated with any physical device. Negative reactances corre-
spond to lines with capacitive series elements. While rare, such lines
may be physically present in some systems. More commonly, power
flow datasets may include lines with negative resistances and negative
series reactances as mathematical artifacts of models arising from, for
example, equivalenced regions of the network [287] and three-winding
transformers. (The mutual coupling in three-winding transformers may
result in models with negative resistances and reactances.) For systems
where all lines have series impedances with non-negative resistances and
reactances, the network flow relaxation (4.56) is a further relaxation of
Jabr’s SOCP formulation presented in §4.2 [285, 286].

4.3.2 The Copper Plate Relaxation

The “copper plate” model neglects the power flow equations entirely to
yield a simple power balance constraint relating all power injections in
the network. Using the same definitions as in §4.3.1, the copper plate
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model is
∑

i∈N
Pi ≥

∑

i∈N
gsh,i |Vi|2 , (4.57a)

∑

i∈N
Qi ≥ −

∑

i∈N
bsh,i |Vi|2 −

∑

(i,k)∈L

bc,ik
2
(
|Vi|2 + |Vk|2

)
. (4.57b)

Similar to the network flow model, the copper plate model is a valid
relaxation of the power flow equations for systems where all lines have
series impedances with non-negative resistances and reactances. For
such systems, the copper plate model further relaxes the network flow
model [285, 286].

4.3.3 The Taylor-Hoover Relaxation

The linear relaxation proposed by Taylor and Hoover in [288] is for-
mulated with variables |Vi|2 for the squared voltage magnitude at
bus i ∈ N , Pik and Pki for the active power flows into each terminal
of line (i, k) ∈ L, and Qik and Qki for the reactive power flows into
each terminal of line (i, k) ∈ L. For a line modeled as a Π circuit with
mutual admittance gik + jbik and total shunt susceptance bc,ik, the
Taylor–Hoover relaxation [288] enforces the equalities

gik (Pik − Pki)− bik (Qik −Qki)

=
(
g2
ik + b2ik + bik

bc,ik
2

)(
|Vi|2 − |Vk|2

)
, (4.58a)

bik (Pik + Pki) + gik (Qik +Qki) = −gik
bc,ik

2
(
|Vi|2 + |Vk|2

)
. (4.58b)

The equalities in (4.58) result from the relaxation of linear combinations
of the non-linear expressions for the active and reactive line flows.
Note that non-physical negative line losses may result when using this
relaxation [285].

4.3.4 McCormick Relaxations

With known bounds on each variable, standard optimization tools
such as McCormick envelopes [125] can be employed to construct lin-
ear relaxations of the rectangular power flow equations (2.4). The
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McCormick relaxation of a bilinear product is given in (3.2). The
“Rectangular McCormick” relaxation in [255] applies (3.2) to the rect-
angular form of the power flow equations (2.4) using the bounds
Vdi, Vqi ∈ [−V max

i , V max
i ]. Similar approaches are proposed in [289]

and [290]. The loose bounds available for the voltage components make
this relaxation relatively weak. Bound tightening techniques, discussed
in §4.4.1, are therefore particularly important for the McCormick re-
laxation in rectangular coordinates. Note that the specification of a
reference angle yields tighter bounds on the voltage components at the
reference bus (e.g., selecting bus 1 as the reference implies Vq1 = 0 and
Vd1 ∈

[
V min

1 , V max
1

]
). As shown in [291], these tighter constraints corre-

sponding to the reference bus voltage are particularly important when
applying bound tightening methods to the Rectangular McCormick
relaxation.

A stronger linear relaxation is derived by applying McCormick
envelopes to the formulation used in Jabr’s relaxation (4.41) [255]. The
bounds available for the variables cik and sik facilitate a tighter linear
relaxation when combined with “lifted” variables Cik, Sik, and Dik,
∀ (i, k) ∈ L:

− V max
i V max

k ≤ cik, sik ≤ V max
i V max

k , (4.59a)
(
V min
i

)2
≤ cii ≤

(
V max
i

)2
, (4.59b)

Cik + Sik = Dik, (4.59c)
Cik ≥ 0, Sik ≥ 0, (4.59d)
Dik ∈ 〈cii ckk〉M , Cik ∈ 〈cik cik〉M , Sik ∈ 〈sik sik〉M , (4.59e)
Equations (4.41a)–(4.41d). (4.59f)

In [255], the relaxation (4.59) is referred to as the McCormick relaxation
of the “alternative” formulation.

4.3.5 Bienstock-Muñoz LP Relaxations

The approach in [292] develops a family of LPs that approximate (to
arbitrary accuracy) the solutions of power system optimization problems
that may include integer constraints. This approach is particularly useful
for power system optimization problems with network topologies that
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have small treewidth18 since the numbers of variables and constraints
in the resulting LPs scale exponentially with the treewidth, linearly
with the size of the network, and logarithmically with the desired
accuracy. The approach in [292] has strong theoretical properties but
its effectiveness remains to be demonstrated for practical test cases.

4.3.6 Mixed-Integer Linear Programming Relaxations

Several relaxations employ discrete variables to model the power flow
non-linearities. A relaxation proposed in [269] uses a technique from [293]
to discretize the voltage component variables using binary variables.
Specifically, the discretization in [269] effectively represents each variable
as a number in a binary format to a specified precision (i.e., a generic
non-negative continuous variable u is written as u = ∑T

k=1 2−kyk + δ,
where the precision is given by the integer parameter T > 1, y ∈ {0, 1}T ,
and 0 ≤ δ ≤ 2−T ). With this discretization for each variable, the bilinear
products in the power flow equations can be written as the sum of the
products of continuous and binary variables. Since each term in these
summations can be exactly linearized, the power flow equations can be
represented to a specified precision as a MILP. Thus, the precision of
the formulation can be precisely controlled.

A similar discretization approach is proposed in [294] for problems
with radial network topologies. Formulated in the context of graphical
models, this approach exploits radial network structures through the use
of a dynamic programming algorithm. This algorithm has a running time
that is linear in the network size and polynomial in the discretization
precision. Future work proposed in [294] includes several directions for
extension of this approach to more general network topologies.

The discretization approach proposed in [295] uses an eigenvec-
tor calculation to reformulate the power flow equations as symmetric
paraboloids. Delaunay triangulation and binary variables are then used
to develop piecewise-linear interpolations of the paraboloid functions.
A further contribution of [295] is a disjunctive convex optimization

18The treewidth of a graph is defined as one less than the size of the largest
maximum clique among all possible chordal extensions of the graph (see §4.1.1).
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approach that constructs outer approximations of the paraboloids to
obtain a relaxation.

4.4 Techniques for Tightening Relaxations

This section discusses several methods for tightening the relaxations so
that they more accurately represent the original non-convex problem.
These include bound tightening, enforcing valid constraints (i.e., aug-
menting with constraints that are redundant in the original problem but
tighten the relaxation), and embedding in a spatial branch-and-bound
algorithm. Future research on relaxations using alternative power flow
representations may also yield tighter relaxations.

4.4.1 Bound Tightening

The characteristics of many of the relaxations presented in §4.1–§4.3 and
the valid constraints to be discussed in §4.4.2 are strongly dependent on
the tightness of bounds on voltage magnitudes, angle differences, line
flows, and power injections. The bounds on these quantities specified in
the power system data set may be significantly larger than the values
that are actually achievable due to the limitations imposed by other
constraints. In other words, certain bounds may never be binding. Many
of the relaxations can self-tighten: given an initial set of (potentially
unachievable) bounds, a relaxation is used to maximize (or minimize)
the expression associated with each bound. If the maximum achievable
value for an expression is less than the specified upper bound (or the
minimum achievable value is greater than the specified lower bound),
then the specified bound can never be binding. The specified bound is
then replaced with the objective value for the solution to the associated
relaxation. Specifying tighter bounds may improve the relaxation, which
can lead to still tighter bounds. (For instance, the tightness of the QC
relaxation’s convex envelopes in §4.2.1 depend strongly on the quality
of the available bounds on voltage magnitudes and angles.) Thus, an
iterative “bound tightening” algorithm can be used to improve the
relaxations. The iterative algorithm terminates upon reaching a fixed
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point where no bounds are tightened during some iteration. Related
approaches are proposed in [255, 256, 264, 266, 267, 295–298].

One particularly notable variant called “optimality-based bound
tightening” [264, 266, 297] incorporates information from some known
feasible point, which can be computed using a local solution algorithm.
(See §6.) An optimality-based bound tightening algorithm follows the
iterative approach described above while enforcing an additional con-
straint that restricts the objective function to be superior to the objective
value corresponding to a known feasible point. Restricting the bound
tightening algorithm to consider only the subset of the feasible space
that is superior to a high-quality feasible point (i.e., a feasible point
whose objective value is close to the globally optimal objective value)
can thus enable the computation of substantially tighter bounds.

To improve computational tractability, the relaxations associated
with each bound can be computed in parallel within each iteration. Fur-
ther, the bound tightening algorithm can use a more tractable relaxation
than the relaxation that is finally applied to solve the actual problem of
interest. For instance, the approaches employed in [255] and [256] only
consider the constraints associated with a subset of the network near
the bound under consideration when performing the bound tightening,
but solve the final relaxation of the OPF problem using the full set
of tightened constraints. As another way to improve computational
tractability, the approaches in [296] and [298] derive closed form ana-
lytical expressions that bound the maximum and minimum achievable
values of various quantities in order to enable fast bound tightening.

4.4.2 Enforcing Valid Constraints

Constraints that are valid but redundant in the non-convex problem
(hereafter called valid constraints) can tighten the relaxations. This
section describes several approaches for developing valid constraints.

Combining Relaxations

A dominance relationship between two relaxations exists when one
relaxation is always at least as tight as the other and there are problems
for which it is tighter. Combining relaxations which do not dominate one
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another generally results in a tighter relaxation. For instance, [176, 254]
presents a formulation which combines the QC relaxation (4.48) and
the Shor relaxation (4.7a)–(4.7c), (4.8). Figure 4.8 indicates the known
dominance relationships among some of the convex relaxations [74, 122,
129, 176, 254, 255, 285]. There are known test cases which demonstrate
that the QC and Strong SOCP relaxations in [143] and [255], respectively,
neither dominate nor are dominated by the Shor relaxation of [164].
Determining the dominance relationships (or lack thereof) among other
relaxations is an open problem.

Cuts from Tighter Relaxations

Rather than tightening a relaxation by adding all constraints associated
with a non-dominated relaxation, alternative approaches augment a
relaxation with a more limited set of constraints (“cuts”) derived from a
non-dominated relaxation. Such approaches can yield tighter relaxations
at a modest computational cost.

One such approach proposed in [269] tightens a linear power flow
relaxation via cuts generated from the Shor relaxation. As in the Shor
relaxation, the approach in [269] uses lifted variables that correspond
to the products of voltage components. However, rather than explicitly
enforcing a positive semidefinite constraint on the matrix W composed
of these lifted variables as in (4.3), the iterative approach in [269]
generates cuts that are derived from necessary conditions for the matrix
to be positive semidefinite. Specifically, each iteration k augments the
relaxation with the constraint xᵀkWxk ≥ 0, where xk is a specified vector.
This constraint is a necessary condition for W � 0 that is linear in the
entries of W. One choice of an appropriate vector xk is an eigenvector
corresponding to a negative eigenvalue of the matrix W. Thus, each
iteration of the approach in [269] yields a tighter linear relaxation of
the constraint W � 0.

Similar to the approach in [269], an algorithm used in [255, 256]
iteratively tightens Jabr’s SOCP relaxation with valid linear cuts that
are based on necessary conditions derived from the Shor relaxation. At
each iteration of this algorithm, the solution to the SOCP relaxation is
checked for feasibility in the Shor relaxation. The algorithm terminates
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if the resulting SOCP solution is feasible in the Shor relaxation or
provides a sufficiently close bound on the globally optimal objective
value. Otherwise, a separation algorithm, which is formulated as an SDP,
computes a linear constraint that removes that iteration’s solution from
the feasible space of the SOCP relaxation. To maintain computational
tractability, the algorithm in [255, 256] solves a set of small SDP prob-
lems, each associated with a cycle in a cycle basis for the power system
network [77]. Reference [299] provides a detailed explanation of this
algorithm and proposes a related approach that uses a least-squares
formulation.

Strong SOCP Relaxation

The “Strong SOCP” relaxation proposed in [255] and further advanced
in [256] augments Jabr’s SOCP relaxation (4.41a)–(4.41d), (4.42) with
valid constraints formed using conditions on matrix minors, constructing
arctangent envelopes, and deriving cuts from the Shor relaxation as
described above. This section reviews the matrix minor constraints and
arctangent envelopes. See §4.4.1 for an overview of the iterative bound
tightening technique that is also used to strengthen the Strong SOCP
relaxation.

Matrix Minor Constraints Reference [256] develops valid constraints
based on 2× 2 minors (i.e., determinants of 2× 2 submatrices) of the
matrix Z in (4.7d). The approach in [256] classifies the 2 × 2 minors
into three categories:

∣∣∣∣∣
Zii Zij
Zji Zjj

∣∣∣∣∣ = 0, (Edge Minor), (4.60a)
∣∣∣∣∣

Zii Zij
Zki Zkj

∣∣∣∣∣ = 0, (Three-Cycle Minor), (4.60b)
∣∣∣∣∣

Zij Zik
Zlj Zlk

∣∣∣∣∣ = 0, (Four-Cycle Minor), (4.60c)

where | · | denotes the determinant of a matrix argument. Figure 4.9
shows examples for each category of minor.
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Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34

Z41 Z42 Z43 Z44




(a) An edge minor




Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34

Z41 Z42 Z43 Z44




(b) A three-cycle minor




Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34

Z41 Z42 Z43 Z44




(c) A four-cycle minor

Figure 4.9: Example 2×2 submatrices for the matrix minors (i.e., the determinants
of the submatrices) defined in [256] for the matrix Z in (4.7d). The condition
rank (Z) = 1 implies that the minors are equal to zero. Convex envelopes based
on certain choices of each type of minor are used in [256] to tighten Jabr’s SOCP
relaxation.

if the resulting SOCP solution is feasible in the Shor relaxation or
provides a sufficiently close bound on the globally optimal objective
value. Otherwise, a separation algorithm, which is formulated as an SDP,
computes a linear constraint that removes that iteration’s solution from
the feasible space of the SOCP relaxation. To maintain computational
tractability, the algorithm in [255, 256] solves a set of small SDP prob-
lems, each associated with a cycle in a cycle basis for the power system
network [77]. Reference [299] provides a detailed explanation of this
algorithm and proposes a related approach that uses a least-squares
formulation.

Strong SOCP Relaxation

The “Strong SOCP” relaxation proposed in [255] and further advanced
in [256] augments Jabr’s SOCP relaxation (4.41a)–(4.41d), (4.42) with
valid constraints formed using conditions on matrix minors, constructing
arctangent envelopes, and deriving cuts from the Shor relaxation as
described above. This section reviews the matrix minor constraints and
arctangent envelopes. See §4.4.1 for an overview of the iterative bound
tightening technique that is also used to strengthen the Strong SOCP
relaxation.

Matrix Minor Constraints Reference [256] develops valid constraints
based on 2× 2 minors (i.e., determinants of 2× 2 submatrices) of the

Figure 4.9: Example 2×2 submatrices for the matrix minors (i.e., the determinants
of the submatrices) defined in [256] for the matrix Z in (4.7d). The condition
rank (Z) = 1 implies that the minors are equal to zero. Convex envelopes based
on certain choices of each type of minor are used in [256] to tighten Jabr’s SOCP
relaxation.

Each category of minors has a corresponding set of valid constraints.
The edge minors in (4.60a) are closely related to Jabr’s relaxation
in §4.2.1, i.e., relaxing the non-convex set of constraints ZiiZkk = |Zik|2,
Zii ≥ 0, Zkk ≥ 0 to the rotated SOCP constraints ZiiZkk ≥ |Zik|2, Zii ≥
0, Zkk ≥ 0. The approach in [256] additionally enforces outer polyhedral
envelopes of the convex hull of the non-convex constraints ZiiZkk ≤
|Zik|2. These outer envelopes each consist of four linear inequalities.
Using McCormick relaxations, similar approaches are applied to develop
convex envelopes for the three-cycle and four-cycle minors in (4.60b)
and (4.60c), respectively. The full mathematical descriptions of these
envelopes are provided in [256].

Note that the matrix minor constraints in [256] can be interpreted in
terms of the “cycle constraints” derived in [255]. Moreover, the Complex
Valued Inequalities previously proposed in [300], which are discussed
later in this section, are also derived based on similar matrix minor
constraints. Finally, note that since formulating convex envelopes for
all possible minors quickly becomes intractable with increasing system
size, [256] uses a subset of the minors determined using a cycle decompo-
sition approach and [300] proposes a spatial branch-and-cut algorithm
that iteratively strengthens a relaxation by adding related constraints.

Arctangent Envelopes The trignometric relationships underlying the
definitions of the variables cik and sik in Jabr’s relaxation can be
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expressed in terms of the arctangent function: θki = arctan
(
sik
cik

)
, where

θki = θk − θi.19 In order to enforce a relaxed version of this relationship,
the Strong SOCP relaxation employs convex envelopes that enclose the
arctangent functions. Consider the non-convex sets
{

(cik, sik, θki) | θki = arctan
(
sik
cik

)
, cminik ≤ cik ≤ cmaxik ,

sminik ≤ sik ≤ smaxik , θminki ≤ θki ≤ θmaxki

}
, ∀ (i, k) ∈ L.

(4.61)

For each line (i, k) ∈ L, the arctangent envelopes construct a con-
vex enclosure of (4.61) consisting of two linear inequalities that upper
bound (4.61) and two linear inequalities that lower bound (4.61). Arct-
angent envelopes were first proposed in [255] and later improved in [256].
Also note that a related formulation proposed in [301] uses piecewise
representations of similar arctangent envelopes within an iterative “outer
approximation” algorithm. The following discussion considers the ver-
sion of the arctangent envelopes presented in [256].

