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Abstract—The application of semidefinite programming to
the optimal power flow (OPF) problem has recently attracted
significant research interest. This paper provides advance in
modeling and computation required for solving the OPF probem
for large-scale, general power system models. Specificallya
semidefinite programming relaxation of the OPF problem is
presented that incorporates multiple generators at the sam
bus and parallel lines. Recent research in matrix completio
techniques that decompose a single large matrix constraide
to be positive semidefinite into many smaller matrices has
made solution of OPF problems using semidefinite programmig
computationally tractable for large system models. We proide
three advances to existing decomposition techniques: a nrat
combination algorithm that further decreases solver time, a
modification to an existing decomposition technique that exends
its applicability to general power system networks, and a minod
for obtaining the optimal voltage profile from the solution to a
decomposed semidefinite program.

Index Terms—Optimal power flow, Semidefinite optimization

I. INTRODUCTION

polynomial time; semidefinite programming approaches thus
have a substantial advantage over traditional solutioh-tec
nigues. Note, however, that the rank condition is not always
satisfied, which means that semidefinite relaxations doimet g
physically meaningful solutions for all realistic powerssym
models [6], [7]. The solution to the semidefinite relaxation
such cases may provide a good starting point for a local kearc
algorithm. Further, the solution to the semidefinite retara
always yields a lower bound to the unknown global solution,
which provides a measure of sub-optimality for any local
solution. It is important to note, however, that a solution
to the semidefinite relaxation with non-zero duality gap is
not necessarily a better approximation to the true solution
than other solution techniques. For instance, when appdied
the three-bus system in [6], the DC OPF, a common linear
approximation to the OPF problem [3], yields more accurate
active power generation and active power Lagrange muétipli
(LMPs), as compared to a traditional AC OPF calculationptha
the solution with non-zero duality gap from the semidefinite

HE optimal power flow (OPF) problem determines amelaxation.
optimal operating point for an electric power system in Recent research has investigated conditions under which

terms of a specified objective function, subject to both oekw

the rank condition is satisfied; to date, sufficient condsio

equality constraints (i.e., the power flow equations, whidr rank condition satisfaction include highly limiting -re
model the relationship between voltages and power injes}io quirements on power injection and voltage magnitude limits

and engineering limits (e.g., inequality constraints ottage

and either radial networks (typical of distribution system

magnitudes, active and reactive power generations, and flawodels) or unrealistically dense placement of controdlabl

on transmission lines and transformers). Total variableege phase shifting transformers [8]-[11]. Additional work indes
ation cost per unit time is typically chosen as the objectiugsing semidefinite programming to create voltage stability
function. margins [12].

The OPF problem is typically nonconvex due to the non- This paper first focuses on modeling aspects that must
linear power flow equations [1]. Nonconvexity of the OPMbe addressed in order to apply the semidefinite program to
problem has made solution techniques an ongoing reseagemeral power system models. The first issue addressed is
topic. Many OPF solution techniques have been proposed, that of allowing multiple generators at the same bus. By
cluding successive quadratic programs, Lagrangian ritaxa equating bus power injections with power generation, ggst
genetic algorithms, particle swarm optimization, andriete formulations only allow a single generator to exist at a hus.
point methods [2], [3]. use the concept of equal marginal generation cost to praaluce

Recently, significant attention has focused on the apjiicat formulation allowing for multiple generators at the sama,bu
of semidefinite programming to the OPF problem [4], [Sleach with separate cost functions and generation limitss Th
Using a rank relaxation, the OPF problem is reformulated agpaper considers both quadratic and convex piecewiserlinea
convex semidefinite program. If the relaxed problem sasisfie generator cost functions.
rank condition (i.e., the semidefinite program has zeroijual A method for incorporating flow limits on parallel lines
gap), the globally optimal solution to the original OPF desb  is then presented. Existing formulations limit the totaMflo
can be determined in polynomial time. No prior OPF solutiobetween two buses, which cannot properly account for grall
method offers a guarantee of finding a global solution ilnes with different electrical properties and flow limita.con-

o ) ) . ) trast, the proposed method limits the flow on each individual
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This paper next advances research in the computatioshlint capacitive compensation), thus preventing caiowlaif
tractability of applying semidefinite programming to large Cholesky factorization. We describe an alternative matri
power system models. Semidefinite programming relaxatiotieat is always positive definite and gives an equivalentalor
of the OPF problem constrain Zn x 2n symmetric matrix extension, thus broadening the applicability of this depom
to be positive semidefinite, where is the number buses in sition to general networks.
the system. The semidefinite program size thus grows as th&@his paper is organized as follows. Section Il provides both
square of the number of buses, which makes solution of ttiee classical formulation of the OPF problem and a proposed
OPF problem by semidefinite programming computationalsemidefinite programming relaxation that incorporatestimul
challenging for large systems. Recent work using matrix-comple generators at the same bus and parallel lines, including
pletion [13]-[15] reduces the computational burden inheire  lines with off-nominal voltage ratios and/or non-zero pdas
solving large systems by taking advantage of the sparsexmashifts. Section Il first gives an overview of the maximal
structure created by realistic power system models. Sojowtique decomposition and then presents three advances in
and Lavaei [10], Jabr [16], and Bai and Wei [17] presemtecompositions for large-scale system models: an algorith
formulations that decompose the single lafye x 2n pos- that improves computation speed by combining matrices, a
itive semidefinite matrix constraint into positive semidéé modification to Jabr's maximal clique decomposition that
constraints on many smaller matrices. If the matrices froextends its applicability to general power system networks
these decompositions satisfy a rank condition, 2hex 2n  and a technique for recovering the optimal voltage profile
matrix also satisfies the rank condition and the optimaltgmiu from a solution to a decomposed formulation. Section llbals
can be obtained. Sojoudi and Lavaei's decomposition [18iscusses rank condition satisfaction for large systemaisod
uses a cycle basis of the network. The matrix decomposition
approach used by both Jabr [16] and Bai and Wei [17] is based ||. THE OPF FRROBLEM AND MODELING ISSUES

on the maximal cliques of a chordal extension of the network. . £ present the OPF problem as it is classically formu-

Wte. prov;je 5.?.\/6:?' enhanceme:[nts ;0 thet_ eX'Tt'ngﬂiiC?@fed. Specifically, this formulation is in terms of rectatey
pPOSItONS. -specitically, we present a heuristc algori voltage coordinates, active and reactive power gener,zadiwth

gomblmng. _somg of tlhek.small matr.|ces resultm.g g;;m thSpparent power line-flow limits. Each bus may have multi-
ecomposition. Since linking constraints are requiresvben ple generators, and parallel lines are allowed. This daksi

elements of the decomposed matrices that refer to the s F formulation is generally nonconvex. We then describe

element in thezn x 2n matrix, it is not always advantageoqsa semidefinite programming relaxation of the OPF problem

to_ cr_eate the smallest pos_3|b_Ie matnces_. Comb!nmg rTmr'cadopted from [5] that handles the modeling issues of meitipl
eliminates some of these linking constraints, which canltes enerators at the same bus and parallel lines

in significant computational speed increases. We justify tlg
claim that the proposed algorithm can substantially ireeea ) )
computational speed using both theoretical arguments ahd Classical OPF Formulation

several test cases. Consider am-bus power system, whef® = {1,2,...,n}

Note that this paper considers a centralized application presents the set of all buses. Defifieas the set of all
these decompositions in the sense of creating one semidefigienerators, withg; the set of generators at bus Let G4
program that is solved on a single computer as opposedrépresent the set of all generators with quadratic costifms,
creating many subproblems that are solved using decemdaliwith G/ those such generators at bud et G* represent the
techniques as in [18]. Centralized application allows falus set of generators with piecewise-linear cost functionghwi
tion with existing generic semidefinite programming saver G’ those such generators at bugSome of these sets may

A further enhancement presented in this paper is a technidpe empty.) Po, + jQcg represents the active and reactive
for recovering the optimal voltage profile from the decompower output of generatog € G. Pp; + jQp; represents
posed matrices. While the steps are relatively straightfdhe active and reactive load demand at each bus N.
ward, existing literature does not detail a method for dbtua V; = Vy; + jV,; represents the voltage phasors in rectangular
obtaining the optimal voltage profile from a solution to @oordinates at each bus A. Superscripts “max” and “min”
decomposed formulation. denote specified upper and lower limits. L¥t = G + jB

Although we focus on the maximal clique decompositiodenote the network admittance matrix.
proposed by both Jabr [16] and Bai and Wei [17] due to £ represents the set of all lines, where likee £ has
the voluminous literature on matrix completion with chdrdaerminals at buseg, andm,, with parallel lines allowed (i.e.,
extensions (e.g., [13]-[15]), both of these enhancementklc more than one line between the same terminal buses)Sj et
be applied to Sojoudi and Lavaei’'s decomposition [10] ad.wetepresent the apparent power flow on the line L.