The arctangent envelopes use the following definitions. Define four
points z1

ik, z2
ik, z3

ik, and z4
ik in the space (cik, sik, θki) as the corners

of the box containing the arctangent function over the constraints
cminik ≤ cik ≤ cmaxik (where cminik > 0) and sminik ≤ sik ≤ smaxik :

z1
ik =

(
cminik , smaxik , arctan

(
smaxik /cminik

))
, (4.62a)

z2
ik =

(
cmaxik , smaxik , arctan

(
smaxik /cmaxik

))
, (4.62b)

z3
ik =

(
cmaxik , sminik , arctan

(
sminik /cmaxik

))
, (4.62c)

z4
ik =

(
cminik , sminik , arctan

(
sminik /cminik

))
. (4.62d)

Define two planes in the space (cik, sik, θki). The first, denoted θki =
γ

(1)
ik + α

(1)
ik cik + β

(1)
ik sik, passes through the points

{
z1
ik, z

2
ik, z

3
ik

}
and

the second, denoted θki = γ
(2)
ik + α

(2)
ik cik + β

(2)
ik sik, passes through the

19Note that [255] and [256] use a definition for θik that is the negative of the
definition used in other papers. Matching the definition θik = θi−θk used throughout
the remainder of this monograph results in the use of θki for the arctangent envelopes
discussed in this section.
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points
{
z1
ik, z

3
ik, z

4
ik

}
. For m = 1, 2, define ∆γ(m)

ik as the globally optimal
objective value of the following optimization problem:

∆γ(m)
ik = max

cik,sik
arctan

(
sik
cik

)
−
(
γ

(m)
ik + α

(m)
ik cik + β

(m)
ik sik

)

subject to cminik ≤ cik ≤ cmaxik , sminik ≤ sik ≤ smaxik ,

cik tan
(
θminki

)
≤ sik ≤ cik tan(θmaxki ). (4.63)

Although (4.63) is non-convex, its global solution can be computed
analytically by enumerating all possible KKT points and selecting the
maximum. As shown in [256, Appendix A], enumerating all KKT points
of (4.63) is accomplished by solving four one-dimensional optimization
problems. These one-dimensional optimization problems have explicit
expressions for their solutions. Finally, define γ̂(m)

ik = γ
(m)
ik + ∆γ(m)

ik for
m = 1, 2. Using these definitions, the upper bounding inequalities are

γ̂
(m)
ik + α

(m)
ik cik + β

(m)
ik sik ≥ θki, m = 1, 2. (4.64)

Lower bounding inequalities are defined similarly. Let θki = γ
(3)
ik +

α
(3)
ik cik+β

(3)
ik sik and θki = γ

(4)
ik +α

(4)
ik cik+β

(4)
ik sik denote the planes pass-

ing through the points
{
z1
ik, z

2
ik, z

4
ik

}
and

{
z2
ik, z

3
ik, z

4
ik

}
, respectively. For

m = 3, 4, define ∆γ(m)
ik as the global solution to (4.63), with the max-

imization instead changed to minimization. Let γ̂(m)
ik = γ

(m)
ik −∆γ(m)

ik

for m = 3, 4. The lower bounding inequalities are

γ̂
(m)
ik + α

(m)
ik cik + β

(m)
ik sik ≤ θki, m = 3, 4. (4.65)

Figures 4.10a and 4.10b show an example of the upper and lower
envelopes from (4.64) and (4.65), respectively.

Lifted Non-Linear Cuts / Complex Valued Inequalities

Two independent research efforts described in [176, 254] and [300]
discovered a set of valid inequalities that are implied by phase an-
gle difference constraints (i.e., θminik ≤ θi − θk ≤ θmaxik , ∀ (i, k) ∈ L,
where −π

2 ≤ θminik ≤ θmaxik ≤ π
2 ) and the voltage magnitude limits

(i.e., V min
i ≤ Vi ≤ V max

i , ∀i ∈ N ). These valid inequalities are termed

The version of record is available at: http://dx.doi.org/10.1561/3100000012



102 Convex Relaxations of the Power Flow Equations

-30°

-20°

-10°

0°

1.2

10°

20°

30°

40°

50°

60°

1 -0.4
-0.20.8 0

0.6 0.2
0.40.4 0.6

θ k
−
θ i

cik sik

(a) Upper Envelope

-50°

-40°

0.6 1.2

-30°

-20°

-10°

0°

0.4

10°

1

20°

30°

40°

0.2
0.8

0
0.6-0.2

-0.4 0.4

θ k
−
θ i

cik sik

(b) Lower Envelope

Figure 4.10: Illustrative examples of arctangent envelopes. The upper and lower
envelopes from (4.64) and (4.65), respectively, are depicted using the blue and orange
planes. The green surface is the arctangent function, θk − θi = arctan

(
sik
cik

)
.
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“Lifted Non-Linear Cuts” in [176, 254] and “Complex Valued Inequal-
ities” in [300]. Consider the formulation in [176, 254], which uses the
following definitions:

V σ
i = V min

i + V max
i , ∀i ∈ N , (4.66a)

φik =
(
θmaxik + θminik

)
/2, ∀ (i, k) ∈ L, (4.66b)

δik =
(
θmaxik − θminik

)
/2, ∀ (i, k) ∈ L. (4.66c)

The Lifted Non-Linear Cuts proposed in [176, 254] are

V σi V
σ
k (cik cos (φik) + sik sin (φik))− V maxk cos (δik)V σk cii
− V maxi cos (δik)V σi ckk
≥ V maxi V maxk cos (δik)

(
V mini V mink − V maxi V maxk

)
, (4.67a)

V σi V
σ
k (cik cos (φik) + sik sin (φik))− V mink cos (δik)V σk cii
− V mini cos (δik)V σi ckk
≥ −V mini V mink cos (δik)

(
V mini V mink − V maxi V maxk

)
. (4.67b)

Note that (4.67) is linear in the space of variables cik, sik, cii, and ckk. A
visualization of these constraints is provided in [302]. Using a different
mathematical formulation resulting from an alternative parameteriza-
tion of the variable bounds, the approach in [300] yields constraints
that are equivalent to (4.67) [254]. Note that (4.67) generalizes other
valid inequalities proposed in [98] and [171].

Second-Order Cone Surface Constraints

Many power flow formulations relax the equality constraint c2
ik + s2

ik =
cii ckk, ∀ (i, k) ∈ L, in (4.41e), to the inequality constraint c2

ik + s2
ik ≤

cii ckk in (4.42), as proposed by Jabr [194]. The equality constraint has
a geometric interpretation as a restriction of the cik and sik variables to
the non-convex space represented by the surface of a second-order cone.
The inequality constraint allows the cik and sik variables to be within
the convex region formed by the union of the surface and the interior of
the second-order cone. To better represent the equality constraint, [301]
proposes a “surface constraint” formulation that introduces new vari-
ables l̂ and r̂ corresponding to the left- and right-hand sides, respectively,
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of (4.41e) (i.e., l̂ represents c2
ik+s2

ik and r̂ represents cii ckk). The surface
constraint formulation proposed in [301] equates these variables and
adds additional constraints derived using McCormick envelopes:

l̂ = r̂, (4.68a)

l̂ ≤
(
cminik + cmaxik

)
cik +

(
sminik + smaxik

)
sik − cminik cmaxik − sminik smaxik ,

(4.68b)
r̂ ≥ cmaxkk cii + cmaxii ckk − cmaxii cmaxkk , (4.68c)
r̂ ≥ cminkk cii + cminii ckk − cminii cminkk , (4.68d)

where cminii , cminik , sminik , and cmaxii , cmaxik , smaxik are lower and upper
bounds, respectively, on the corresponding quantities. Reference [301]
uses piecewise variants of these surface constraints within an iterative
“outer approximation” algorithm that constructs successively tighter
mixed-integer SOCP relaxations of optimal power flow problems.

Voltage Magnitude Difference Constraints

The bound tightening techniques discussed in §4.4.1 are typically applied
to tighten the voltage magnitudes at each bus and the voltage angle
differences between connected buses. For many problems, including
typical OPF problems, the voltage magnitudes cannot be significantly
tightened beyond the bounds specified by the test case. In contrast, lim-
ited reactive power injection capabilities often effectively constrain the
voltage magnitude differences between connected buses to significantly
more narrow ranges. Bounds on the voltage magnitude differences can
be computed using bound tightening techniques that maximize and
minimize the differences in voltage magnitudes. Figure 4.11 illustrates
the effectiveness of applying bound tightening techniques to the voltage
magnitude differences using the feasible space for a six-bus test system.

Reference [263] proposes a variety of constraints that exploit the
potential availability of tight bounds on voltage magnitude differences.
Define the voltage magnitude differences as V ∆

ik = |Vi| − |Vk|. Rewriting
the voltage magnitude products Vi Vk using V ∆

ik yields

Vi Vk =
(
V 2
i + V 2

k −
(
V ∆
ik

)2
)
/ 2, ∀(i, k) ∈ L. (4.69)
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Figure 4.11: Bound tightening illustration for the “case6_c” test system from [178]
showing a projection in terms of the voltage magnitudes |V1| and |V4|. The blue
region corresponds to the problem’s feasible space. The dashed red line indicates the
best achievable tightening of the voltage magnitudes |V1| and |V4|. The dot-dashed
black lines correspond to |V1| − |V4| and the largest and smallest achievable values
of this difference occur at the green stars. The improvements in the bounds on |V1|
and |V4| (reductions of 15.4% and 17.4%, respectively) are modest compared to the
improvement in the bounds on the voltage magnitude difference |V1| − |V4| of 77.5%.

Relaxing the left-hand side of (4.69) using a McCormick envelope (3.2),
〈Vi Vk〉M , and the squared envelopes

〈
V 2
i

〉T and
〈
V 2
k

〉T defined in (4.44a)
for all (i, k) ∈ L gives

wik = (cii + ckk − Uik) / 2, (4.70a)
wik ∈ 〈Vi Vk〉M , (4.70b)

cii ∈
〈
V 2
i

〉T
, ckk ∈

〈
V 2
k

〉T
, (4.70c)

Uik ∈
〈(
V ∆
ik

)2
〉T

. (4.70d)

Note that Uik is a lifted variable representing the squared voltage
magnitude differences, (|Vi| − |Vk|)2.

A valid inequality is also formed by expanding (Vi − Vk)2:
(
V ∆
ik

)2
≤ V 2

i − 2Vi Vk + V 2
k . (4.71)
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Relaxing the right-hand side of (4.71) by applying McCormick (3.2)
and squared (4.44a) envelopes yields the following SOCP constraint:

(
V ∆
ik

)2
≤ cii − 2wik + ckk. (4.72)

Another constraint is constructed using McCormick envelopes (3.2) to
relax the relationship |Vi|2 − |Vk|2 = V ∆

ik (|Vi|+ |Vk|), ∀(i, k) ∈ L:

cii − ckk = Ûik,i + Ûik,k, (4.73a)

Ûik,i ∈
〈
V ∆
ik Vi

〉M
, (4.73b)

Ûik,k ∈
〈
V ∆
ik Vk

〉M
. (4.73c)

Note that Ûik,i is a lifted variable representing (|Vi| − |Vk|) |Vi|.
Finally, the approach in [263] also enforces constraints derived

from the Taylor–Hoover relaxation [288] discussed in §4.3.3. Specif-
ically, (4.58a) is relaxed using McCormick envelopes to obtain one
additional constraint per line (i, k) ∈ L:

cii − ckk =
(
gik (Pik − Pki)− bik (Qik −Qki)

g2
ik + b2ik + bik

bc,ik
2

)
. (4.74)

In summary, the set of voltage difference constraints proposed in [263]
consists of (4.70), (4.72)–(4.74). Note that initial bounds on V ∆

ik can be
computed as V min

i −V max
k ≤ V ∆

ik ≤ V max
i −V min

k . Bounds on the other
added variables (Uik, Ûik,i, and Ûik,k) are computed via straightforward
manipulations of the bounds on the voltage magnitudes and voltage
magnitude differences.

4.4.3 Spatial Branch-and-Bound Algorithms

Spatial branch-and-bound is a commonly used algorithm for addressing
non-convex optimization problems. This iterative algorithm splits the
feasible space into (typically disjoint) subsets. Consider a minimization
problem. A local optimization algorithm or a heuristic is used to find
a feasible point in each subset. These feasible points provide upper
bounds on the objective values within each subset, and a relaxation is
applied to obtain lower bounds in each subset. A subset is eliminated
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from further consideration if it has a corresponding lower bound that is
greater than the least upper bound among all subsets. (In other words,
a subset cannot contain the global minimum if all feasible points within
the subset have objective values that are greater than a feasible point
in a different subset.) If an upper bound is sufficiently close to the least
lower bound among all subsets (i.e., the optimality gap is sufficiently
small), then the algorithm terminates. Otherwise, one of the subsets
of the feasible space is split into more subsets (which is referred to
as “branching”), and the algorithm continues. Closely related “spatial
branch-and-cut” algorithms additionally generate and enforce valid
constraints at various points throughout a branch-and-bound algorithm
to tighten the relaxations.

The computational tractability of a spatial branch-and-bound algo-
rithm depends on the specifics of how the subsets are constructed (i.e.,
the branching step). A good branching algorithm will quickly eliminate
large regions of the feasible space from consideration. The speed and
quality of the upper and lower bounding algorithms are also key to ob-
taining a computationally tractable spatial branch-and-bound algorithm.
Applications of spatial branch-and-bound and spatial branch-and-cut
algorithms to power system optimization problems include:

• Reference [303], which branches on either the active and reactive
power injections or the voltage magnitudes and uses the Shor
relaxation to obtain lower bounds.

• Reference [304], which branches on the active and reactive power
injections (using either a rectangular or ellipsoidal bisection
scheme) with the Lagrangian dual of the OPF problem used
to compute lower bounds. Further related work in [305] applies
decomposition approaches based on Bender’s Cut and Alternating
Direction Method of Multipliers (ADMM) algorithms to speed
convergence.

• Reference [181], which iteratively generates cuts relevant to the
branch flow relaxations of optimization problems with balanced
single-phase equivalent radial network models. The cuts in [181]
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are based on the difference between the active power losses com-
puted by ∑(i,k)∈LRik`ik and by ∑(i,k)∈LRik

(
P 2
ik+Q2

ik

|Vi|2

)
in the

DistFlow equations (2.7). Reference [182] proposes related cuts
that extend the applicability of this approach.

• Reference [171], which uses the McCormick relaxation techniques
in the software BARON [306] augmented with certain valid con-
straints. The valid constraints in [171] are based on the intersection
of the bounds on the variables cik and sik (see the definitions in
§4.2.1) with the constraint V min

i V min
k ≤ c2

ik + s2
ik ≤ V max

i V max
k

implied by the voltage magnitude limits. Note that these valid con-
straints are dominated by the Lifted Non-Linear Cuts / Complex
Valued Inequalities proposed in [176, 254, 300] (see §4.4.2).

• Reference [300], which proposes several branching strategies based
on the violation of a determinant condition related to certain 2×2
submatrices.

• Reference [289], which branches on the voltage components Vd and
Vq for the power flow equations in rectangular coordinates (2.4)
using McCormick envelopes to convexify the bilinear terms.

• Reference [256], which branches on the variables cik or sik as-
sociated with the line (i, k) ∈ L that has the largest mismatch
between the representation of the voltage angle difference θk − θi
defined by the arctangent envelope (see §4.4.2) and arctan

(
sik
cik

)
.

• References [264, 307, 308], which apply bound tightening and
McCormick relaxation techniques while adaptively partitioning
the feasible space into differently sized subsets.

• Reference [301], which augments Jabr’s SOCP relaxation discussed
in §4.2.1 with piecewise versions of the second-order cone surface
constraints and arctangent envelopes discussed in §4.4.2. The ap-
proach in [301] uses binary variables to iteratively partition the cik
and sik variables, yielding a sequence of increasingly tighter mixed-
integer SOCP relaxations of OPF problems. Similar techniques
are applied to unit commitment problems in [309].
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4.4.4 Relaxations Using Alternative Power Flow Representations

The relaxations presented in this monograph are often derived from
the power flow equations with the voltages (in various representations)
as the decision variables. The power flow equations represented with
other choices of decision variables can yield relaxations with diverse
characteristics. For instance, the power flow equations can be represented
in terms of current injections:

Pi + jQi = Ii

n∑

k=1
ZikIk, ∀i ∈ N , (4.75)

where I ∈ Cn is the vector of current injections at each bus and Z is the
bus impedance matrix, which is the inverse of the admittance matrix Y
defined in (2.1) (i.e., Z = Y−1). Since the bus impedance matrix Z is
generally dense, chordal sparsity cannot be exploited in this coordinate
system, which results in the Shor relaxation being computationally
inferior to the corresponding formulation based on voltages described
in §4.1.1.

As another example, [255, §3.1.6] shows that a semidefinite relaxation
of an alternative power flow representation gives weaker bounds than
the Shor relaxation. It is also known that certain SOCP relaxations
have equivalent tightness but different computational characteristics
when derived from the bus injection model of the power flow equations
versus the DistFlow equations [74, 168]. Moreover, the QC relaxation
described in §4.2.1 relies on typical characteristics specific to the polar
coordinate representation of the voltages (2.5) (i.e., small admissible
ranges for voltage magnitudes and angle differences).

These results suggest the possibility that other coordinate transfor-
mations could yield superior performance for some problems. Related
open questions include determining the impact of coordinate transfor-
mations on the relaxations and developing methods for selecting the
best coordinate transformation for a given problem.

The version of record is available at: http://dx.doi.org/10.1561/3100000012



5
Power Flow Approximations

Power flow approximations use a variety of assumptions to simplify
the power flow equations. Stronger assumptions typically facilitate the
development of simpler formulations that are more computationally
tractable. Conversely, more generally applicable assumptions often
require more complicated formulations which can be less tractable.

In contrast to a power flow relaxation, an approximation does not
provide a bound on the optimal objective value and cannot prove
infeasibility (i.e., infeasibility of an approximation guarantees nothing
about infeasibility of the original non-convex problem or vice-versa).
This is due to the fact that the feasible space of an approximation
generally does not enclose the feasible space of the original non-convex
problem. Also, unlike relaxations (see §4.4.2), approximations generally
cannot be combined with one another, although an approximation could
be augmented with constraints from a relaxation.