We also describe a modification to the maximal clique Define a cost function associated with each generator,
decomposition as formulated by Jabr [16] that allows fdypically representing a dollar/hour variable operatirgstc
application to general power systems. This formulation cr&his paper considers quadratic and convex piecewiserlinea
ates a chordal extension of the network using a Choleskgst functions in (1a) and (1b), respectively. In (1a), grenis
factorization of the absolute value of the imaginary part afy2, cg1, andcgo represent the quadratic cost coefficients for
the bus admittance matrix. However, this matrix may fail tgeneratoly € G9. In (1b), generatoy € GP* has a piecewise-
be positive definite (for instance, in networks with sigrfic linear cost function composed of, line segments specified



by slopesmyg, ..., my,, and breakpoint§ay, by), t = shift and/or an off-nominal voltage ratio. That is, likeis

1,...,74, Whereay is the power generation coordinate andnodeled as dl circuit (with series admittanceg;, + jb, and
by: is the cost coordinate for the breakpoint. shunt capacitance%%) in series with an ideal transformer
(with turns ratiol : 7,e’%¢) as in [3]. Note that a small
C (Pay) = cg2 P2, + cg1 Py + Cg0 (1a) Minimum resistance is enforced on all lines in accordance
with [5]. Define f; as thei'" standard basis vector R>".
mg1 (Pag — ag1) + bg1, Pay < ag Matrices employed in the line-flow constraints are
mg2 (Pag — ag2) +bg2,  ag1 < Pag < ag2
CP (Pgy) = Gk
9 ( Gg) Zkl = _2 (flkflz + .flk+nfl,1;;+n)
Tk
ar (Ps = o) 4 bar. o < Fo (1b) e (fiofm, & o fl+ frointmin + Fonanfiein)
The classical OPF problem is then T s ( mk+" + fmﬁnflk flk"‘”fmk - fmkflk+n()6)
ka = gk (fmkfrz + fkarnfrg +n)
min Cl(Pgy) + CP" (Pgy) (2a) * .
gezgq ! ! g&—;w I ! —Cm (flkfrjr;k +fmkfl1;:+flk+nf11r;k+n+fmk+nfl7,:+n)
subject to + Sm (flk-l-ﬂfg;k + fmkflrl;:Jrn flk mg+n ka-ﬁ‘nle)
7
Pz, in < pg, < < Pg* Yge G (2b) (
min max 7. = 2by, + b5h=k T T
Qay < Qay < Qg YgeG (2c) k= — T2 (T ey
min 2 max\2 .
(V") < VA4 V3 < () vie N (2d) i (fufomn + Fiinfly = firentm, = Fon fi 1n)
|Sk| < S n VkeL (26) + s (flkffz;k =+ fmkflz;: + flk*i’nfgk#»n + .fkarnfl,I;;Jrn)
> (Pag) = Ppi=Vai Y (GinVan —BinVin)  (20) (8)
g€§; h=1 _ bsh k
n ka (b + ) (fmk +fmk+nf7z;k+n)
+ Vi (Bithh—l-Gith) VieN
! Z ! +Cm (flk+nfmk+fmkflk+n_flkfgr;k-f-n_fmk-i-nflj,:)
n + Sm (fl +fm fl + fi +nfm +n+fm +nfl +n)
> (Qcg) — Qoi =Vai Y (~=BinVan — GinVan)  (20) ' e * o (9)
9€G; h=1

where, for notational convenience,
+ Vai Z iwVan —BiVan)  VieN

_ = ( % cos (0) + by cos (Hk + K)) / (271) (10)
Note that this formulatlon limits the apparent power flow 2
measured at each end of a given line, recognizing that active c,,, = (g;C cos (—0) + by, cos (—Gk + Z)) /(2m)  (11)
and reactive line losses can cause these quantities ta. diffe . 2
s (gk sin (0x) + by sin (Gk + 5)) / (27) (12)
B. Semidefinite Programming Relaxation of the OPF Problem (=61) + by sin (—9k i z)) /@n) (13)
This section first describes the semidefinite relaxatiomef t 2
OPF problem, including the capability to incorporate patal To write the semidefinite relaxation, first define the vector
lines and multiple generators at the same buseldenote the of voltage coordinates
ith standard basis vector R". Define the matrix; = e;elY,
where the superscripf indicates the transpose operator.

Matrices employed in the bus power injection and voltage v=[Var Vo oo Van Voo Ve V] (14)
magnitude constraints are Then define the rank one matrix

S = (g;C sin

m (¥~ ¥/) Re(¥; +¥/)
m (Y + V) Re(Y; —Y/7)
Re (V! -Y;) Im(Y;+Y7)

i=3 ©

The active and reactive power injections at busre then
given by tr (Y;W) and tr (Y;W), respectively, wherer
(4) indicates the matrix trace operator (i.e., sum of the diagjon
elements). The square of the voltage magnitude atibiss
given bytr (M;W).
(5)  Similarly, the active and reactive line flows for likec £ at
terminal busl are given bytr (Z;, W) and tr (Z;, W). Due
A “line” in this formulation includes both transmissionéa to the asymmetry introduced by allowing transformers with
and transformers, where transformers may have both a phafenominal voltage ratios and non-zero phase shifts, wge al

i =




require separate matrices to represent active and repctiver By and those associated with upper bounds/as~;, and

flows from the other terminal of liné at busm: tr (Z,,, W) [, respectively. Define a scalar variablg as the aggregated

andtr (kaW), respectively. Lagrange multiplier (i.e., the locational marginal prit&P))
Replacement of the rank one constraint (15) by the lesfactive power at each budsNote that); is not constrained to

stringent constrainW > 0, where = 0 indicates the corre- be non-negative. Define twbx 3 symmetric matrices per line

sponding matrix is positive semidefinite, yields the serfiide for the line-flow limits measured from each line terminHl;,

nite relaxation. The semidefinite relaxation is “tight” whine andH;, , with Hg‘f and Hg‘fn indicating the(c, d) element of

solution has zero duality gap. The duality gap for a solutidhe corresponding matrix. Defirgex 2 symmetric matrices for

to the semidefinite relaxation refers to the difference leetw each generator with a quadratic cost functi®y,, with RCd

the optimal objective value for the semidefinite relaxatiothe (¢, d) element ofR,. Define a Lagrange multiplief,, for

and the objective value for a global solution to the classeach line segmertof each generatar with a piecewise-linear

cal formulation of the OPF problem (2). A solution to thecost function.

semidefinite relaxation has zero duality gap if and only & th Define a matrix-valued functior.

rank conditionrank (W) < 2 is satisfied. For a solution with

zero duali_ty gap, a unigue rank one mat¥\& can be recovered A _ s {Ain' n ("n _ L-) ¥+ (m _ &) Mi}

by enforcing the known voltage angle at the reference bus [5] iex

The semidefinite relaxation of the OPF problem is +23° {ngkl +HI2 Zy, + HIZ,, + HE ka} (19)
kel
min Y ag+ Y By (16a)  Define a scalar real-valued functign
gega gegrw
subject to
min max : S\ 2 i
Pey' < Pgg < Pgy Vge G (16b) ,p= Z {AiPDi +1iQ2nm — F;Qmax +u, (Vimm) g (Va2
—Ppi+ Y Pag = tr (Y;W) Vi e N (16c) N
L + 3 (v, PE" B PEP + g0~ RTY)
QM < tr (YiW) < Q™ Vi e N (16d) 9e?
. 2
Vimm S tr MZW S ‘/imax 2 Vi GN (166) Tg
(_ ) , (MW = (1) = D > (Cor(mgrage = bgr))
— (S;Cnax) tr (Zle) tr (Zle) geghv t=1
tr (%]WW) —1 0 j 0 Vk e L (16f) _ Z {(Sl?ax)Q (Hkll 4 Ht}ﬂ) 4 Hz2 4 H22 + Hk + Hifn}
Ltr (Zx, W) 0 -1 keL 20
[—(Sp=)?  tr(Z,, W) tr(Zk, W) (20)
tr (Zg,, W) -1 0 <0 VkeLl (169) The dual form of the semi_definite programing relaxation of
[ tr (Zs,, W) 0 1 the OPF problem is then written as
-CgIPGg + cgo — \/CgQPGg
=< q
L VeazFay -1 =0 V9 € GHAN P (21a)
{Bg > mgi (Pag — agt) +bge Vt=1,...,74} Vgegr"¥ subject to
(16)) A =0 (21b)
W =0 (16)  Hy, =0, Hy, =0 Vke L (21c)
. .. . 1
where apparent power line-flow limits and quadratic gemerat R =0, Ry =1 Vg € G (21d)

cost functions are implemented using Schur's complement?
formula in (16f)—(16g) and (16h), respectively; in (16ihet Z ot =1
piecewise-linear generator cost functions are implentent
using the “constrained cost variable” method as in [3]; dod,

Vg € GP¥ (21e)

?)\Z = Cg1 + 2\/692R;2 + 'lzfg - ﬁg Vg S g?} Vi € N (21f)

notational convenience, the maximum and minimum reactiv i - .
power injections at each bus are defined as Ai =D Cumg Vg EG VieN  (219)
t=1
QQZQ 1219207 1L207 3/2207 H2207 /74207 CthO
QI =—Qpi+ Y QX (17) o _ | (21
9€0: The semidefinite relaxation has zero duality gap and yields
min _ min a physically meaningful solution if and only if the solutitm
@ @pi + gg: @y (18) (21) satisfies the rank conditiafim (null (A)) < 2.
gcyi

The dual form of the semidefinite relaxation (i.e., the ddal o . )
(16)) requires definition of Lagrange multipliers corresge C- Discussion
ing to each constraint in (16). Define vectors of Lagrange Several aspects of the semidefinite programming formu-
multipliers associated with lower inequality bounds onwact lation deserve special attention. We focus on those aspects
power, reactive power, and voltage magnituda_b%sli, and that differ from previous formulations (e.g., [5]) due toeth



proposed formulation’s allowing of multiple generatorsla [1l. ADVANCES IN MATRIX COMPLETION
same bus and the possibility of parallel lines. DECOMPOSITIONS