This section overviews a variety of power flow approximations. The
approximations are categorized based on their associated optimization
formulation (SOCP or linear constraints). Unless otherwise stated,
the approximations discussed in this section apply to the power flow
equations for general meshed network topologies.

110
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5.1 Second-Order Cone Programming Approximations of the
Power Flow Equations

Most SOCP representations of the power flow equations are relaxations
rather than approximations. (See §4.2.) Three exceptions are Jabr’s
SOCP approximation [72], the QPAC approximation [310], and the
Baradar–Hesamzadeh SOCP approximation [311].

5.1.1 Jabr’s Approximation

Derivation of Jabr’s SOCP approximation [72] begins with the same
treatment as his SOCP relaxation in §4.2.1: relaxation of the equality
constraint (4.41e) to an inequality (4.42) in formulation (4.41). As
noted in §4.2.1, the formulation (4.41) is exact for radial networks
but is a relaxation for mesh networks due to the potential for angle
inconsistencies around cycles. In other words, the formulation (4.41)
does not enforce the non-convex constraint

θk − θi = arctan
(
sik
cik

)
, ∀ (i, k) ∈ L, (5.1)

where θi is the variable denoting the voltage angle at bus i ∈ N . Note
that the angle at the reference bus is equal to zero.

Several previously discussed approaches (i.e., the QC relaxation
in §4.2.1 and the arctangent envelopes and cycle constraints in §4.4.2)
form convex relaxations of the non-convex constraint (5.1) or other
closely related constraints on the angle differences. In contrast, the
approach in [72] linearizes (5.1) to form an approximation rather than
a relaxation. This linearization is

θk − θi + s•ik cik − c•ik sik(
s•ik
)2 +

(
c•ik
)2 = arctan

(
s•ik
c•ik

)
, ∀ (i, k) ∈ L, (5.2)

where s•ik and c•ik indicate assumed values for the variables cik and sik.
The formulation (4.41a)–(4.41d), (4.42) is augmented with (5.2)

to form an SOCP approximation. Starting from an initialization of
c•ik = 1 and s•ik = 0, the approach in [72] iteratively improves the
linearization (5.2) through repeated solution of the SOCP approximation
to refine c•ik and s•ik.
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5.1.2 The QPAC Approximation

The “Quadratic Programming AC” (QPAC) approximation [310] is
derived using the following simplifications, computed around the nominal
values θi − θk = 0, ∀(i, k) ∈ L, and Vi = 1, ∀i ∈ N :

• Second-order Taylor expansions of the sine and cosine functions,
i.e., cos(θi−θk) ≈ 1− (θi−θk)2

2 and sin(θi−θk) ≈ θi−θk, ∀(i, k) ∈ L.

• Tangent line approximations of the squared voltage magnitudes
i.e., |Vi|2 ≈ 2 |Vi| − 1, ∀i ∈ N .

• Simplifications of the voltage magnitude products to unity, i.e.,
|Vi| |Vk| ≈ 1.0, ∀(i, k) ∈ L.

• Relaxations of all quadratic equalities to inequality constraints.

Let Uik and Tik represent the squared differences in the voltage magni-
tudes and angles between buses i and k, ∀(i, k) ∈ L, relaxed using the
following SOCP constraints:

Uik ≥ (|Vi| − |Vk|)2 , (5.3a)
Tik ≥ (θi − θk)2 . (5.3b)

Applying the above simplifications and definitions to the polar form of
the AC power flow equations (2.5) yields the QPAC approximation:

Pik = gik (Tik + Uik + |Vi| − |Vk|)− bik (θi − θk) , (5.4a)
Qik = −bik (Tik + Uik + |Vi| − |Vk|)− gik (θi − θk) , (5.4b)
Equation (5.3). (5.4c)

The QPAC approximation is applied to OPF and optimal capacitor
placement problems in [310]. Results using the IEEE test cases [166]
and several of the Polish test cases in Matpower [50] empirically
demonstrate the QPAC approximation’s superior accuracy while main-
taining reasonable computational speed relative to the DC power
flow and LPAC approximations discussed in §5.2.3 and §5.2.6, respec-
tively.
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5.1.3 The Baradar–Hesamzadeh Approximation

The SOCP approximation proposed in [311], which builds on previous
work in [148], is derived from the DistFlow equations (2.7).1 Similar to
the SOCP relaxation of the DistFlow equations in §4.2.2, the equality
constraint (2.7d) is relaxed to the inequality constraint (4.49).

The remaining non-convexity is represented as

|Vi| |Vk| sin (θi − θk) = Xik (Pik −Rik `ik)−Rik (Qik −Xik `ik) ,
∀ (i, k) ∈ L. (5.5)

Rather than using a linearization as in Jabr’s approximation (5.2), the
Baradar–Hesamzadeh approximation uses a small angle approximation
sin (θi − θk) ≈ θi−θk and a near-nominal voltage magnitude approxima-
tion |V | ≈ 1. These approximations are only applied to the constraint
containing the angles, (5.5). The voltage magnitudes in the remainder
of the formulation are free to take non-unity values. Applying these
approximations to (5.5) yields

θi − θk = Xik (Pik −Rik `ik)−Rik (Qik −Xik `ik) , ∀ (i, k) ∈ L.
(5.6)

The Baradar–Hesamzadeh approximation is (2.7a)–(2.7c), (4.49), and
(5.6) enforced for each cycle in a cycle basis of the network [77].

There are several variants of the Baradar–Hesamzadeh approxi-
mation. In order to obtain a linear formulation that is well-suited to
transmission expansion problems, the approach in [312] modifies the
Baradar–Hesamzadeh approximation using a piecewise linearization
of the expressions for the squared active and reactive power flows.
Other work in [313] uses two techniques to create another variant of
the Baradar–Hesamzadeh approximation. Both techniques exploit the
following equivalence:

x y = 1
4
(
(x+ y)2 − (x− y)2

)
, (5.7)

1The formulation presented in [311] uses receiving-end power flows and the line
losses as decision variables. To match the formulation of the DistFlow equations (2.7),
the Baradar–Hesamzadeh approximation is instead presented here with the sending-
end power flows and the squared magnitude of the current flows as decision variables.
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where x and y denote generic variables. The first technique in [313] ob-
tains a degree-five polynomial approximation of the function sin (θi − θk)
using a fifth-order Taylor expansion. By iteratively applying (5.7), lifted
variables are applied to represent the higher-order terms in this Taylor
expansion. These lifted variables are constrained to convex envelopes
that are constructed in a manner similar to those used in the QC relax-
ation discussed in §4.2.1. Let ŝik denote the lifted variable corresponding
to sin (θi − θk) that results from this technique. The second technique
in [313] also recursively applies the equivalence (5.7) to rewrite the
trilinear product |Vi| |Vk| ŝik. The squared terms resulting from the
application of (5.7) are again represented using lifted variables that
are enclosed in convex envelopes. A lifted variable obtained from these
techniques is used to replace the term |Vi| |Vk| sin (θi − θk) in (5.5).
The resulting constraint replaces (5.6) in the Baradar–Hesamzadeh
approximation.

5.2 Linear Approximations of the Power Flow Equations

The majority of power flow approximations, including those most used
in practice, take the form of linear relationships that are implemented as
either LPs or quadratic programs, depending on the choice of objective
function. Linear approximations leverage the maturity of LP and MILP
algorithms (and the corresponding algorithms for QPs) to quickly solve
large-scale practical problems. This section reviews a variety of linear
approximations of the power flow equations.

5.2.1 Linearization Around a Specified Operating Point

This section first considers linearization of the non-linear power flow
equations near a specified operating point. Different linearizations are
constructed using various voltage coordinates and different operating
point assumptions. This section describes linearizations of the power flow
equations using both polar and rectangular coordinates for the voltage
phasors and discusses the implicit manifold framework from [314].

Note that other linearizations can be derived from alternative rep-
resentations of the power flow equations. For instance, [59, 64, 65]
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studies a linearization of an “IV” power flow formulation whose decision
variables consist of both bus voltage and current injection phasors in
rectangular coordinates. Additionally, the approaches in [60, 61] main-
tain both voltage and current variables in order to exploit linearizations
developed using circuit theory. These circuit-theoretic approaches can
improve robustness with respect to the initialization of various numeri-
cal methods and provide advantages in modeling flexibility. Extensions
to unbalanced three-phase systems are presented in [62, 63].

Linearizations using Polar Coordinates

Linearizations using the polar representation (2.5) of the voltage pha-
sors are commonly used since the voltage magnitudes and the angle
differences typically vary over small ranges near known nominal values.
Linearizing the power flow equations in polar voltage coordinates (2.5)
via a first-order Taylor series expansion yields

[
P

Q

]
=
[
P •

Q•

]
+ Jp|V=|V •|∠θ•

([
θ

|V |

]
−
[
θ•

|V •|

])
, (5.8)

where |V | and θ denote the vectors of voltage magnitudes and voltage
angles and P and Q denote the vectors of active and reactive power
injections. The notation ( · )• denotes the value of the corresponding
variable at a specified operating point. Let S = P + jQ denote the
vector of complex power injections. Using the representation in [97], the
2n× 2n Jacobian matrix Jp is

Jp =


Re

(
∂S
∂θ

)
Re
(
∂S
∂|V |

)

Im
(
∂S
∂θ

)
Im
(
∂S
∂|V |

)

 , (5.9)

with the submatrices defined using
∂S

∂θ
= j diag (V )

(
diag

(
YV

)
−Y diag

(
V
))
, (5.10a)

∂S

∂ |V | = diag (V )
(
diag

(
YV

)
+ Y diag

(
V
))

diag (|V |)−1 , (5.10b)

where V is the vector of voltage phasors, diag ( · ) denotes the diagonal
matrix with the vector argument on the diagonal, and ( · ) is the complex
conjugate applied componentwise.
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While a linearization can be formulated for any operating point
|V •|∠θ• in (5.9), specific choices of operating points yield particularly
well-studied power flow approximations. One commonly chosen operat-
ing point is a “flat” voltage profile, i.e., Vi = 1∠0◦, ∀i ∈ N . Reference
[314] shows that choosing a flat voltage profile and neglecting all shunt
admittances2 yields the so-called “Linear Coupled Power Flow” ap-
proximation presented in [315]. Reference [316] also proposes a similar
approach with extensions that consider transformers with non-zero
phase shifts and non-unity tap ratios as well as a further simplification
based on an approximation that either assumes that all lines have the
same resistance-to-reactance ratios or that the network is radial.

A slight extension of the Linear Coupled Power Flow called the
“Voltage Difference” approximation in [317–319] additionally considers
the possibility of non-unity voltage magnitudes. One can quickly derive
the voltage difference approximation beginning with the equations for
the active and reactive power flows through the line (i, k) ∈ L modeled
as a series admittance gik + jbik:

Pik = gik |Vi| (|Vi| − |Vk| cos (θi − θk))− bik |Vi| |Vk| sin (θi − θk) ,
(5.11a)

Qik = −bik |Vi| (|Vi| − |Vk| cos (θi − θk))− gik |Vi| |Vk| sin (θi − θk) .
(5.11b)

Using the small-angle expansions for the trigonometric terms (i.e.,
sin (θi − θk) ≈ θi − θk and cos (θi − θk) ≈ 1) and a uniform voltage
profile assumption (i.e., |Vi| ≈ V0, ∀i ∈ N , where V0 is a specified scalar
constant) yields the voltage difference approximation:

Pik = V0 gik (|Vi| − |Vk|)− V 2
0 bik (θi − θk) , (5.12a)

Qik = −V0 bik (|Vi| − |Vk|)− V 2
0 gik (θi − θk) . (5.12b)

Note that (5.12) does not model active or reactive power losses
(i.e., Pik + Pki = Qik + Qki = 0, ∀ (i, k) ∈ L). A related approach
in [320, 321] uses a power flow linearization similar to (5.12) augmented
with the piecewise-linear loss approximation that is described in §5.2.9.

2Shunt admittances at all buses are negligible and the Π-models of lines have
zero shunt susceptances.
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Similar to [269], another related approach proposed in [322] uses the
“binary expansion” procedure from [293] to approximate products of
voltage magnitudes with angle differences and squared angle differences.

Reference [323] describes another linear approximation based on
polar voltage coordinates. Similar to the voltage difference approxima-
tion (5.12), the approach in [323] uses the small angle approximation
sin (θi − θk) ≈ θi−θk and a near-nominal voltage magnitude assumption,
|Vi| ≈ 1 and |Vk| ≈ 1. In the same way as the QPAC approximation [310]
discussed in §5.1.2, the approach in [323] uses a second-order Taylor
expansion of the cosine function, cos (θi − θk) ≈ 1 − (θi−θk)2

2 , rather
than the approximation cos (θi − θk) ≈ 1 used in the voltage difference
approximation (5.12). This yields the approximation

Pik = gik
(
|Vi|2 − |Vi| |Vk|

)
− bik (θi − θk) + gik

2 (θi − θk)2 , (5.13a)

Qik = −bik
(
|Vi|2 − |Vi| |Vk|

)
− gik (θi − θk)−

bik
2 (θi − θk)2 . (5.13b)

Applying the identity |Vi|2−|Vi| |Vk| = 1
2

(
|Vi|2 − |Vk|2 + (|Vi| − |Vk|)2

)

to (5.13) yields

Pik = gik
2 (|Vi|2 − |Vk|2)− bik (θi − θk) + PLik, (5.14a)

Qik = −bik2 (|Vi|2 − |Vk|2)− gik (θi − θk) +QLik, (5.14b)

where PLik and QLik are terms associated with line losses that are defined
as

PLik = gik
2
(
(θi − θk)2 + (|Vi| − |Vk|)2

)
, (5.15a)

QLik = −bik2
(
(θi − θk)2 + (|Vi| − |Vk|)2

)
. (5.15b)

In order to obtain approximations for the active and reactive line
flows that are linear in the phase angle differences and squared voltage
magnitudes, the approach in [323] replaces PLik and QLik in (5.14) with
affine functions of the squared voltage magnitudes and angle differences
based on a loss factor linearization method. Further details are provided
in the appendix of [323]. A related approach using a different loss factor
representation is proposed in [324]. The approach in [324] replaces PLik
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and QLik in (5.14) with convex relaxations or piecewise approximations
of the terms P̃Lik and Q̃Lik, respectively, which are defined as

P̃Lik = gik
2


(θi − θk)2 +

(
|Vi|2 − |Vk|2

)2

4


 , (5.16a)

Q̃Lik = −bik2


(θi − θk)2 +

(
|Vi|2 − |Vk|2

)2

4


 . (5.16b)

Similar approaches are employed in [325, 326] to develop related itera-
tively updated power flow approximations.

Other recent work in [327] proposes a linear approximation derived
from the power flow representation (2.6) that uses polar coordinates for
both the voltage phasors and the admittance matrix, i.e., Vi = |Vi|∠θi
and Yik = |Yik|∠ψik. The trigonometric terms in (2.6) are approximated
as linear expressions in the angle differences θi − θk:

cos (θi − θk + ψik) ≈ 0.95 (cos (ψik)− sin (ψik) (θi − θk)) , (5.17a)
sin (θi − θk + ψik) ≈ 0.95 (sin (ψik) + cos (ψik) (θi − θk)) , (5.17b)

where 0.95 is a heuristically determined coefficient. Using (5.17) and
assuming that |Vi| ≈ |Vk|, (i, k) ∈ L, yields the approximation

Pik = 0.95 gik |Vi|2 + 0.95 bik
(
|Vi|2 θi − |Vk|2 θk

)
, (5.18a)

Qik = −0.95 bik |Vi|2 + 0.95 gik
(
|Vi|2 θi − |Vk|2 θk

)
. (5.18b)

Recent research in [328] linearizes a power flow representation that
is based on a logarithmic transformation of the voltage magnitudes,
ui = ln |Vi|, ∀i ∈ N , similar to the formulations used in [56, 57, 329].
The “Logarithmic Transform Voltage Magnitude” (LTVM) linearization
in [328] is

Pik = gik (ui − uk)− bik (θi − θk) , (5.19a)
Qik = −bik (ui − uk)− gik (θi − θk) , (5.19b)

where each line (i, k) ∈ L is modeled as a series admittance gik +
jbik. LTVM formulations for more detailed line models and numerical
comparisons to other approaches are provided in [328].
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References [330] and [331] present analytical and empirical analyses
for many of polar coordinate linearizations discussed in this section.
Moreover, [331] proposes a linearization framework based on generic
nonlinear coordinate transformations that is applicable to many of the
aforementioned linearizations in this section. References [330] and [331]
also provide:

• Mathematical justifications for certain physical intuitions regard-
ing power flow characteristics.

• Analytical and empirical comparisons of formulations that use
|Vi|2 for the independent variables, as in (5.14), to formulations
that use |Vi| itself, as in (5.12), and higher powers of |Vi|.

• A procedure for adaptively choosing the degree of the indepen-
dent variables used in the linearization (e.g., selecting k for the
expression |Vi|k included in the linearization) based on historical
operational data.

Linearization using Rectangular Coordinates

The linearization of the power flow equations in rectangular coor-
dinates (2.4) is compactly represented using the matrices LPi, LQi,
and Mi defined for the Shor relaxation in (4.1) and the vector x =[
Vd1 . . . Vdn Vq1 . . . Vqn

]ᵀ
:




P

Q

|V |2


 =




P •

Q•

|V •|2


+ Jr|x=x• (x− x•) , (5.20)

where rows i = 1, . . . , n of the 3n×2n Jacobian matrix Jr are (2LPi x•)ᵀ,
rows i = n+ 1, . . . , 2n are (2LQi x•)ᵀ, and rows i = 2n+ 1, . . . , 3n are
(2Mi x

•)ᵀ. The Jacobian matrix Jr is evaluated at a specified operating
point x•.