In this section, we describe several advances in the decom-
sition techniques used to reduce the computational burde
'semidefinite relaxations of large OPF problems. First, we
review the maximal cliqgue decomposition as introduced by
br [16]. Next, we present a matrix combination algorithm

The semidefinite relaxation includes the possibility of mul
tiple generators at the same bus. As shown in (21f) and (21
all generators at the same bumust have the same aggregat
active power Lagrange multipliek;. This is related to the
principle of equal marginal costs in the economic dispat o . : :
problem [19]. Since generator reactive power injections oo t at S|gn|f|cant_ly reduces the _reqwred computa‘uo_n_ time of
appear in the cost function of (2), reactive power Lagran{e”? decompos_mon. We then discuss the rank condition prop
multipliers are only needed for each generator bus rath rttles Of sqlutlons to I?rge SVSteT” models. We .next p_resent
than for each generator. This is seen in (17) and (18), whi modification to Jabr’s formulation of the maximal clique

determine the allowed range of buseactive power injection. ecomposition that extends this degompos!tlon to general
networks rather than only networks with admittance masrice

The semidefinite relaxation also includes the possibilifiat satisfy a definiteness requirement. Finally, we dbscai
of parallel lines (i.e., multiple lines with the same teralin technique for obtaining the optimal voltage profile from the
buses) and the ability to represent transformers with ofiecomposed matrices.
nominal voltage ratios and/or non-zero phase-shifts. iBusv
formulations limited line flows by constraining the totalvper A, Overview of Jabr's Maximal Clique Decomposition
flow between two buses, precluding the ability to separately
limit line flows on parallel lines. This modeling flexibility
comes at the price of additional complexity. Incorporatin
parallel lines removes the ability to form the line-flow niedss

Jabr's formulation of the maximal clique decomposition
uses a matrix completion theorem [13]. Several graph thigore
definitions aid understanding of this theorem. A “clique’ais

. . o L subset of the graph vertices for which each vertex in theseliq
directly from the bus admittance matrix, instead requiting ]js connected to all other vertices in the cliqgue. A “maximal

more complicated expressions in (6)-(9). Incorporating o ligue” is a clique that is not a proper subset of anotheeliq
nominal voltage ratios and non-zero phase shifts breaks the

. . . raph is “chordal” if each cycle of length four or more nodes
symmetry of thdI model such that different line-flow ma_tnce%ags apchord which is an ed)g/;e connegting two nodes that are
are required for each line terminal (i.&, in (6) andZy, '

. . . not adjacent in the cycle. The maximal cliques of a chordal
in (8) for active and reactive power flows measured from J Y d

the sending terminal an@, . in (7) andZ;, in (9) for the graph can be Qetermmed n "F‘?@r time [20]. See [16] and [21]
- . ™ ™ for more details on these definitions.
receiving terminal).

The matrix completion theorem can now be stated. Aet

For large system models, numerical difficulies in thB€ & symmetric matrix with partial information (i.e., not al
semidefinite programming solver may prevent convergen@Btries ofA have known values)_wnh an associated undirected
to acceptable precision. We have found several pragmadf@ph. Note that the graph of interest has the power system
techniques that reduce numerical difficulties with large-syPuses as vertices and the branch susceptances as edgesweight
tems. First, ignore engineering limits that will clearlytrige The matrix A can be completed to a positive semidefinite
binding at the solution. Many power system data sets specfiptrix (i.e., the unknown entries oA can be chosen such
large values for limits that are intended to be unconstrgindhat A = 0) if and only if the submatrices associated with
particularly for reactive power generation and line-flomitis. €ach of the maximal cliques of the graph associated with
We do not incorporate terms corresponding to very largé€ all positive semidefinite. _ _
limits. Similarly, some generators specified with quadratist "€ matrix completion theorem allows replacing the single
functions actually have linear cost functions (i.e,; = 0). large2n x 2n positive semidefinite constraint (21b) by many
The correspondin®, matrix is eliminated. These technique§ma”er matrices that are each constrained to be positive

do not affect the optimality of the resulting solution. semidefinite. This significantly reduces the problem size fo
large, sparse power networks.

Numerical difficulties often occur when the system model There are two important aspects of this decomposition that
has very “tight” limits. For instance, the active power geneare relevant to our advances. First, since the maximal eliqu
ation of a synchronous condenser is constrained to be zeran have non-empty intersection (i.e., contain some of the
A second technique for reducing numerical difficulties is teame buses), different matrices may contain elementsefeat r
use equality constraints rather than inequality condsaio to the same element in thB x 2n matrix. Therefore, linking
model these limits. When the power output of a generatordsnstraints are required to force equality between elesnent
constrained to a very small range, fix the generator at the mitiat are shared between maximal cliques. To specify these
point of this range and directly add the associated gemeratiinking constraints, Jabr recommends forming a “cliquetre
cost to the objective function. The degree of suboptimaliy maximum weight spanning tree of a graph with nodes
of the resulting solution can be estimated by multiplying thcorresponding to the maximal cliques and the edge weights
Lagrange multiplier corresponding to the equality coristra between each node pair given by the number of shared buses
by the half of the difference between the maximum and each clique pair. A maximal weight spanning tree of this
minimum limits. graph, which can be calculated using Prim’s algorithm [22],



is used to reduce the number of linking constraints: equaliConsider a semidefinite program formed from the chordal
constraints are only enforced between the appropriatesgltam extension of a power system network, with maximal clique
in maximal cliques that are adjacent in the maximal weigltcontainingd; buses. Since the matrices corresponding to
spanning tree. the maximal cliques are symmetric and contain both real
Second, graphs corresponding to realistic power networdsd imaginary voltage components, matfiXcorresponding
are not chordal. A chordal extension of the graph is thus maximal cliquei) hasd; (2d; + 1) variables. If maximal
required in order to use the matrix completion theorem. éliques: and k, adjacent in the clique tree, shasg buses,
chordal extension adds edges between non-physically ctimen s;; (2s;; + 1) linking constraints are required between
nected nodes (i.e., edges in the chordal extension of thghgraéhe corresponding matrices. For each pair of adjacent nmaxim
may exist between buses that are not connected by a linecliques in the clique tree, the change in the optimization
the power system) to obtain a chordal graph. Jabr recommenpdsblem “size” A, if the cliquesi and k were combined
obtaining a chordal extension using a Cholesky factoratiis given by
of the absolute value of the imaginary part of the network’s
admittance matrix. To minimize the total number of edges, a

Cholesky factorization with minimum fill-in is obtained fro Ajg =dir (2dix +1) — d; (2d; + 1)
a minimum degree ordering of the row/column indices [23]. —di (2dg + 1) — si (2846 + 1) (22)
B. Matrix Combination Algorithm whered;, = d; + dr — s, IS the number of buses in the

We first describe a modification to the maximal cliqu€®mbined clique. o _
decomposition that yields a significant computational dpee While the number of matrices is greater than combine
improvement. This modification accounts for the trade-off P&ir of adjacent maximal cliques with smallesf,. Then
between the size of maximal cliques and the number of linkif§calculate the value ok, for all maximal cliques adjacent
constraints. Smaller maximal cliques generally reducadte (© the newly combined clique. Repeat until the number of
size of the positive semidefinite constrained matrices. THealrices is equal td.. Constrain the resulting set of matrices
overlap between maximal cliques, as determined by theeligtp be positive semidefinite in the OPF formulation.
tree approach, establishes the number of linking constrain  We test this heuristic using two large system models: the

The maximal clique decomposition uses a Cholesky factdEEE 300-bus system [26] and a 3012-bus model of the Polish
ization with minimum fill-in to obtain small maximal cliquesSystem for evening peak demand in winter 2007-2008 [3].
as a heuristic for minimizing the number of variables idhese systems were chosen to examine how the heuristic
the positive semidefinite matrix constraints. This apphoagcales with system size. Matrix decomposition techniques d
does not account for the computational burden of the linkif#pt result in a notable speed improvement for small systems;
constraints. The optimization literature provides théiosd NO Matrix decomposition significantly reduced the computa-
support for the concept of reducing computational burden #gnal time for the IEEE 14, 30, and 57-bus systems [26].
combining matrices (see [13] and Section 4 of [14]). Specifi- The OPF formulation in (21) was implemented using
cally, this literature discusses the potential trade ofatver YALMIP version 3 [27], SeDuMi version 1.3 [24], and
time between the sizes of the semidefinite-constrainedeeatr MATLAB R2011a. One computer with an 64-bit Intel i7-2600
and the number of linking constraints, which require soliti Quad Core CPU at 3.40 GHz with 16 GB of RAM was used to
of a system of linear equations in the semidefinite prograin the formulation. By using the matrix completion decom-
algorithm. Combining matrices eliminates the need foriligk POsitions to exploit the inherent sparsity, these compmrat
constraints between the matrices at the computationa pfic resources were sufficient for the 300 and 3012-bus system
a larger matrix. A heuristic for combining matrices to gaiet models. A tolerance of x 10~ for SeDuMi'seps was used
benefits of small matrices while reducing linking constrminin the calculation of the results.
thus has the potential for computational speed improvesnent Figures 1a and 1b show variation in total solver time