As with linearizations developed using the polar coordinate rep-
resentation of the power flow equations, certain operating points x•
are particularly well-studied. The approaches in [332–334] consider two
choices of operating points: a “flat” voltage profile Vi = 1∠0◦, ∀i ∈ N ,
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and the so-called “no-load” voltage profile. Let Ỹ denote the block of
the admittance matrix Y excluding the row and column corresponding
to the reference bus. Let ỹ denote the column of the admittance matrix
corresponding to the reference bus, excluding the entry of this column
corresponding to the reference bus itself. The no-load voltage profile
is defined as the length-(n − 1) vector Ṽnl =

(
−Ỹ−1 ỹ

)
. For systems

without PV buses, the no-load voltage profile corresponds to the voltage
phasors at the non-reference buses for the case of zero power injections
at every non-reference bus.

Define B̃ as the imaginary part of the admittance matrix, Im
(
Ỹ
)
,

with the shunt susceptances neglected. By choosing a flat voltage profile,
1∠0◦, and neglecting the conductances (i.e., Re (Y) = G = 0), [333]
derives the following linear approximation for the voltages at the non-
reference buses:

V = 1n−1 − j B̃−1 P, (5.21)

where 1n−1 is the (n − 1)-length vector of all ones. Error bounds in
[333] characterize the accuracy of the linearization (5.21).

For a network without PV buses and negligible shunt admittances,3
[332–334] uses a linearization around the no-load voltage profile, Vnl, to
obtain an approximation for the voltage phasors at the non-reference
buses. Define Ỹnl = diag

(
V nl

)
Ỹ. The approximation is V = Ṽnl +

∆Vd + j∆Vq, where ∆Vd and ∆Vq are

∆Vd = Re
(
Ỹ−1
nl

)
P + Im

(
Ỹ−1
nl

)
Q, (5.22a)

∆Vq = Im
(
Ỹ−1
nl

)
P − Re

(
Ỹ−1
nl

)
Q. (5.22b)

By additionally approximating the voltage magnitude differences across
each line as much smaller than the nominal voltage magnitudes, [332]
and [333] extend (5.22) to represent voltage magnitudes at the non-
reference buses:

|V | = Ṽnl + ∆Vd. (5.23)
Both [332] and [333] provide error bounds and consider further

simplications and special cases. Fixed-point arguments are used in
3See footnote 2. A more general formulation that allows non-negligible shunt

susceptances is provided in [332, 333].
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[332] to develop theory related to power flow solution existence. Note
that [333] considers the possibility of constant current load models
in extended versions of both (5.21) and (5.22). A related approach
in [335, 336] considers unbalanced three-phase network models and
develops linear approximations of other quantities (e.g., the magnitudes
of line current flows).

Implicit Power Flow Manifold

The linearizations (5.8) and (5.20) explicitly relate the power injections
and voltages. A general framework for studying linear approximations
that implicitly relates the power injections and voltages is presented
in [314]. Collect the voltages and power injections in a vector:

x =
[
|V |ᵀ θᵀ P ᵀ Qᵀ

]ᵀ
, (5.24)

and define the power flow solution manifold M:

M =



x

∣∣∣∣∣∣
F (x) =


Re

(
diag (|V |∠θ) ·Y · |V |∠−θ

)
− P

Im
(
diag (|V |∠θ) ·Y · |V |∠−θ

)
−Q


 = 0



 .

(5.25)
Let x∗ =

[
|V ∗|ᵀ (θ∗)ᵀ (P ∗)ᵀ (Q∗)ᵀ

]ᵀ
denote a point on the power

flow solution manifoldM (i.e., F (x∗) = 0). Define the 2n× 4n matrix:

Ax∗ =


Re

(
∂S
∂|V |

)
Re
(
∂S
∂θ

)
−In 0n

Im
(
∂S
∂|V |

)
Im
(
∂S
∂θ

)
0n −In


 , (5.26)

where In and 0n are the n×n identity and all zero matrices, respectively,
and the other components of Ax∗ are defined in (5.10). The linear
manifold that is tangent to the power flow solution manifoldM at x∗
is

Ax∗ (x− x∗) = 0. (5.27)
As a measure of the approximation quality, [314] provides a bound

on the worst-case error between the linear approximation (5.27) and
the actual power flow solution manifold (5.25). Specifically, consider a
ball B (x∗, δ) of radius δ around a point x∗ that satisfies F (x∗) = 0. For
any point x such that x ∈ B and Ax∗ (x− x∗) = 0, the following bound
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is valid:

|Fi (x)| ≤ Bi
2 ||x− x

∗||2 , i = 1, . . . , 2n, (5.28)

where Fi (x) is the ith entry of the vector function F (x) defined in (5.25)
and the scalar Bi satisfies

∣∣∣∣∣

∣∣∣∣∣
∂2Fi
∂x2

∣∣∣∣∣

∣∣∣∣∣ ≤ Bi, ∀x ∈ B (x∗, δ) . (5.29)

In other words, the maximum error in the active or reactive power
balance equations at a point x on the linearization is bounded by the
squared distance to the point x∗ around which the linearization is
constructed, multiplied by a constant which is bounded by the norm
of the Hessian matrix ∂2Fi

∂x2 . Note that convenient expressions for the
terms in the Hessian matrix are available in [97].

Many of the linear approximations in this section can be formulated
in the framework of [314] using a linearization about a specified operating
point along with various assumptions on the network parameters.

5.2.2 The Decoupled Power Flow Approximation

Decoupled power flow approximations assume that terms in the off-
diagonal blocks of the power flow Jacobian matrix in polar voltage
coordinates (i.e., Re

(
∂S
∂|V |

)
and Im

(
∂S
∂θ

)
in (5.9)) are small. This as-

sumption is reasonably accurate for typical transmission systems where
the high reactance-to-resistance ratios (Xik/Rik � 1) result in the P
to θ and Q to |V | couplings being much stronger than the Q to θ and
P to |V | couplings. Neglecting the off-diagonal blocks in (5.8) yields

P = P • +
[

Re
(
∂S

∂θ

)∣∣∣∣
V=|V •|∠θ•

]
(θ − θ•) , (5.30a)

Q = Q• +
[

Im
(
∂S

∂ |V |

)∣∣∣∣
V=|V •|∠θ•

]
(|V | − |V •|) . (5.30b)

The “Fast Decoupled Load Flow” in [337] is a common variation
of the decoupled power flow model which uses the approximations
cos (θi − θk) ≈ 0, Gik sin (θi − θk)� Bik, and Qi � Bii |Vi|2 to define
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two matrices denoted by B′ and B′′. The Fast Decoupled Load Flow
comes in two versions: “XB” and “BX” [338]. In the XB version, the
matrix B′ is the negative of the imaginary part of the admittance
matrix, − Im (Y ) = −B, for a modified network representation that
neglects shunt reactances, line charging shunts in the Π-circuit model,
off-nominal tap ratios, and line resistances. The matrix B′′ is the negative
of the imaginary part of the admittance matrix for a modified network
representation that neglects phase-shifting transformers. The BX version
has the same construction of the B′ and B′′ matrices with the exception
that the line resistances are neglected when constructing B′′ rather than
B′. For both versions, the derivation uses an assumption of near-nominal
voltage magnitudes.

The Fast Decoupled Load Flow model is

P = P • + diag (|V •|) B′ (θ − θ•) , (5.31a)
Q = Q• + diag (|V •|) B′′ (|V | − |V •|) . (5.31b)

For the purpose of solving the power flow equations, the Fast Decoupled
Load Flow iteratively updates |V •| and θ•. If this process is convergent,
it yields the true power flow solution, not an approximation. The
matrices B′ and B′′ are constant and therefore only need to be factored
once, which endows the Fast Decoupled Load Flow with computational
advantages. Each iteration is much faster than a Newton iteration, but
more iterations are required. Furthermore, because the (approximate)
Jacobian is not updated, often the convergence tolerance cannot be set as
tightly as for Newton methods that update the Jacobian at each iteration.
References [339] and [340] provide detailed analytical and empirical
analyses of the convergence behavior for the Fast Decoupled Load Flow
approximation when applied to solve the power flow equations.

5.2.3 The DC Power Flow Approximation

The most widely used power flow approximation is the DC power flow,
with applications ranging from long-term planning to the operation
of wholesale electricity markets. The derivation of the DC power flow
approximation is closely related to a Taylor expansion of the active
power flow equation around the voltage profile Vi = 1.0∠0◦, for all
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i ∈ N . Specifically, the DC power flow approximation is derived from
the power flow equations in polar voltage coordinates (2.5) by neglecting
the line resistances Rik, using the small angle difference approximation
sin (θi − θk) ≈ θi − θk, assuming near-nominal voltage magnitudes
|V | ≈ 1, and ignoring reactive power.

Denote the line susceptances by bik = 1
Xik

, ∀ (i, k) ∈ L. Let Ainc ∈
Rn×nl denote the network incidence matrix, where nl is the number of
lines. The matrix Ainc has columns corresponding to the lines, with
each column having two non-zero entries: +1 in the ith entry and −1 in
the kth entry for line (i, k) ∈ L. The DC power flow approximation can
then be written,

P = Ainc diag (b) Aᵀ
inc θ, (5.32)

where b is the vector of line susceptances bik in the same order as the
columns of Ainc and the reference angle is fixed to zero.4

Off-nominal voltage ratios can be handled via modifications to bik
and non-zero phase shifts can be modeled using pairs of injections at
the associated terminal buses. For instance, Matpower [341] considers
a line model connecting buses i and k that is composed of an ideal
transformer with a tap ratio of τik and a phase shift (in radians) of
θshift,ik in series with a Π circuit. (See Figure 2.1.) This line model
is represented in Matpower’s DC power flow by modifying the line
susceptances to bik = 1

Xik τik
and withdrawing/injecting, respectively, a

quantity of active power given by θshift,ik
Xik τik

at buses i and k.
Several studies have attempted error analyses of the DC power

flow approximation. Many of these studies are based on empirical
analyses [342–354]. Some studies suggest that ascertaining generally
applicable conclusions regarding the DC power flow accuracy appears
challenging. For instance, [350] states that “At no stage in the tests were
we able to discern any statistical patterns in the dc-flow error scatters.
This defeated all our attempts to find concise, meaningful indices with
which to characterize and display dc-model accuracies.” Other empirical
studies had more optimistic conclusions. For instance, [352] found that
the DC power flow approximation is reasonably accurate for test systems

4The matrix Ainc diag (b) Aᵀ
inc is the same as the matrix B′ in the XB version

of the Fast Decoupled Load Flow (5.31).
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in normal operation with typical transmission line parameters when
the voltage magnitudes are within ±10% of their nominal values and
the voltage angle differences are within ±15◦. Research efforts have
also focused on theoretical error analyses [355–357]. In particular, [355]
and [357] bound the worst-case error for the DC power flow relative to
the AC power flow.

There are many variations of the DC power flow approximation.
For instance, one variant uses the susceptance bik = − Im

(
1

Rik+jXik

)

rather than 1
Xik

. Another variant is the “Power Transfer Distribution
Factor” (PTDF) model, which relates the active power flows and active
power injections using the DC power flow approximation. To derive
the PTDF model, the line flows are written as a function of θ as
Pflow = diag (b) Aᵀ

inc θ. Substituting for θ in this expression using (5.32)
yields the PTDF formulation:

Pflow = diag (b) Aᵀ
inc (Ainc diag (b) Aᵀ

inc)
−1

︸ ︷︷ ︸
PTDF Matrix

P, (5.33a)

∑

i∈N
Pi = 0, (5.33b)

where the power injection variable associated with the reference bus and
the corresponding row of Ainc are removed such that the matrix inverse
is well defined. Total power balance is enforced using (5.33b). The PTDF
formulation of the DC power flow approximation has computational
advantages for problems that only enforce flow limits on a subset of the
lines. For such problems, only a limited number of rows in the dense
PTDF matrix in (5.33a) are computed. Note that a similar “AC-PTDF”
matrix can be developed using a first-order Taylor expansion around a
nominal operating point [7].

A review of other DC power flow variants is provided in [350].
Many variants incorporate information from an assumed operating
point (so-called “Hot Start” DC models, as opposed to “Cold Start” DC
models such as the formulation in (5.32)). Appropriately distributing
the losses throughout the network is the goal of many DC power flow
variants (see §5.2.9 for further details). Also, [358] discusses related
linear approximations of line losses, phase angles, and apparent power
flows suitable for incorporation into DC power flow approximations.
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Recent work in [359] regarding lossless networks suggests that post-
processing the angle differences improves the quality of a DC power
flow solution. Specifically, for a solution θ∗ to the DC power flow equa-
tions (5.32), [359] (and the foundational work in [360]) provides both
analytical and empirical arguments that the actual angle differences in
the AC model are better represented by the expression arcsin (θ∗i − θ∗k)
rather than the DC power flow solution, θ∗i − θ∗k. This enables the
construction of an “interval-valued” DC approximation that better
represents the constraints on maximum angle differences across the
lines.

Reference [361] proposes a variant of the approach in [359] that
incorporates the effects of losses. Specifically, the approach in [361] uses
a nonlinear expression to iteratively update auxiliary variables repre-
senting the sines of the angle differences across each line while allowing
for non-zero resistances. This approach is particularly advantageous for
stressed networks with high resistance-to-reactance ratios. Moreover, for
radial networks that satisfy certain conditions, [361] provides theoretical
results showing that the iterative approach monotonically converges at
an exponential rate to the solution of the active power flow equations.

5.2.4 A Linear Approximation of the Reactive Power Flow Equa-
tions

The DC power flow and its modifications do not represent the reactive
power equations. Recent work in [362, 363] builds a linear approximation
relating reactive power and voltage magnitudes. This section denotes the
matrix B = Ainc diag (b) Aᵀ

inc, where b is the vector of line susceptances
bik = − Im

(
1

Rik+jXik

)
.5 Using the small angle difference approximation,

the reactive power flow equations are formulated as a function of the
voltage magnitudes:

Q = diag (|V |) B |V | . (5.34)

The buses are divided into the set of generators and the set of loads
denoted with subscripts G and L, respectively. Define BLL, BLG, BGL,

5As discussed in §5.2.3, this definition of the matrix B is used in a common
variant of the DC power flow approximation.
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and BGG as the submatrices of B with rows and columns associated
with the corresponding bus indices. The generator buses have specified
voltage magnitudes |VG| and the loads have specified reactive demands
QL. Denote G as the set of generator buses. Define the minimum
voltage magnitude among all generator buses as |V ◦G| = mini∈G |Vi| and
generator voltage spread as the vector ηG, where |VG| = |V ◦G| (1nG + ηG),
and nG denotes the number of generator buses. The linearization in [362,
363] approximates the relationship between the load buses’ voltage
magnitudes |VL| and reactive power demands QL:

|VL| = |V ◦G|
(
1nL −B−1

LL BLG ηG
)

+ 1
|V ◦G|

(
B−1
LL diag

((
1nL −B−1

LL BLG ηG
)−1

)
QL

)
,

(5.35)

where nL denotes the number of load buses. Theory developed in [362,
363] provides an upper bound on the maximum approximation error
relative to (5.34).

5.2.5 The Linearized DistFlow Approximation

The DistFlow equations (2.7) are an exact representation of the AC
power flow equations for radial systems. The SOCP relaxation and
approximation approaches in §4.2.2 and §5.1 relax the equality con-
straint (2.7d) to a convex inequality (4.49). As an alternative approach,
the Linearized DistFlow approximation6 [69] assumes that the active
and reactive losses Rik`ik and Xik`ik, respectively, are much smaller
than the active and reactive power flows Pik and Qik. Specifically, the
Linearized DistFlow approximation neglects the loss terms associated
with the squared current magnitudes `ik in order to obtain

Pik = −Pk +
∑

m:k→m
Pkm, (5.36a)

Qik = −Qk +
∑

m:k→m
Qkm, (5.36b)

6This formulation is also referred to as the Simplified DistFlow approximation.
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|Vk|2 = |Vi|2 − 2 (Rik Pik +XikQik) , (5.36c)

for each line (i, k) ∈ L.
For radial systems where all lines have Rik ≥ 0 and Xik ≥ 0, the Lin-

earized DistFlow equations underestimate the complex power required
to supply the loads and overestimate the voltage magnitudes [74]. In
other words, Pik ≥ P linik , Qik ≥ Qlinik , and |Vi| ≤ |V lin

i |, where the super-
script “lin” denotes the solution to (5.36) while the variables without
superscripts correspond to the true DistFlow equations (2.7). General-
ization of the Linearized DistFlow approximation (5.36) to unbalanced
three-phase networks is undertaken in [168, 364, 365].

In related work, the approaches in [366] and [367] formulate other
power flow approximations by linearizing the DistFlow equations around
a nominal operating point. Reference [366] also applies a piecewise linear
approximation of the relationship between the active and reactive power
flows, Pik and Qik, on each line (i, k) ∈ L and their squares, P 2

ik and Q2
ik.

While the formulation in [367] solely considers balanced radial networks,
the linearization proposed in [366] considers radial distribution systems
with both balanced single-phase and unbalanced three-phase network
models.

5.2.6 The LPAC Approximation

The approach in [368] presents three versions (hot start, warm start,
and cold start) of a so-called “Linear Programming AC” (LPAC) ap-
proximation of the power flow equations. All three versions of the LPAC
approximation represent line losses, active and reactive power flows,
voltage magnitudes, and phase angles. Linear approximations for other
relevant functions, such as apparent power line flows, are also provided
in [368].

The LPAC approximation uses equally spaced tangential line seg-
ments to form a convex envelope of the cosine function as shown in
Figure 5.1.7 Observe that this envelope is a polyhedral outer enclosure of
the convex envelope 〈cos (θi − θk)〉C used in the QC relaxation (4.44c).

7The numerical results in [368] use 20 such segments for the function cos (θi − θk)
over the range θi − θk ∈ [−60◦, 60◦].
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Figure 5.1: Cosine representation in the LPAC approximation. The black line is the
cosine function. The dashed lines form the gray envelope, 〈cos (θi − θk)〉LPAC , for
the function cos (θi − θk). Observe that this envelope is a polyhedral outer enclosure
of the convex envelope 〈cos (θi − θk)〉C used in the QC relaxation (4.44c). (See
Figure 4.6c.)

(See Figure 4.6c.) Denote the variable associated with the convex re-
laxation of the cosine term for line (i, k) ∈ L as ψik ∈ [0, 1], i.e.,
ψik ∈ 〈cos (θi − θk)〉LPAC , where 〈cos (θi − θk)〉LPAC denotes the con-
vex set associated with cos (θi − θk) shown in Figure 5.1. The objective
function of the optimization problem has a term which maximizes
ψik to improve the quality of the cosine relaxation. The small angle
approximation sin (θi − θk) ≈ θi − θk is used for the sine function.