Many common semidefinite program solvers, such 4&e., the time used by the semidefinite programming solver
SeDuMi [24] and SDPT3 [25], use primal-dual methods th&eDuMi), with the parametef. These figures do not include
solve both the primal and dual problems simultaneously.eMorthe set up time required to initialize the formulation. Howe
over, since a primal constraint corresponds to a dual viajalthe set up time is typically only 15% to 20% of the solver time.
the “size” of the semidefinite program can be estimated by The solver times for Jabr’s formulation of the maximal
adding the total number of scalar variables required to forelique decomposition are the rightmost points (no matrix
the matrices with the number of linking constraints. Thisombinations) in Figures la and 1b. As decreases from
approximation for the “size” of a semidefinite program formghe rightmost point, the solver times decrease by, at most,
the basis of our matrix combination heuristic. In a greedypproximately a factor of 2.5 for the 300-bus system and a
manner, we repeatedly combine the pair of matrices that méattor of 3.6 for the 3012-bus system as compared to thersolve
reduces the “size” of the semidefinite program as measutéie without combining matrices.
by the total number of variables plus the number of linking The solution time graphs in Figures 1a and 1b appear to
constraints. be “noisy,” which we attribute to differences in the number

We next detail our matrix combination heuristic. Letbe of iterations needed to reach the specified tolerance. Bhat i
a parameter specifying the maximum number of matricesolver times can vary among choices bfif it requires one
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Fig. 1. Solver Time vsL

more solver iteration to reach the desired solution tolegan have large maximal cliques and thus not benefit from as many
Despite this noise, there is a clear trend. The plots shotv tmaatrix combinations as compared to more sparsely connected
reducing results in significant improvements in solver timesystem models. We therefore anticipate that a larger value o

as compared to the case without matrix combining. Howevdr,would be appropriate for strongly interconnected models.

as L continues to decrease, the speed improvements from\ote that solution times are not greatly affected by the ad-
removing linking constraints are overcome by the additiongition of parallel lines or multiple generators at the saras;b
variables required for the larger matrices (in the extremgodels with these features have comparable computational
returning to a single2n x 2n matrix for L = 1). Thus, the pyrden relative to other models with the same total numbers
solver times exhibit a steep increase for smiall(Solution of |ines and generators.

times for very smallL are not shown on Figures 1a and 1b. Table | summarizes these results by providing the solver

For the 300-bus system, the fulh x 2n matrix constraint times for each system / decomposition pair along with a

corresponding td. = 1 solved n 69.5 seconds. The 301_2'busspeed up factor” (SUF) for the improvement of the matrix
system could not be solved with = 1; the system required

. B i combination approach witlh, = 10% of the original number
approximatelyl.0 x 10° seconds fod = 2.) of matrices as compared to not combining matrices. Results
Rather than combining matrices until below a specifieasing the full2n x 2n matrix for the 3012-bus system could not

parameter value, we also tried combining matrices until e computed. Note that solver times with= 10% for other

pair of adjacent maximal cligues had a negative value ofodels of the Polish system that is represented in the 3012-
A (i.e., stopping combining matrices once the heuristisus system model are available in Table Il. Also note that the
indicated no further advantage to doing so). In our numeérigaroposed heuristic yields improvements for the interntedia
experience, however, this approach typically did not ident sized 118-bus system.

a set of matrices that minimized the solver time. The number

of matrices for which no remaining adjacent pairs of maxima

} } = System 2n X 2n No Combining | SUF
cligues had negativA;; was L = 150 for the 300-bus system Combining | (L = 10%)
and L = 1376 for the 3012-bus system. In both systems, [EEE 118-bus 6.63 4.84 2.06 2.349
faster solver times were obtained for smaller value$ of his IEEE 300-bus | 69.45 13.18 5.71 2.309
reinforces the fact that our measure of semidefinite prograrftolish 3012-bus) - 3578.5 11974 ] 2.989
size is a heuristic approximation of the computational butd TABLE |

. SOLVER TIMES (SEC) FORVARIOUS ALGORITHMS
Based on these empirical results, choosingqual to 10%

of the initial number of matrices appears to give near mimmu

solver times. (Expressing. as a percentage of the original We attempted several alternatives to the proposed heuristi
number of matrices allows for easy comparison betwearnvariant of the proposed algorithm that, at each step, rahdo
systems.) A minimum computational time consistently appegweighted by A;;) selects a pair of maximal cliques to
at approximately this value df for the available power systemcombine; the heuristic proposed in [14]; and a “top-down”
models; however, limited diversity of available large syst approach that groups maximal cliques using a normalized cut
models precludes more general comments on this value. Wgorithm on the clique tree. As compared to the proposed
speculate that system models that are strongly intercoethecheuristic, these alternatives sometimes had comparabte, b
(i.e., have a relatively low amount of sparsity) will inhetly  not faster, solution times.
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Fig. 2. Eigenvalues for Selected Matrices of the Solution to the 3012-Bus System

C. Analysis of Duality Gap Properties of Solution to OPHhe metric is based on the ratio between the third and
Problems for Large System Models second smallest magnitude eigenvalues. The minimum such