In the hot start version of the LPAC approximation, the voltage
magnitudes |Vi|, ∀i ∈ N , are assumed to take known values denoted
|V h
i |. Consider the line (i, k) ∈ L with admittance gik + jbik. The hot

start LPAC approximation models active and reactive flows Pik and
Qik as

Pik =
∣∣∣V h
i

∣∣∣
2
gik −

∣∣∣V h
i

∣∣∣
∣∣∣V h
k

∣∣∣ (gikψik + bik (θi − θk)) , (5.37a)
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Qik =−
∣∣∣V h
i

∣∣∣
2
bik −

∣∣∣V h
i

∣∣∣
∣∣∣V h
k

∣∣∣ (gik (θi − θk)− bikψik) , (5.37b)

ψik ∈ 〈cos (θi − θk)〉LPAC . (5.37c)

The warm start version of the LPAC approximation assumes target
values for the voltage magnitudes,

∣∣V t
i

∣∣, ∀i ∈ N , such that |Vi| =∣∣V t
i

∣∣+ φi where φi is a scalar decision variable. The active power flow
approximation (5.38a) solely uses the target voltage magnitudes

∣∣V t
i

∣∣,
while the reactive power approximation (5.38b) uses

∣∣V t
i

∣∣+ φi:

Pik =
∣∣∣V t
i

∣∣∣
2
gik −

∣∣∣V t
i

∣∣∣
∣∣∣V t
k

∣∣∣ (gikψik + bik (θi − θk)) , (5.38a)

Qik =−
∣∣∣V t
i

∣∣∣
2
bik −

∣∣∣V t
i

∣∣∣
∣∣∣V t
k

∣∣∣ (gik (θi − θk)− bikψik)

−
∣∣∣V t
i

∣∣∣ bik (φi − φk)− bikφi
(∣∣∣V t

i

∣∣∣−
∣∣∣V t
k

∣∣∣
)
, (5.38b)

ψik ∈ 〈cos (θi − θk)〉LPAC . (5.38c)

The reactive power approximation (5.38b) is derived using a first-order
Taylor series expansion about the values φi = 0, ∀i ∈ N , and θi−θk = 0,
∀ (i, k) ∈ L.

The cold start version of the LPAC approximation sets the target
voltage magnitudes at the load buses to

∣∣V t
i

∣∣ = 1 per unit. Voltage
magnitudes at generator buses are fixed to values that are assumed to
be known. The cold start version is otherwise identical to the warm
start version (5.38).

5.2.7 Current Injection Linearization

The relaxations and approximations discussed thus far focus on the
non-linearities in the power flow equations (2.3) or (2.7). In contrast, the
approach in [369, 370] exploits the linear relationship between voltages
and current injections (YV = I, where V ∈ Cn is the vector of voltage
phasors and I ∈ Cn is the vector of current injections) to locate all
the non-linearities in the load models at each bus. Linearization of the
bus power injection equations yields the so-called “Current Injection
Linearization” in [369, 370].
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Following the approach in [370], expanding the expression YV = I

in rectangular coordinates yields
[
G −B
B G

] [
Vd

Vq

]
=
[
Id

Iq

]
, (5.39)

where Y = G + jB, V = Vd + jVq, and I = Id + jIq. The current
injections are non-linear functions of the voltages. These functions are
dependent on the load model. The approach in [370] considers a “ZIP”
load model that consists of constant-impedance, constant-current, and
constant-power components at each bus i ∈ N :

Pi = cZi |Vi|2 + cIi |Vi|+ cPi , (5.40a)
Qi = c̃Zi |Vi|2 + c̃Ii |Vi|+ c̃Pi , (5.40b)

where cZi , cIi , and cPi are the specified coefficients associated with the
constant-impedance, constant-current, and constant-power components
of the ZIP model, respectively, for active power injections at bus i ∈ N .
Likewise, c̃Zi , c̃Ii , and c̃Pi are the specified coefficients of the corresponding
quantities for reactive power injections at bus i ∈ N .

Note that generators modeled as PV buses do not fit the form
of (5.39) and (5.40) and are therefore not incorporated in the current
injection linearization approach proposed in [369, 370]. Incorporating
an approximate form for voltage magnitude constraints in the current
injection linearization can be accomplished by linearizing the expression
|Vi| =

√
V 2
di + V 2

qi.
Expanding (5.40) into real and imaginary parts and using the power

injection equation Pi + jQi = (Vdi + jVqi) (Idi − jIqi) yields expressions
relating the voltage components and the current injection components:

Idi = cZi Vdi + cIi f
(3)
i + cPi f

(1)
i + c̃Zi Vqi + c̃Ii f

(4)
i + c̃Pi f

(2)
i , (5.41a)

Iqi = cZi Vqi + cIi f
(4)
i + cPi f

(2)
i − c̃Zi Vdi − c̃Ii f

(3)
i − c̃Pi f

(1)
i , (5.41b)

where, for all i ∈ N , the non-linear functions f (1)
i , . . . , f

(4)
i are

f
(1)
i = Vdi

|Vdi|2+|Vqi|2
, f

(2)
i = Vqi

|Vdi|2+|Vqi|2
,

f
(3)
i = Vdi√

|Vdi|2+|Vqi|2
, f

(4)
i = Vqi√

|Vdi|2+|Vqi|2
.

(5.42)
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Thus, the non-linearities are isolated to the functions in (5.42).
Rather than linearizing the functions in (5.42) at a single point, [370]

uses a curve fitting approach to model the non-linearities in a specified
region. Specifically, [370] chooses coefficients α(k)

i , β(k)
i , and γ(k)

i for each
function k = 1, . . . , 4 at each bus i ∈ N that minimize the least-square
error between the linear functions

f̂
(k)
i = α

(k)
i Vdi + β

(k)
i Vqi + γ

(k)
i , k = 1, . . . , 4, ∀i ∈ N , (5.43)

and the non-linear functions f (k)
i , k = 1, . . . , 4, at an evenly distributed

set of points. The current injection linearization is (5.39) with Id and Iq
defined by (5.41) where the functions f (1)

i , . . . , f
(4)
i are replaced by the

linearizations f̂ (1)
i , . . . , f̂

(4)
i in (5.43). An alternative approach in [371]

represents the functions f (1)
i , . . . , f

(4)
i (as well as other nonlinear expres-

sions involved in modeling limits on line flows and voltage magnitudes)
using piecewise-linear approximations formulated with binary variables.

Note that the current injection linearization is applicable to unbal-
anced three-phase network models [370]. Also note that [59, 64] embed
a similar “IV” formulation in an iterative linearization framework to lo-
cally solve the non-convex OPF problem. Other related circuit-theoretic
approaches employed in [60–63] linearize formulations that include both
voltage and current variables.

5.2.8 Optimal Adaptive Linearizations

As opposed to many previously described general approximation tech-
niques, the approaches in [372] and [373] develop linearizations that are
tailored to a specific system and operating range of interest. Both of
these approaches find linearizations that minimize certain error metrics,
but have differences in the metrics themselves as well as the quantities
that are approximated. This section describes each of these approaches
in turn.

Minimizing Worst-Case Error over a Specified Operating Range

The approach proposed in [372] computes a linearization for a given
system that minimizes the worst-case error between the linearization
and the AC power flow equations over a specific operating range.
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Consider, for instance, a linearization that approximates the active
power flows for a certain line (l,m) ∈ L, Plm, as a function of the active
and reactive power injections at every bus:

Plm = `0 +
∑

i∈N
`P,i Pi +

∑

i∈N
`Q,iQi, (5.44)

where `0 ∈ R, `P ∈ Rn, and `Q ∈ Rn are the linearization’s coefficients.
Observe that the form of this linearization is similar to the Power
Transfer Distribution Factor (PTDF) representation discussed in §5.2.3.
In fact, the linearizations in [372] can be viewed as generalizations of
AC-PTDF representations that consider a range of operating conditions
rather than a single point.

Let O denote a specified operating range that is dictated by bounds
on the active and reactive power injections, voltage magnitudes, and
angle differences:

O = {(P,Q, |V | , θ) | ∀i ∈ N , Pmini ≤ Pi ≤ Pmaxi ,

Qmini ≤ Qi ≤ Qmaxi ,

V min
i ≤ |Vi| ≤ V max

i ,

∀ (l,m) ∈ L, θminlm ≤ θl − θm ≤ θmaxlm ,

Power flow equations (2.5)}. (5.45)
Reference [372] formulates the bi-level optimization problem (5.46)
whose solution provides the values for the coefficients `0, `P , and `Q
that minimize the worst-case linearization error for the active power
flow on a certain line (l,m) ∈ L:

min
`0,`P ,`Q

max
P,Q,|V |,θ

η (5.46a)

subject to
(P,Q, |V | , θ) ∈ O (5.46b)
Plm = glm |Vl|2 − |Vl| |Vm| (glm cos (θl − θm) + blm sin (θl − θm)) ,

(5.46c)

η ≥
(
`0 +

∑

i∈N
`P,i Pi +

∑

i∈N
`Q,iQi

)
− Plm, (5.46d)

η ≥ Plm −
(
`0 +

∑

i∈N
`P,i Pi+

∑

i∈N
`Q,iQi

)
. (5.46e)

The version of record is available at: http://dx.doi.org/10.1561/3100000012



134 Power Flow Approximations

Constraint (5.46b) specifies the considered range of operation and the
power flow equations. Constraints (5.46d) and (5.46e) in combination
with the auxiliary variable η represent the absolute value of the lin-
earization error. Approximations that relate a variety of other quantities,
such as reactive power flows and voltage magnitudes, are computed
using problems that are analogous to (5.46). Different linearization
parameters `0, `P , and `Q are determined for each quantity of interest.

Reference [372] solves (5.46) using a constraint generation algorithm
that iterates between 1) a nonlinear optimization step that identifies a
point (P ∗, Q∗, |V ∗| , θ∗) ∈ O which yields the worst linearization error
for given values of `0, `P , `Q and 2) a linear program that finds the
values for `0, `P , `Q which minimize the worst-case error among all
previously identified points. Empirical experiments with a variety of
typical test cases found that the resulting “optimal linearizations” have
up to a factor-of-four improvement in the worst-case linearization errors
compared to using a Taylor series expansion around a nominal operating
point as described in §5.2.1. Note that [372] also discusses a variety of
possible extensions, such as weighted error metrics that more heavily
penalize overestimating or underestimating the quantity of interest.

Minimizing Expected Error for a Specified Optimization Problem

The approach proposed in [373] also computes optimal linearizations,
but has several distinctions from the aforementioned approach in [372].
In particular, the linearizations in [373] consider the expected error
rather than the worst-case error. Additionally, [373] treats the problem
of computing a linearization that minimizes the error for the solution to
a specified OPF problem (parameterized by uncertain quantities such
as renewable power injections) rather than the error over the entire
operating range.

To compute the linearization that minimizes this error metric, [373]
formulates a hierarchy of increasingly large semidefinite programs. This
hierarchy is closely related to the moment/ sum-of-squares relaxation
hierarchies discussed in §4.1.2. Solving a semidefinite program in this
hierarchy yields an operating point. The linearization provided by the
first-order Taylor expansion around this operating point is an estimate
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of the optimal linearization. As the order in the hierarchy increases, the
obtained linearizations approach the linearization that minimizes the er-
ror metric. For the test cases considered in [373], semidefinite programs
corresponding to low orders in the hierarchy provide linearizations with
small errors relative to other approaches for constructing linearizations.
Note that while a sparse formulation is proposed to address computa-
tional challenges, further improvements to computational tractability
may be needed to address large-scale systems with many sources of
uncertainty.

5.2.9 Loss Approximations

Many power system optimization and control problems employ ap-
proximate representations of the active and reactive power losses. This
section details two of the many existing variants of line-loss approxima-
tions. Alternative variants are provided in the references throughout
this section.

For a line (i, k) ∈ L with admittance gik + jbik and assuming near-
unity voltage magnitudes, an approximation of the active and reactive
power losses for each line can be formulated as a function of the squared
phase angle difference, (θi − θk)2 [320, 321, 358, 374–376]:

Ploss,ik ≈ gik (θi − θk)2 , (5.47a)
Qloss,ik ≈ −bik (θi − θk)2 . (5.47b)

The quadratic constraints in (5.47) can be relaxed to a piecewise linear
formulation [320, 321, 358, 375, 376]. As illustrated in Figure 5.2, the
losses on each line (i, k) ∈ L are modeled with the constraints

Ploss,ik = gik

L∑

l=1
mik,l ∆θik,l, (5.48a)

Qloss,ik = −bik
L∑

l=1
mik,l ∆θik,l, (5.48b)

θi − θk = θ+
ik − θ−ik, (5.48c)

θ+
ik ≥ 0, (5.48d)
θ−ik ≥ 0, (5.48e)
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θ+
ik ≤ ψikθmaxik , (5.48f)
θ−ik ≤ (1− ψik) θmaxik , (5.48g)
ψik ∈ {0, 1} , (5.48h)

θ+
ik + θ−ik =

L∑

l=1
∆θik,l, (5.48i)

∆θik,l ≥ 0, l = 1, . . . , L, (5.48j)
∆θik,l ≤ θmaxik /L, l = 1, . . . , L, (5.48k)
∆θik,l ≤ ∆θik,l−1, l = 2, . . . , L, (5.48l)
θmaxik /L−∆θik,l−1 ≤ φik,l−1θ

max
ik /L, l = 2, . . . , L, (5.48m)

∆θik,l ≤ (1− φik,l−1) θmaxik /L, l = 2, . . . , L, (5.48n)
φik,l ∈ {0, 1} , l = 1, . . . , L− 1, (5.48o)

where θmaxik is the maximum angle difference, L is the number of segments
in the piecewise linear representation, and mik,l is the slope of the linear
representation for the lth segment. For evenly spaced line segments,
mik,l = (2l − 1) θmaxik /L.

Constraints (5.48a)–(5.48c) model the relationship between the vari-
ables associated with the piecewise linearization (i.e., ∆θik,l, l = 1, . . . , L,
θ+
ik, and θ

−
ik) and those associated with the remainder of the optimization

problem (i.e., Ploss,ik, Qloss,ik, θi, and θk). An absolute value formulation
|θi − θk| exploits the even symmetry of the quadratic function, thereby
halving the number of segments required for a given level of accu-
racy in the piecewise linear representation. Constraints (5.48d)–(5.48h)
use the binary variable ψik to model the complementarity condition
(θ+
ikθ
−
ik = 0, θ+

ik ≥ 0, and θ−ik ≥ 0) that represents the absolute value
formulation |θi − θk| = θ+

ik + θ−ik. Constraints (5.48j)–(5.48o) model the
piecewise linear representation of

(
θ+
ik + θ−ik

)2
. The binary variables

φik,l, l = 1, . . . , L− 1, are used to maintain adjacency of the segments.
Note that [377] proposes a related loss approximation based on the
absolute values of the voltage magnitude differences and voltage angle
differences.

The binary variables ψik and φik,l result in an MILP formulation.
Theory developed in [320, 376] shows that the linear relaxation of
the binary constraints (i.e., replacing the binary constraints ψik ∈
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Figure 5.2: Piecewise-linear approximation (dashed red lines) of the squared angle
difference function (black curve) used to approximate line losses.

{0, 1} in (5.48h) and φik,l ∈ {0, 1} in (5.48o) with the continuous
constraints 0 ≤ ψik ≤ 1 and 0 ≤ φik,l ≤ 1, respectively) is exact under
certain conditions that depend on the solution’s dual variables. In the

Figure 5.2: Piecewise-linear approximation (dashed red lines) of the squared angle
difference function (black curve) used to approximate line losses.

{0, 1} in (5.48h) and φik,l ∈ {0, 1} in (5.48o) with the continuous
constraints 0 ≤ ψik ≤ 1 and 0 ≤ φik,l ≤ 1, respectively) is exact under
certain conditions that depend on the solution’s dual variables. In the
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simplified case where reactive power is neglected, these conditions are
equivalent to non-negativity of the dual variables associated with the
active power balance constraints (i.e., non-negative Locational Marginal
Prices (LMPs) for active power).

Other work in [378] constructs linear loss functions that do not
assume fixed voltage magnitudes as in (5.47). In this case, line losses are
approximated by a set of linear inequalities that are chosen to minimize
the effect of the nonconvexity inherent in the loss function,

Ploss,ik(|Vi|, |Vk|, θik) = gik
(
|Vi|2 + |Vk|2 − 2|Vi||Vk| cos(θik)

)
, (5.49)

where θik = θi−θk. The (local) convexity/concavity of (5.49) in terms of
changes in bus voltage magnitude and angle variables about a specified
base voltage condition is given by the eigenvalues of the Hessian matrix,
∇2Ploss,ik(|Vi|, |Vk|, θik), which is shown in (5.50):

∇2Ploss,ik(|Vi|, |Vk|, θik)

= 2gik




1 − cos(θik) |Vk| sin(θik)
− cos(θik) 1 |Vi| sin(θik)
|Vk| sin(θik) |Vi| sin(θik) |Vi||Vk| cos(θik)


 . (5.50)

It is demonstrated in [378] that (5.50) has exactly two positive
eigenvalues for all realistic operating conditions. The loss function is
therefore a saddle, exhibiting convexity in two directions and concavity
in the other. This motivates a loss model which comprises the loss
linearization at the base voltage condition together with a set of loss
linearizations formed by selecting appropriate neighboring voltage re-
alizations. These neighboring points lie on the plane defined by the
eigenvectors associated with the two positive eigenvalues. This enables
the model to capture the local convex nonlinearity of losses while largely
eliminating the influence from the concave direction.

Furthermore, it is shown in [378] that if at least one of the voltage
magnitudes in (5.49) is fixed, then the Hessian is positive definite under
realistic operating conditions. In this case the loss function is locally
convex and can be approximated in the usual way by a set of linear
inequality constraints.
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6
Obtaining a Feasible Point

In comparison to the AC power flow equations summarized in §2, the
relaxations and approximations discussed in §4 and §5 have various
advantages in their computational tractability and theoretical charac-
teristics (e.g., the convexity of the power flow relaxations and approxi-
mations is often useful for proving convergence of certain algorithms,
the objective value bounds provided by relaxations as well as the ability
to prove infeasibility are useful for a variety of purposes). Moreover,
the approximate solutions obtained using the power flow relaxations
and approximations are sufficient for some applications. However, other
applications require a solution that is feasible for the AC power flow
equations. For many of these applications, feasible points that only
have local optimality guarantees are often acceptable, particularly when
certified to be at least near global optimality via comparison with the
bounds provided by convex relaxations.

The power system literature describes a wide variety of techniques
for finding feasible AC power flow solutions for many optimization and
control problems. A detailed survey of all such techniques is beyond
the scope of this monograph, and the interested reader is directed
to the reviews in, e.g., [8–17, 22, 24, 25]. Rather than attempt to

139
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survey all the literature on this topic, this chapter first briefly reviews
typical techniques and then focuses on recent developments that directly
result from the power flow representations previously discussed in this
monograph.

Note that the capabilities of various power flow relaxations and
approximations are, in many ways, complementary to those of the local
solution techniques summarized in this chapter. The discussion in §1
provides examples of such complementary capabilities.

6.1 Summary of Traditional Techniques

Many algorithms for finding feasible points to power system problems
iteratively update some representation of the power flow equations.
Despite challenging worst-case complexity [1, 2], knowledge of appro-
priate initializations often results in convergence to feasible points for
certain practical problems (e.g., many instances of power flow and
optimal power flow problems). Appropriate initializations may be avail-
able from knowledge of a previous or anticipated operating point, the
solution to a relaxed or approximated problem formulation, or as-
sumed operating point characteristics (e.g., a flat start initialization of
|V |∠θ = 1∠0◦).

This section summarizes traditional algorithms for computing so-
lutions to the power flow equations and locally solving optimal power
flow problems. Other surveys discuss many variants of power flow [8, 9]
and optimal power flow algorithms [10–17, 22–25] as well as algorithms
for addressing other problems, such as unit commitment [28–31], state
estimation [32–35], and transmission switching [36], to name just a few.
(See §1 for references to additional surveys.)

6.1.1 Power Flow Solution Algorithms

As discussed in §2.2.1, the power flow equations have variables consisting
of either the voltage phasors (for bus injection models) or the squared
voltage magnitudes at the buses and the active power, reactive power,
and squared magnitudes of the current flows on the lines (for the
branch flow model). Specifying two constant parameter values per bus
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(typically the active and reactive power injections at PQ buses, the active
power injections and voltage magnitudes at PV buses, and the voltage
magnitude and angle at a single slack bus) results in a square system of
equalities. Solving the power flow equations means determining values
for the associated variables that are consistent with these parameter
values, without considering inequality constraints such as limits on
voltage magnitudes and line flows.

A wide variety of power flow solution algorithms have been pro-
posed [8, 9]. This section summarizes Newton-based, backward/forward
sweep, and continuation algorithms. These algorithms have found
widespread applications in power systems analyses.

Newton-Based Power Flow Algorithms

Typical Newton-based iterative algorithms for solving the power flow
equations leverage the linear approximations developed around a speci-
fied operating point that are discussed in §5.2.1. Newton-based meth-
ods were first applied to modest-size power flow problems in the late
1950s [91] and later refined for application to larger problems using
sparsity-exploiting numerical techniques for solving linear systems of
equations [92, 93].

Let superscript (k) denote the value of the associated variable at the
k-th iteration of the algorithm. Choose an initialization for the voltage
phasors |V (0)|∠θ(0) (e.g., a flat start initialization of |V (0)|∠θ(0) = 1∠0◦).
Newton-based algorithms alternate between computing power injection
“mismatches”, denoted by ∆P and ∆Q, and updating the voltage phasors
by solving a linear system of equations. The mismatch corresponds to
the difference between the power injections implied by the voltage
phasors at the current iterate, P (k) and Q(k), and the specified power
injections, P • and Q•:

∆P (k)

= |V (k)
i |

n∑

k=1
|V (k)
k |

(
Gik cos

(
θ

(k)
i − θ

(k)
k

)
+ Bik sin

(
θ

(k)
i − θ

(k)
k

))
− P •,

(6.1a)
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∆Q(k)

= |V (k)
i |

n∑

k=1
|V (k)
k |

(
Gik sin

(
θ

(k)
i − θ

(k)
k

)
−Bik cos

(
θ

(k)
i − θ

(k)
k

))
−Q•.

(6.1b)

The first-order Taylor expansion of (6.1) yields
[
∆P (k+1)

∆Q(k+1)

]
=
[
∆P (k)

∆Q(k)

]
+ Jp|V=|V (k)|∠θ(k)

([
θ(k+1)

|V (k+1)|

]
−
[
θ(k)

|V (k)|

])
.

(6.2)
The desired voltage phasors |V (k+1)|∠θ(k+1) should (ideally) drive the
power injection mismatches ∆P (k+1) and ∆Q(k+1) toward zero. There-
fore, after computing the power injection mismatches ∆P (k) and ∆Q(k),
the following linear system is solved to compute the updated voltage
phasors |V (k+1)|∠ θ(k+1):

[
∆P (k)

∆Q(k)

]
= − Jp|V=|V (k)|∠θ(k)

([
θ(k+1)

|V (k+1)|

]
−
[
θ(k)

|V (k)|

])
. (6.3)

Newton-based algorithms repeat this process until all of the power
injection mismatches are less than a specified tolerance ε, i.e.,

∣∣∣∣∣

∣∣∣∣∣

[
|∆P (k)|
|∆Q(k)|

] ∣∣∣∣∣

∣∣∣∣∣
∞
< ε,

indicating that a solution of acceptable accuracy has been obtained.
For a sufficiently close initialization, Newton-based methods converge
quadratically to a power flow solution. Note that the regions of attraction
within which an initialization will converge to a power flow solution
are fractal in nature, exemplifying the complicated behavior exhibited
by Newton-based methods when the initialization is not near a power
flow solution [379–381]. Also note that step-size control via “optimal
multipliers” precludes divergence of Newton-based algorithms [382].

Since the voltage magnitude and angle at the slack bus and the
voltage magnitudes at PV buses are specified, these variables are fixed to
their corresponding values in (6.3). Moreover, since the reactive power
injections at PV buses and the active and reactive power injections at
the slack bus do not have specified values, the equations corresponding
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to these quantities are eliminated from (6.3). Values for these quantities
can be explicitly computed after solving for the voltage magnitudes and
angles.

Note that Newton-based methods can be applied using any of the
Taylor expansion linearizations discussed in §5.2.1. Various power flow
linearizations have different computational characteristics [383]. For
instance, the Fast Decoupled Power Flow linearization [337] discussed
in §5.2.2 only factors the matrices B′ and B′′ once, resulting in significant
computational speed improvements for many power flow problems. [339]
and [340] provide detailed analytical and empirical analyses of the
convergence behavior for the Fast Decoupled Power Flow. Typical power
system software packages such as Matpower [50] implement Newton
methods that are based on a variety of power flow representations.

Backward/Forward Sweep Algorithm for the DistFlow Equations

Newton’s method can be used to solve the DistFlow equations (2.7).
However, the recursive structure of these equations lends itself to a
more intuitive backward/forward sweep algorithm [384–386]. Number
the source bus (substation) as bus 0. Denote the voltage set-point at
this bus by Vset, and assume for simplicity that there are no other
voltage-regulated buses in the network. Let Vtol and Stol be tolerance
parameters for mismatches in the source bus voltage magnitude and
the power flows of the end buses. Referring to the network model of
Figure 2.2, the algorithm can be expressed as follows:

Step 0: Initialize the squared voltage magnitude at the end buses of
the feeder to |Vk|2 = 1.0 per unit.

Step 1: At the end buses, Pkm + Qkm = 0 and |Vk|2 is given (either
by Step 0 or Step 4). Solve the DistFlow equations (2.7) to obtain
Pik, Qik, `ik, and |Vi|2.

Step 2: Work backwards from the ends of the feeder to the source bus,
computing Pik, Qik, `ik, and |Vi|2 at each bus.

Step 3: Calculate the voltage mismatch at the source bus, Vmis =∣∣V 2
set − |V0|2

∣∣, where |V0|2 is computed at Step 2.
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Step 4: Set |V0|2 = V 2
set. Using the values of P0k and Q0k from Step 2,

work forwards from the source bus calculating ∑Pkm,
∑
Qkm,

`ik, and |Vk|2 using the values of Pik, Qik, and |Vi|2 computed
for the previous bus. If there are multiple lines emanating from
bus k, then distribute these new values for ∑Pkm and ∑Qkm to
the lines in proportion to the flows computed at Step 2.

Step 5: Calculate the power mismatches at all of the end buses, Smis =
|Pkm|+ |Qkm|.

Step 6: Check the convergence criteria, Smis ≤ Stol for all of the end
buses and Vmis ≤ Vtol. If these criteria are satisfied, terminate the
algorithm. Otherwise, go to Step 1.

This algorithm can be readily extended to three-phase unbalanced ra-
dial networks [386]. Additionally, a related forward-backward sweep
technique for solving optimization problems is proposed in [387]. Ap-
plications of the technique in [387] include solving multiperiod OPF
problems and optimizing the placement of energy storage devices.

Continuation Algorithms

It is often desirable to move from a known feasible point to a new
solution corresponding to different parameter values, a process known
as numerical continuation [388]. Such situations may arise when a power
flow solution is easily obtained for particular parameter values λ1 but
the desired solution corresponds to different parameter values λ2 (e.g.,
a much higher loading level). For notational convenience, consider the
power flow equations in the general form,

φ(x, λ) = 0, (6.4)

where x ∈ R2n are the voltage variables (magnitudes and angles, |Vi|
and θi, or the rectangular components, Vdi and Vqi, for each bus i ∈ N ),
λ ∈ Rp are parameters, and φ : R2n+p → R2n denotes the power flow
equations. A path between the solutions corresponding to λ1 and λ2 is
given by

φ
(
x, (1− γ)λ1 + γλ2

)
= 0,
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where the scalar γ varies from 0 to 1. A closely related formulation arises
when the parameters have a single degree of freedom, effectively λ ∈ R1,
and the corresponding 1-manifold (or curve) defined by (6.4) is desired.
For simplicity of notation, the following discussion of the continuation
process will consider this latter case, where (6.4) is under-determined by
dimension one and hence defines a 1-manifold. Continuation problems
of this form have been explored extensively in the context of power
systems [100, 389–391]. A variety of algorithms have been exploited,
with the most versatile being a predictor-corrector Euler homotopy
approach [388, 389].

To describe this predictor-corrector algorithm, it is convenient to
rewrite (6.4) as

φ(z) = 0, (6.5)
where z ≡ [ xλ

] ∈ R2n+1 and φ : R2n+1 → R2n. Assume that a point z1
which satisfies (6.5) is known and another point on the curve described
by (6.5) is desired.

The first step of the algorithm is to predict the next point on the
curve. This is achieved by finding the vector that is tangent to the curve
at z1 and moving along that vector a predefined distance τ . This τ is
a (scalar) control parameter that effectively determines the distance
between successive points along the curve. The unit vector v ∈ R2n+1

that is tangent to the curve (6.5) at z1 is given by
∂φ

∂z

∣∣∣∣
z=z1

v = 0, (6.6a)

‖v‖ = 1, (6.6b)

where the Jacobian ∂φ
∂z has dimension 2n× (2n+ 1). The prediction of

the next point on the curve is

zp = z1 + τv.

The next step is to correct to a point z on the curve. This is done
by solving for the point of intersection of the curve and a hyperplane
that both passes through zp and is orthogonal to v. Points z on this
hyperplane are given by

(z − zp)ᵀv = 0, (6.7)
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Figure 6.1: Predictor-corrector process for the Euler homotopy.

or, alternatively,

(z − z1)ᵀv = τ. (6.8)

Either (6.7) or (6.8) can be used. The point of intersection of the curve
and the hyperplane is then given by

φ(z) = 0, (6.9a)
(z − z1)ᵀv = τ. (6.9b)

Note that z1, v, and τ are fixed in (6.9b), with z being the only unknown.
The first 2n equations, which follow from (6.5), ensure the point is on
the desired curve. The last equation, from (6.8), ensures the point is
on the hyperplane. Together, (6.9) forms a set of 2n+ 1 equations in
2n+ 1 unknowns which can be solved using a standard Newton-based
technique, as described in §6.1.1. The predictor-corrector process is
illustrated in Figure 6.1.

After the second point z2 on the curve has been determined, an ap-
proximate tangent vector can generally be used for obtaining successive
points. The approximate tangent vector at the k-th point, which is used
to calculate the (k + 1)-th point, is given by

vi = zk − zk−1
‖zk − zk−1‖

.

This approximate tangent vector involves much less computation than
finding the exact tangent vector using (6.6). However, the approximation
may lose accuracy in regions of high curvature.
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6.1.2 Algorithms for Locally Solving Optimal Power Flow Problems

A wide variety of local solution techniques have been applied to OPF
problems [10–17, 22–25]. This section reviews two particularly successful
classes of traditional techniques called Interior Point algorithms and
Sequential Quadratic Programming algorithms. Further details on these
and other local solution techniques are provided in [124, 392]. Power sys-
tem software packages such as Matpower [50] and PowerModels.jl [51]
provide interfaces to solvers that implement these and other optimiza-
tion algorithms.

For notational convenience, the OPF problem (2.8) is rewritten as

min f(x) (6.10a)
subject to
gi(x) ≤ 0, i = 1, . . . ,mineq, (6.10b)
hj(x) = 0, j = 1, . . . ,meq. (6.10c)

In (6.10), the vector x denotes the decision variables consisting of the
voltage phasors. The inequality constraints gi(x) ≤ 0 denote the limits
on line flows, power injections, phase angle differences, and voltage
magnitudes. The equality constraints h(x) = 0 correspond to some
representation of the power flow equations. The scalars mineq and meq

denote the number of inequality and equality constraints, respectively.
The objective, denoted f(x), is chosen to optimize a specified quantity
of interest, such as minimization of generation cost.

Interior Point Algorithms

Interior point algorithms are formulated by first introducing non-
negative slack variables si ≥ 0, ∀i = 1, . . . ,mineq, in order to rewrite
the inequality constraints gi(x) ≤ 0 with the equivalent formulation
gi(x) + si = 0. The inequality constraints si ≥ 0 are then replaced with
a so-called “barrier” term in the objective function that goes to infinity
as the inequality becomes binding. This barrier term is weighted by a
positive “barrier parameter” µ that is iteratively decreased towards zero
as the algorithm converges. Interior point algorithms are formulated
using a “log barrier” defined as the sum of the logarithms of the slack
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variables si. The log-barrier formulation is

min f(x)− µ
mineq∑

i=1
log si (6.11a)

subject to
gi(x) + si = 0, i = 1, . . . ,mineq, (6.11b)
hj(x) = 0, j = 1, . . . ,meq. (6.11c)

Under mild conditions [393], a solution to (6.11) approaches a solution
to (6.10) as the barrier parameter µ goes to zero. The KKT conditions
for (6.11) are

∂f(x)
∂x

+ γᵀ
(
∂g(x)
∂x

)
+ λᵀ

(
∂h(x)
∂x

)
= 0, (6.12a)

g(x) + s = 0, (6.12b)
h(x) = 0, (6.12c)
diag (s) γ − µ1mineq = 0, (6.12d)

where γ and λ are vectors of Lagrange multipliers for (6.11b) and (6.11c),
respectively; diag ( · ) denotes the diagonal matrix with the vector argu-
ment on the diagonal; and 1 is the vector of ones with length given by
the associated subscript.

Each iteration of an interior point algorithm computes a Newton
update step for the KKT conditions (6.12). The variables x, λ, γ, and
s are updated according to rules which ensure that the non-negative
variables γ and s do not approach zero too quickly. The barrier parameter
µ is also updated at each iteration such that it approaches zero.

Typical variants of interior point algorithms use line-search methods,
trust-region constraints, techniques for handling non-convexity via merit
functions, and other modifications to guarantee convergence. More
details regarding interior point algorithms and various extensions are
available in [124, 392–394]. Software packages that implement interior
point algorithms include Ipopt [395], Knitro [396], and LOQO [397]. The
first applications of interior point algorithms in power systems include
state estimation [398] and hydro scheduling problems [399] during
the early 1990s. Subsequent work demonstrated that interior point
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algorithms are capable of locally solving large-scale OPF problems [24,
400, 401]. Note that it is generally difficult to leverage information from
a nearby solution, i.e., interior point algorithms are typically difficult
to “warm start” because they require a sufficiently interior starting
point [402].

Sequential Quadratic Programming Algorithms

Sequential quadratic programming (SQP) algorithms seek local solutions
to nonlinear optimization problems by repeatedly solving specially
constructed quadratic programs. For the generic OPF problem (6.10),
each iteration k of an SQP algorithm solves the following quadratic
program to obtain a search direction d(k):

d(k) =

arg min
d

f(x(k)) +
(
∇f(x(k))

)ᵀ
d+ 1

2 d
ᵀ
(
∇2
xx L (x(k), γ(k), λ(k))

)
d

subject to (6.13a)

gi(x(k)) +
(
∇gi(x(k))

)ᵀ
d ≤ 0, i = 1, . . . ,mineq, (6.13b)

hj(x(k)) +
(
∇hj(x(k))

)ᵀ
d = 0, j = 1, . . . ,meq, (6.13c)

where γ and λ are vectors of Lagrange multipliers for (6.10b) and (6.10c),
respectively; x(k) is the value of the decision variables at the current
iterate; L = f(x) + γᵀg(x) + λᵀh(x) is the Lagrangian of (6.10); and
∇ and ∇2

xx denote the gradient and Hessian, respectively, with respect
to x.

Each iteration of an SQP algorithm updates the primal decision
variables by adding the step d(k) computed by solving (6.13), i.e.,
x(k+1) = x(k) + d(k). The values for the Lagrange multipliers at the
next iteration, γ(k+1) and λ(k+1), are given by the dual variables for the
constraints (6.13b) and (6.13c), respectively, computed at the current
iteration.

The optimization problem (6.13) is a (potentially non-convex) quad-
ratic program which can be solved using a variety of algorithms. When
the Hessian is difficult to compute, SQP algorithms often employ so-
called “quasi-Newton” techniques that construct modified matrices used
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in place of ∇2
xx L

(
x(k), γ(k), λ(k)) [124, 392]. Other SQP variants employ

various line-search techniques, trust-region methods, merit functions,
etc. [124, 392].

Once an SQP method finds the “active set”, i.e., the set of inequality
constraints that are binding at the solution to (6.10), the iterates
converge superlinearly or quadratically towards the solution, depending
on the specific SQP variant. SQP methods can thus greatly benefit from
being initialized at a point near the solution.

While predated by various related applications of quadratic and
linear programming techniques to OPF problems [13, 14], SQP methods
of the form described in this section were first applied to OPF problems
in the mid-1980s [403], where a sparse implementation demonstrated
scalability to systems with thousands of buses. As reviewed in [16], sub-
sequent work on OPF problems has refined SQP techniques via a variety
of modifications. Typical variants of SQP methods are surveyed from a
general optimization perspective in [124, 392]. SQP implementations
include Knitro [396], SNOPT [404], and FilterSQP [405].

6.2 SDP-Based Techniques for Obtaining Feasible Points

Having briefly reviewed several important traditional techniques, this
section returns to the main focus of this monograph regarding recent
developments in power flow representations. In particular, this section
discusses how SDP formulations of the power flow equations can be used
to find feasible points for power flow and optimal power flow problems.

The Shor relaxation described in §4.1.1 finds the global solutions to
some power system optimization problems. However, there are practical
problems for which the solution to the Shor relaxation fails to satisfy
the rank condition (4.4) [3, 103, 107, 121, 170–175]. Although the power
injections associated with the solution to the Shor relaxation may be
close to those of the global optimum, no physically meaningful voltage
phasors can be directly recovered for such cases.

In other fields (e.g., compressed sensing) which employ Shor relax-
ation techniques to solve non-convex optimization problems, “penal-
ization” approaches are often able to find feasible solutions that have
objective values near the global optimum. A penalization approach
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augments the objective function with a “penalty” term that promotes
the satisfaction of the rank condition (4.4). Let f (x) denote the cost
function for the non-convex optimization problem. A penalization ap-
proach applies the Shor relaxation to a related optimization problem
with the objective function fλ (x) = f (x) + λψ (x), where λ is a spec-
ified penalty parameter and ψ (x) is a chosen penalty function. Since
the constraints are left unchanged, any solution to a relaxation of a
penalized problem that satisfies the rank condition (4.4) is feasible for
the original non-convex optimization problem. Note that penalization
approaches do not provide relaxations of the original non-convex prob-
lem because they do not yield bounds on the optimal objective values.
Also note that an appropriate penalization may not exist. Furthermore,
if an appropriate penalization does exist, the difficulty of finding it has
the same worst-case complexity as solving the original optimization
problem. Thus, the problem of choosing an appropriate penalty for OPF
problems is generally NP-Hard [1, 2].

A successful penalization approach requires 1) the selection of a
penalty function ψ (x) that promotes exactness of the relaxation and
2) a means for choosing an appropriate penalty parameter λ. A common
penalty function that has been shown to be valuable in other fields is
the nuclear norm (i.e., the sum of the singular values of the matrix W
in the Shor relaxation (4.3)). The nuclear norm penalty is implemented
using the matrix trace operator ψ (x) = tr (W) in the Shor relaxation.
The nuclear norm has desirable theoretical properties relevant to pe-
nalization approaches [406, 407]. However, choosing ψ (x) = tr (W)
generally results in poor performance for power system optimization
problems. For the power flow equations, tr (W) is equal to the sum of
the squared voltage magnitudes. Since the voltage magnitudes are often
constrained to be near nominal values, all feasible points have similar
values of tr (W).

While the nuclear norm is generally not appropriate, other penalty
functions can work well for power system problems. Selection of objec-
tive functions for the Shor relaxation that yield physically meaningful
solutions to the power flow equations is studied in [170] and [408]. To
solve the power flow equations, [170] and [408] consider optimization
problems with fixed active power injections and voltage magnitudes at
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non-slack generator buses, fixed active and reactive power injections
at the load buses, and a fixed voltage magnitude and angle at a single
slack bus (i.e., the feasible spaces of the optimization problems consist
solely of the (multiple) point solutions to the power flow equations). The
approach in [170] uses objective functions that are linear combinations
of squared voltage magnitudes to recover multiple solutions to the power
flow equations. The approach in [408] uses the solution to a convex
optimization problem to determine an appropriate objective function
for obtaining a high-voltage power flow solution.

Penalty functions that are specific to OPF problems are explored
in [98, 187]. The proposed approaches penalize the total reactive power
injection, ∑n

i=1Qi, and the apparent power losses on certain “problem-
atic” lines, ∑(i,k)∈L∗ |Sik + Ski| where L∗ ⊂ L. The set of problematic
lines L∗ corresponds to the lines associated with high-rank submatri-
ces in the chordal-sparsity-exploiting formulation (see §4.1.1). Refer-
ence [409] applies a similar penalty approach to the state estimation
problem.

There often exist penalizations of the total reactive power injection
along with the apparent power losses on certain lines that result in
feasible solutions with objective values that are near the global optimum
(within 1% for a variety of test cases) [98, 187]. However, this is not
always the case. Figure 6.2 provides an example of an OPF problem
where the penalization approach in [98, 187] yields either infeasible
points or feasible points that are far from the global optimum.

In related work, the approach in [219] uses a reactive power penalty
along with selective application of the higher-order moment constraints
(see §4.1.2). The resulting “penalized moment” relaxations find fea-
sible solutions to a broader class of problems than either method
individually.

While [98] and [187] show that a range of values for the penalty
parameters results in feasible solutions for a variety of test cases, there is
no guidance for choosing an appropriate value for the penalty parameter.
Appropriate values can range over several orders of magnitude for real-
istic test cases. An alternative approach in [188] provides an algorithm
for computing the penalty function. Specifically, this approach first
solves the Shor relaxation. The generation cost function is constrained
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Figure 6.2: Projections of the feasible spaces of the OPF problem and the Shor
relaxation for the five-bus system “WB5” from [3]. Compared to the projection in
Figure 2.6b, the projection shown here looks down vertically. The disconnected feasible
space for the OPF problem is denoted by the thin region inside the dashed black
curves at the bottom-left and upper-left portions of the colored region. The feasible
space for the relaxation is shown by the colored region. The OPF problem’s objective
function is modified to a convex quadratic function of active power generation with
an unconstrained minimizer at the light blue square. The thin black lines are contours
of the objective function for the non-penalized relaxation. The green star denotes
the OPF problem’s global solution. The colored region, OPF feasible space, cost
contours, and local and global solutions are the same as in Figure 4.3a.

The thick gray and blue line denotes the solutions obtained with varying parameter
values for a penalty function of total reactive power generation as proposed in [98, 187].
(Related penalties that include apparent power losses have similar behavior.) Specific
penalty parameters in $/(MVAr-hr) are explicitly shown by the black dots along
the thick line. The gray portion of the thick line corresponds to solutions of the
penalized formulation that are not feasible for the OPF problem (i.e., do not satisfy
the rank condition (4.4)). The blue portion of the thick line corresponds to solutions
of the penalized formulation that are feasible for the OPF problem (i.e., satisfy the
rank condition (4.4)).

The solution to the non-penalized relaxation is at the light blue square. Increasing
the penalty parameter results in the solution to the penalized formulation moving
away from the global optimum. A feasible point is first reached at a penalty parameter
value of approximately $467/(MVAr-hr). With an objective value that is 198% greater
than that of the global optimum, this feasible point is far from the global solution to
the OPF problem at the green star. Negative values of the penalty parameter result
in the solution to the penalized formulation being infeasible for the OPF problem.
Thus, the penalization approach in [98, 187] fails to yield a near-globally-optimal
solution for this problem.

Figure 6.2: Projections of the feasible spaces of the OPF problem and the Shor
relaxation for the five-bus system “WB5” from [3]. Compared to the projection in
Figure 2.6b, the projection shown here looks down vertically. The disconnected feasible
space for the OPF problem is denoted by the thin region inside the dashed black
curves at the bottom-left and upper-left portions of the colored region. The feasible
space for the relaxation is shown by the colored region. The OPF problem’s objective
function is modified to a convex quadratic function of active power generation with
an unconstrained minimizer at the light blue square. The thin black lines are contours
of the objective function for the non-penalized relaxation. The green star denotes
the OPF problem’s global solution. The colored region, OPF feasible space, cost
contours, and local and global solutions are the same as in Figure 4.3a.

The thick gray and blue line denotes the solutions obtained with varying parameter
values for a penalty function of total reactive power generation as proposed in [98, 187].
(Related penalties that include apparent power losses have similar behavior.) Specific
penalty parameters in $/(MVAr-hr) are explicitly shown by the black dots along
the thick line. The gray portion of the thick line corresponds to solutions of the
penalized formulation that are not feasible for the OPF problem (i.e., do not satisfy
the rank condition (4.4)). The blue portion of the thick line corresponds to solutions
of the penalized formulation that are feasible for the OPF problem (i.e., satisfy the
rank condition (4.4)).

The solution to the non-penalized relaxation is at the light blue square. Increasing
the penalty parameter results in the solution to the penalized formulation moving
away from the global optimum. A feasible point is first reached at a penalty parameter
value of approximately $467/(MVAr-hr). With an objective value that is 198% greater
than that of the global optimum, this feasible point is far from the global solution to
the OPF problem at the green star. Negative values of the penalty parameter result
in the solution to the penalized formulation being infeasible for the OPF problem.
Thus, the penalization approach in [98, 187] fails to yield a near-globally-optimal
solution for this problem.
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to be close to the bound from the Shor relaxation in order to free the
choice of the objective function in the relaxation. This facilitates the
choice of a weighted Laplacian objective function. An iterative algorithm
selects the weights for the weighted Laplacian matrix in terms of the
“mismatches” in the apparent power line flows between the solution to
the relaxation and the closest rank-one matrix. (The approach in [188]
is similar to that described in §4.1.2 for determining where to apply
the higher-order constraints in the moment relaxation hierarchies.) For
many cases where the optimal solution has a generation cost that is
indeed close to the value from the Shor relaxation, the Laplacian objec-
tive function generated with the algorithm in [188] is capable of finding
a near-globally-optimal feasible solution without the need to externally
specify a penalty parameter value.

Another approach for algorithmically selecting an appropriate
penalty function is proposed in [410]. Specifically, this approach uses
an ADMM formulation to iterate between solving a penalized Shor
relaxation and an update of the penalty via a projection onto the space
of rank-one matrices.

Other recent research in [173, 411, 412] leverages the Shor relax-
ation in attempts to obtain locally optimal solutions. Reference [411]
augments the objective function in the Shor relaxation with a parameter-
ized surrogate of the rank function. Using a majorization-minimization
method that successively adjusts the relevant parameter in the rank
surrogate function, the approach in [411] solves a series of semidefinite
programs whose solutions converge to a rank-one matrix that corre-
sponds to a stationary point of the original non-convex optimization
problem.1

Reference [412] also solves a series of semidefinite programs that
converge to a stationary point of the non-convex optimization problem.
To summarize the approach in [412], first observe that the rank-one
condition (4.4) for the Shor relaxation is equivalent to the spectral con-
dition tr (W)− λmax (W) = 0, where λmax (W) denotes the maximum

1A “stationary point” refers to a point that is either a local minimum, a local
maximum, or a saddle point.
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eigenvalue of the positive-semidefinite-constrained matrix W.2 Also ob-
serve that the expression uᵀWu is a lower bound on λmax (W) for any
unit-length vector u. The approach in [412] aims to penalize the objec-
tive function by the expression tr (W)− λmax (W). To accomplish this,
the above observations are exploited by iteratively solving a sequence of
semidefinite programs where the objective function at iteration k + 1 is
penalized by the expression µ

(
tr (W)− (x(k))ᵀ Wx(k)

)
, where µ is a

penalty parameter and x(k) denotes a unit-length eigenvector associated
with the largest eigenvalue of the matrix W from the previous itera-
tion’s solution. This approach is extended to unbalanced three-phase
network models in [413], and a decomposed formulation appropriate for
large-scale problems is presented in [414].

In related work, [173] also proposes an iterative penalization ap-
proach that seeks to satisfy the condition tr (W)−λmax (W) = 0. Each
iteration of the approach in [173] solves a penalized Shor relaxation
with a penalty function constructed using an eigendecomposition. Let
W(k) denote the solution to the penalized Shor relaxation for itera-
tion k, with the solution to the non-penalized Shor relaxation providing
an initialization for the first iteration. Define the eigendecomposition
W(k) = U(k) Λ(k) (U(k))ᵀ, where the diagonal matrix Λ contains the
eigenvalues of W(k) in decreasing order, with corresponding unit-length
eigenvectors in the columns of the matrix U(k). Define the matrix Û(k)

containing the columns of U(k) corresponding to the second-largest
eigenvalue through the smallest eigenvalue. Iteration k + 1 solves the
Shor relaxation with the penalization term µ · tr

(
Û(k) (Û(k))ᵀ W

)
,

where µ is a scalar penalty parameter. This iterative approach yields
a globally optimal solution for the original non-convex optimization
problem if the iterations converge to a point for which the corresponding
penalization term, tr

(
Û(k) (Û(k))ᵀ W

)
, has value equal to zero. Note

that while the iterations are not guaranteed to converge to such a
point, the approach has promising empirical performance for a variety
of distribution system test cases. The formulation in [173] considers

2Recall that the trace of a matrix is equal to the sum of its eigenvalues and that
all eigenvalues of a positive semidefinite matrix are non-negative. Thus, for a positive
semidefinite matrix, the maximum eigenvalue equaling the sum of the eigenvalues
implies that at most one eigenvalue is non-zero.
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an unbalanced three-phase network model and employs techniques for
exploiting chordal sparsity and merging cliques in a manner similar to
that discussed in §4.1.1 in order to improve computational tractability.

For some problems, an approximate solution can also be obtained via
modification of the network parameters. As shown in [164], modifying
the network by enforcing a small minimum resistance (e.g., 1× 10−4 per
unit) on all lines results in satisfaction of the rank condition (4.4) for
some OPF problems that minimize increasing functions of active power
generation. Additionally, as shown in [276] and discussed in §4.2.3,
modifying the network with a sufficient number of controllable phase
shifting transformers along with a load oversatisfaction assumption
ensures that Jabr’s SOCP relaxation and the branch flow relaxation are
exact. Determining other modifications that tend to promote exactness
of various relaxations is an open problem.

6.3 SOCP-Based Techniques for Obtaining Feasible Points

Similar to the traditional techniques discussed in §6.1 that iteratively
update linearizations of the power flow equations, recently proposed
approaches [415–417] successively solve SOCP problems. Reference [415]
proposes an algorithm called “Feasible Point Pursuit–Successive Convex
Approximation” to find an OPF solution that is at least locally optimal.
This algorithm is applicable to problems with both balanced single-phase
equivalent network models and unbalanced three-phase network models,
including multiphase networks with both Wye and Delta connected
devices [418]. Consider a generic power flow constraint of the form

xᵀAx ≥ b, (6.14)

where A is an indefinite matrix that represents one of the matrices
in (4.1). The matrix A can be separated into positive semidefinite and
negative semidefinite components A(+) and A(−), respectively, with the
constraint (6.14) rewritten as

xᵀA(+)x+ xᵀA(−)x ≥ b. (6.15)

Analytical expressions for A(+) and A(−) are derived in [295, §5.3].
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Since A(−) is negative semidefinite, the following condition holds
for any vectors x and z:

(x− z)ᵀ A(−) (x− z) ≤ 0. (6.16)

Expanding this expression and rearranging gives

xᵀA(−)x ≤ 2zᵀA(−)x− zᵀA(−)z. (6.17)

Substituting (6.17) into (6.15) yields

xᵀA(+)x+ 2zᵀA(−)x ≥ b+ zᵀA(−)z. (6.18)

For any specified vector z, enforcing the SOCP constraint (6.18) ensures
satisfaction of (6.14). The iterative approach in [415] solves the SOCP
problem corresponding to (6.18), with the solution used to update the
value of z for the next iteration. The iterates converge to a KKT point
of the associated optimization problem. Since the constraint (6.18) may
result in infeasibility, the algorithm in [415] begins with a “feasible
point pursuit” stage designed to achieve feasibility. Each subsequent
step maintains feasibility.

References [240] and [419] provide further discussion of similar
“Difference of Convex Programming” approaches which leverage sum-
of-squares ideas that are closely related to the moment hierarchies
described in §4.1.2. A similar successive convex approximation approach
is presented in [416] for solving two-stage stochastic OPF problems
with robust constraints. Likewise, [417] uses a closely related successive
convex approximation approach to solve maximum loadability problems
and bi-objective OPF problems. Other recent work in [420] applies
a successive convex approximation approach to a formulation that is
similar to the QC relaxation discussed in §4.2.1.

6.4 Convex Restrictions

When the power injection and voltage magnitude parameters Pi, Qi,
and |Vi| are allowed to vary, the power flow equations generally have an
associated nonzero-dimensional, non-convex feasible space. Relaxations
of the power flow equations form convex spaces that completely enclose
this non-convex feasible space. A converse idea is to construct “convex
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Convex
Relaxation

Non-Convex
Space

Convex
Restriction

Figure 6.3: An illustration comparing a convex relaxation and a convex restriction.
The gray region represents a non-convex feasible space. The blue region bounded by
the dashed line represents the feasible space of a convex relaxation, which completely
encloses the non-convex space. The red region bounded by the dotted line represents
a convex restriction, which is completely enclosed within the non-convex space.

restrictions” that are completely enclosed within the non-convex feasible
space.3 Whereas convex relaxations of minimization problems provide
lower bounds on the optimal objective value and sufficient conditions to
certify problem infeasibility, convex restrictions provide upper bounds
on the optimal objective value and sufficient conditions to certify prob-
lem feasibility. Figure 6.3 provides an illustration comparing a convex
restriction and a convex relaxation of a non-convex space.

A variety of approaches for constructing convex restrictions have
been proposed. This section reviews recent work. A summary of older
literature on this topic is provided in [421, Section II].

The approach in [422] starts from a feasible point with a non-singular
power flow Jacobian. An SDP formulation that exploits the moment
relaxation theory described in §4.1.2 is used to identify a region around
this point within which the power flow Jacobian is non-singular and
certain operational constraints are satisfied. The power flow equations
are guaranteed to be feasible within this region and the region is convex
by construction. Thus, this region provides a convex restriction.

Recent work in [65] constructs convex restrictions based on a current-
voltage formulation of the power flow equations. Both currents and
voltages are represented in rectangular coordinates. The formulation

3This monograph uses “convex restriction” instead of the alternative phrase “inner
approximation” to avoid confusion with the power flow approximations discussed in
§5.
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in [65] is used to find conservative solutions to robust optimization
problems relevant to emergency control situations where computational
speed is particularly important.

Other recent work in [275] focuses on convex restrictions for radial
networks. While there exist sufficient conditions for exactness of the
SOCP relaxation, as discussed in §4.2.3, these conditions are not satis-
fied by all problems and there are radial test cases for which the SOCP
relaxation is not exact. To address a broader class of optimization prob-
lems for radial networks, the approach in [275] augments an extended
formulation of the DistFlow equations (2.7) with additional variables
and constraints. These additional variables and constraints contract the
feasible space of the augmented non-convex optimization problem. The
approach in [275] relaxes this augmented non-convex problem using the
same SOCP relaxation technique employed in (4.49). If the network
topology and electrical parameters satisfy certain conditions, every fea-
sible point (including the optimum) of this “augmented relaxed” SOCP
formulation is guaranteed to have a corresponding physically meaningful
power flow solution, which can be recovered using an iterative algorithm.
Empirical experiments demonstrate that the contraction resulting from
the augmented variables and constraints is not too severe for practical
distribution systems, such that the augmented problem maintains a
large quantity of the original problem’s feasible space.

Another research thrust relevant to developing convex restrictions
exploits fixed-point theorems [332, 421, 423–430]. References [332, 421,
423, 425] apply the Banach fixed-point theorem [431] to construct con-
ditions for power flow solvability in systems where only a single bus
has a fixed voltage magnitude (i.e., systems with only slack and PQ
buses). This approach was first proposed in [332] and then extended
in [423] to reduce conservativeness and improve computational tractabil-
ity. Reference [421] (with an extension to three-phase network models
presented in [425]) generalizes the approaches in [332] and [423] using
an implicit Zbus formulation [432]. Using theory related to saddle-node
bifurcations, recent work in [433] also presents a necessary condition
for power flow solvability that generalizes the condition in [332]. The
condition in [433] is applicable to systems with both constant-power
and constant-current injections and can be used to construct real-time
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voltage stability indices. In other recent work, [426] proposes conditions
for power flow solvability using Brouwer’s fixed-point theorem [434]. Un-
der certain conditions, the approach in [426] generalizes the approaches
in [332, 421, 423]. Moreover, the approach in [426] is applicable to a
more general class of systems which can have multiple buses with fixed
voltage magnitudes (i.e., systems with slack, PQ, and PV buses) as well
as variation in other system parameters, such as network impedances.
A similar approach based on Brouwer’s theorem is proposed in [427] for
systems without PV buses, and subsequent developments that are par-
ticularly relevant to OPF problem formulations are presented in [428].
Further advances in [430] generalize the work in [427, 428] using a lifted
variable formulation that significantly reduces the conservativeness of
the resulting convex restrictions. For lossless radial systems, other recent
work in [424] leverages a fixed-point reformulation based on Brouwer’s
theorem as proposed in [435] to develop sufficient conditions that guar-
antee the existence and uniqueness of a high-voltage power flow solution.
The conditions in [332, 421, 423–427] are used to construct convex re-
strictions for certain classes of systems. Note that the approach in [426]
comes with tightness guarantees that bound a measure of the distance
between the convex restriction and the non-convex feasible space.

Recent work in [329] provides theory related to power flow solution
existence in systems with balanced radial networks where all lines
have the same resistance-to-reactance ratios and all buses, except for
a single slack bus, have fixed active and reactive power injections.
For these systems, [329] derives necessary and sufficient conditions for
the existence and uniqueness of a high-voltage power flow solution.
Additionally, [329] shows that three solution methods (a fixed-point
iteration proposed in [329], a variant of Jabr’s SOCP relaxation [194]
(see §4.2.1), and an energy function approach from [436]) all successfully
find the high-voltage power flow solution for this class of systems, if
the high-voltage solution exists. Finally, for this class of systems, [329]
shows that:

• At the high-voltage solution, the voltage magnitudes are increasing
functions of the reactive power injections.
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• The high-voltage solution is a continuous function of the power
injections.

• The high-voltage solution is the last to vanish as the system is
loaded past the power flow solvability boundary.

Reference [113] also considers systems with balanced radial networks
where every line has a uniform resistance-to-reactance ratio and all buses,
with the exception of a single slack bus, have fixed active and reactive
power injections. For such systems, [113] proves that the feasible spaces
are convex. Moreover, [113] shows that arbitrarily small non-uniformities
in the resistance-to-reactance ratios can result in non-convex feasible
spaces for some problems. However, the active power feasible space
(i.e., the set of active power injections for which there exists some
feasible choice of reactive power injections) is convex for non-uniform
resistance-to-reactance ratios. Additionally, [113] shows that the active
power feasible space is convex for purely resistive networks regardless
of their topology. Since the convex hull of any set of points in a convex
feasible space is a convex restriction, it is straightforward to extend the
convexity results in [113] to obtain convex restrictions.

Other recent work in [429] considers regions called “domains of V-
control” for three-phase unbalanced systems without PV buses. These
regions are sets of power injections S and voltage phasors V (that satisfy
specified voltage magnitude limits) for which 1) every choice of power
injections in S has exactly one corresponding power flow solution in V
and 2) any continuous trajectory of voltage phasors that starts in V
stays in V as long as the corresponding power injection trajectory stays
in S. Reference [429] provides sufficient conditions for a region to be
a domain of V-control and a heuristic method for constructing these
regions. Reference [429] also proves that local uniqueness of a power flow
solution guarantees non-singularity of the power flow Jacobian matrix.
Subsequent work in [437] proposes sufficient conditions for existence
and uniqueness of power flow solutions and describes a polynomial-time
algorithm for constructing domains of V control that is an alternative
to the heuristic method in [429].

Note that convex restrictions can also be established for individual
inequality constraints in power system optimization problems. For

The version of record is available at: http://dx.doi.org/10.1561/3100000012



162 Obtaining a Feasible Point

instance, the approach in [438, 439] constructs linear constraints which
guarantee satisfaction of limits on the magnitudes of branch current
flows, which are themselves given by non-linear expressions of the
voltage phasors. The numerical analyses in [438, 439] demonstrate
that replacing current flow constraints with these convex restrictions
(while maintaining a non-convex power flow representation) improves
computational tractability of the resulting optimization problem.

Reference [440] also focuses on the inequality constraints, seeking to
certify that no choice of power injections within a specified uncertainty
set has a corresponding power flow solution that violates limits on,
e.g., voltage magnitudes and line flows. Convex relaxations and bound
tightening techniques (see §4.4.1) are used to obtain conservative bounds
the worst-case impacts of any possible uncertainty realization. If bounds
on the most extreme achievable voltage magnitudes and line flows
are within their specified limits, no uncertainty realization can cause
inequality constraint violations. Certificates ensuring satisfaction of
the inequality constraints are valuable for facilitating the use of “grid-
agnostic” distributed energy resource controllers that do not model
the distribution network. Moreover, [441] applies a related approach to
solve robust OPF problems, which seek minimum-cost operating points
that are secure with respect to all power injection fluctuations within
a specified uncertainty set. Note that the algorithms in [440, 441] do
not guarantee power flow solvability for all uncertainty realizations,
only that any existing power flow solutions will satisfy the inequality
constraints corresponding to the engineering limits. Also note that the
algorithms in [440, 441] are applicable to systems with both PV and PQ
buses as well as both radial and mesh network topologies. Finally, note
that [442] also uses convex restriction techniques to solve certain robust
AC OPF problems. Specifically, the approach in [442] is applicable to
problems where all buses have generation or controllable loads such that
all nodal power balance constraints can be modeled with inequalities.
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7
Conclusion

This monograph has surveyed the literature of power flow represen-
tations, including both relaxations and approximations. Relaxations
enclose the feasible space of the original non-convex problem in a convex
space, thus providing bounds on the optimal objective value, the poten-
tial to certify problem infeasibility, and, for some problems, the global
optimum. Approximations simplify the power flow equations using a
variety of assumptions regarding both operating conditions (e.g., near
nominal voltage magnitudes) and mathematical expressions (e.g., small
angle approximations).

This concluding chapter provides a tabular summary of the surveyed
power flow representations and a discussion regarding several open
questions and future research directions.

7.1 Summary of the Power Flow Representations

The power flow representations reviewed in this paper are summarized
in Table 7.1. The first column provides the name of the relaxation or
approximation. The second column shows the type of optimization tool
(SDP, SOCP, or LP) used to solve the corresponding representation.
Depending on the form of the objective function, note that both linear
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164 Conclusion

programming and quadratic programming solvers can be applied to
the representations which have “LP” listed in the second column. The
third column indicates whether a three-phase formulation is currently
available and provides associated references. The fourth column provides
brief notes on the power flow representation, such as theoretical guaran-
tees and assumptions used in the representation’s derivation. The fifth
column provides selected references for each power flow representation
and the corresponding section of the monograph.
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7.2 Future Research Directions

Significant progress has been made in developing power flow formula-
tions that are useful in a variety of contexts. However, there remain
open questions that are deserving of further investigation. This sec-
tion provides a non-exhaustive overview of open questions and future
research directions.

• Extension to unbalanced three-phase network models. Many of
the power flow representations considered in this survey have
already been extended to consider unbalanced three-phase network
models. Such extensions are potentially possible for other power
flow representations, which would generalize their applicability to
include typical models of distribution networks.

• Further development of tightening approaches. Tightening ap-
proaches such as those described in §4.4 are a subject of signifi-
cant recent interest. In addition to creating new techniques, the
existing approaches would benefit from further development. Pos-
sible topics include formulating higher-order versions of the valid
constraints described in §4.4.2 for the moment/sum-of-squares hi-
erarchies in §4.1.2, tightening the arctangent envelopes described
in §4.4.2 to more closely enclose the convex hull of the arctangent
function, and advancing bound tightening techniques in order
to further tighten the relaxations. Improving the computational
tractability of the various tightening approaches is another topic
that could benefit from additional work.

• Further characterization of dominance relationships among relax-
ations. The relative tightness of a variety of power flow relaxations
has been characterized in [74, 122, 129, 176, 254, 255, 285]. (See
Figure 4.8.) Determining other dominance relationships (or prov-
ing the lack thereof using counterexamples) is a topic worthy of
future research.

• Ascertaining best practices for combining various power flow relax-
ations and tightening procedures. As discussed in §4.4.2, combining
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non-dominated relaxations and applying the other approaches
discussed in §4.4 results in tighter relaxations. However, improved
tightness may come at the cost of increased computational bur-
den. Identifying best practices for balancing this trade-off is an
important research objective.

• Empirical error analyses. All of the relaxations and approxima-
tions described in this survey introduce the possibility of errors
relative to the non-linear power flow equations. These errors can
be characterized using empirical approaches. For instance, [129,
171, 176, 233, 254, 255, 328, 330, 331, 352, 353, 358, 368, 444, 445]
provide empirical comparisons among subsets of the power flow
representations regarding characteristics that include the tight-
ness of the objective value bounds, constraint violations, and
computational speeds. Researchers and practitioners would bene-
fit from further empirical analyses in order to remain up-to-date
with this rapidly advancing research area. Analyses that consider
specific problem settings would be particularly valuable (e.g.,
various network topologies and parameter ranges, applications
requiring discrete variables [152, 353], and inclusion of methods
for considering uncertainty such as chance constraints [446–451]
or scenario-based approaches [416, 452–455]).

• Analytical error analyses. Errors in the power flow representations
can also be characterized using analytical methods. For instance,
[357] uses convex relaxation techniques to bound the worst-case
error in the DC power flow approximation (see §5.2.3) over a
specified range of operating conditions. (Other analytical error
bounding methods are discussed in [314] and [332].) Similar ap-
proaches could be applied to develop worst-case error bounds for
other power flow representations. Future work can also build upon
the analytical techniques for power flow error analyses in [330]
and [331].

• Study of challenging test cases. While existing power flow repre-
sentations show promise for certain test cases and applications
(e.g., OPF problems for many of the IEEE test cases), there

The version of record is available at: http://dx.doi.org/10.1561/3100000012



172 Conclusion

remain challenging problems deserving of further study. For in-
stance, the PGLib archive has a variety of OPF test cases that
exhibit non-negligible optimality gaps [179]. Closing these gaps is
a topic of ongoing research, and further analyses will be needed
to study the wide variety of test cases that are currently under
development [180]. Other relevant work includes studying the
feasible spaces of power system optimization problems and their
relaxations to characterize both challenging and straightforward
cases [3, 98, 100–114].

• Exploration of synergies between local solution algorithms and
various power flow representations. There exist many mature local
solution algorithms applicable to the non-convex optimization
problems that result from the non-linear power flow equations,
with the surveys [13–15] providing a comprehensive overview.
Many of the power flow representations reviewed in this mono-
graph have capabilities that are synergistic with local solution
techniques. For instance, the bounds available from convex relax-
ations provide measures of the potential suboptimality of solutions
from local solvers. Additionally, the solutions to the power flow
representations considered in this monograph can serve as initial-
izations for some local solvers, which can speed computations and
encourage convergence to a better solution [450, 456, 457]. Addi-
tionally, by leveraging the KKT conditions for the Shor relaxation,
the primal and dual variables from a local solution can be used to
quickly compute a sufficient condition for global optimality [220].
Dual variables from a local solution can also be used to speed
the computation of objective value bounds provided by the Shor
relaxation [206]. Further development of these and other such
synergies is an important direction for future research.

• Exploitation of alternative convex optimization tools. While LP,
SOCP, and SDP formulations of the power flow equations have
been applied to a variety of problems, there are several other
convex programming tools that have not yet found widespread
applications in power systems. Some of these tools have been
applied to other network optimization problems. For instance,

The version of record is available at: http://dx.doi.org/10.1561/3100000012



7.2. Future Research Directions 173

geometric programming [458] has been used to represent natural
gas flows [459]. Future work may discover applications of such
tools to power system optimization problems.

• Consideration of different coordinate systems. Expressing the
power flow variables in different coordinate systems may result
in power flow representations with differing characteristics. For
instance, the DistFlow model (2.7) yields the SOCP relaxations
discussed in §4.2.2, while the bus injection model (2.3) yields
quadratically constrained quadratic programs that can be ad-
dressed using polynomial optimization tools such as the Shor re-
laxation and the moment relaxation hierarchies described in §4.1.
The power flow equations can be formulated in other coordinate
systems, which may yield representations with desirable proper-
ties. The study of alternative coordinate systems is deserving of
further work. Further discussion is provided in §4.4.4.

• Derivation of sufficient conditions for exactness of various convex
relaxations. As summarized in §4.1.1, §4.1.2, and §4.2.3, there
exists a substantial body of work regarding sufficient conditions
under which several relaxations are guaranteed to be exact. How-
ever, empirical results show that many relaxations are exact for a
much broader class of problems than guaranteed by existing suffi-
cient conditions. Derivations of more general sufficient conditions
would therefore be welcome contributions.

• Identifying problem modifications that tend to result in exactness
of a relaxation. For cases where a relaxation fails to be exact, a
perturbation to the problem may result in exactness of the relax-
ation in some instances. For example, enforcing a small minimum
resistance on all lines results in exactness of the Shor relaxation for
the IEEE 118-bus system with the nominal loading scenario and
an objective function that minimizes generation cost [164]. Addi-
tionally, the penalization approaches discussed in §6.2 perturb the
objective function with a penalty term in an attempt to obtain
an exact relaxation to the penalized problem. The perturbations
employed in such approaches must be chosen appropriately since
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not all perturbations result in exactness of a relaxation. More-
over, even if a perturbation results in an exact relaxation, the
corresponding solution may be far from the global optimum of the
original non-convex problem. Future research directions include
the development of more systematic approaches for identifying
appropriate perturbations and better characterizations of their
effectiveness.

• Development of distributed algorithms. Distributed algorithms
that reduce or eliminate the need for centralized calculations are
of increasing interest due to their potential advantages in shar-
ing the computational tasks and communication burdens while
maintaining privacy. As discussed in §4.1.1 and §4.2.4, distributed
algorithms have been developed using several power flow represen-
tations. See [42–45] for detailed surveys of distributed optimization
and control algorithms in a power systems context. Extension of
these and other distributed algorithms using the power flow repre-
sentations discussed in this monograph may prove advantageous
for addressing operational challenges in future power systems.

• Use of the power flow representations in a variety of applications.
The power flow equations are at the heart of many power system
optimization and control problems. The recent advances in power
flow representations detailed in this survey are thus applicable to a
wide variety of problems. While existing work has largely focused
on OPF problems, other research considers, e.g., state estimation
[175, 409, 456, 460, 461], transmission switching and distribution
network reconfiguration [152, 154–156, 462–467], multiperiod op-
timization with storage [457, 468], multi-objective problems [469],
infrastructure planning [19, 69, 312, 445, 470–472], stochastic
optimization [151, 416, 441, 450–455, 473], contingency analy-
sis [183, 187, 352, 474–476], unit commitment [247, 309, 477–481],
system restoration [353, 482], online (real-time) OPF [45, 483–486],
electricity pricing [487], voltage stability margins [433, 488–491],
and voltage constraint satisfaction [248, 440]. Much research is
still required to further extend many of the power flow representa-
tions to these and other applications. Developing new power flow
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representations that are specialized for particular applications is
another important direction for future work.
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