While solutions to many OPF problems satisfy the rari@lic among all theA matrices is termed the “minimum
condition and thus have zero duality gaps [5], it is knowﬁ!genvalue ratio.” If the solution did y|eld “hard zeros'tfrero
that some small system models yield solutions with non-zef#€nvalues, the second smallest eigenvalue would be zelro a
duality gaps [6], [7]. Until the recent exploitation of powe the third smallest eigenvalue would be non-zero, resuliing
system sparsity, computational challenges have preclirded @ Minimum eigenvalue ratio of infinity. In practice, numetic
vestigation of the rank properties of the semidefinite rafipa  1SSU€S result in minimum eigenvalue ratios that are large
for large system models. Harnessing the computational-meffyPical values are greater thanc 107 for small systems that
ods described in this paper, we conduct further investigati&r® known to satisfy the rank condition). Further, if theuson
of rank condition satisfaction for large system models.eNofl0€S not satisfy the rank condition, both the second and thir
that, as in the previous section, the results in this seatien SMallest eigenvalues will have similar magnitudes neao,zer
calculated with a minimum line resistancelof 10~ per unit therefore yielding a small value for the minimum eigenvalue

in accordance with [5] and with SeDuMi's tolerance paramet&tio- Thus, a large value for the minimum eigenvalue ratio
eps set tol x 10~°. indicates a solution with zero duality gap while a small ealu

When using a matrix completion decomposition, solutiof@dicates a non-zero duality gap solution. Note that more
to the dual formulation of the semidefinite relaxation censiCOMPplex metrics than the proposed minimum eigenvalue ratio

of a set of A matrices. For a solution that satisfies the rar@® POssible; the proposed metric is intended to be a simple

condition, the nullspaces of alh matrices have dimensionPut meaningful measure. _ _
less than or equal to two. However, for numerical reasons, 1able Il shows the minimum eigenvalue ratios for several

solvers do not yield a “hard zero” value for the eigenvalud§St systems. The solution times with= 10% are also given.
corresponding to the nullspaces of these matrices. Thexgfo The systems with more than 300 buses are representations
can be difficult to determine when ak matrix has nullspace of the Polish grid with various levels of modeling detail and
with dimension two. For illustration of this challenge, Gig 2 different loading scenarios (winter peak (wp), winter odiaj

shows the eigenvalues, sorted in order of ascending matgmitu
for selectedA matrices from thel, = 10% decomposition

. ) System Min Eigenvalue Max Mismatch Solver Time

of the Polish 3012-bus system model. With two smallest pogel Ratio (L = 10%)
eigenvalues that are four orders of magnitude below the neXEEE 118-bus 2.86 x 107 3.9 x 10~ ° MVAr 2.1 sec
smallest eigenvalues, Figure 2a shows a typical matrix thaEEE 300-bus 2.25 x 10° 4.7 x 10° MVAr S.7 sec
<4383-bus (wp) 7.90 x 102 2.9 x 102 MVAr 730 sec

hgs nuIIspac_e W|_th dimension two. Conversely, the smgll 3=36-bus (sp) 307 T0° 5 10-7 VAT 697 soc
eigenvalues in Figure 2b are only two orders of magnitudt&737-ous (sop) [ 4.11 x 10T | 3.7 x 10-T MVAr 607 sec

below the next smallest eigenvalues; the nullspace diraansi 2746-bus (wp) 8.65 x 107 5.5 x 102 MW 752 sec
for this matrix is more difficult to determine. Charactemigi | 2746-bus (wop)| 1.95 x 10* 14 x10~" MW 738 sec
the overall satisfaction of the rank condition for the Prolis 3012-bus (Wp) [ 1.72x 10 [ 4.1x10% MVAr | 1197 sec

. ) o 3120-bus (sp) 5.84 x 102 4.6 x 10T MVAr 1619 sec
3012-bus system is correspondingly difficult. 3375-us (Wp) 164 x 102 59 % 102 MVAr 1457 sec

To evaluate the satisfaction of the rank condition for
. . ) . TABLE II
meth0d§ that eXplO't [_)(_)WGI’ system sparsity by Us_mg matr_'XM EASURES OFRANK CONDITION SATISFACTION AND SOLVER TIMES
completion decompositions, we propose the following naetri FORVARIOUS SYSTEM MODELS
to measure closeness to a nullspace with dimension two.
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Fig. 3. Active and Reactive Power Mismatch at PQ Buses

(wop), summer peak (sp), and summer off peak (sop)). Thdags systems are greater than the default Newton solution
results indicate that, according to the proposed metrie, ttolerance of 0.1 MW/MVAr used by the power flow solution
large system models do not satisfy the rank condition gsckage PSS/E [28]. Large power mismatches indicate that th
well as many smaller system models, which generally hagerresponding solutions do not satisfy the rank condititote
minimum eigenvalue ratios greater than< 107 when they the correlation between the minimum eigenvalue ratio and
satisfy the rank condition. Since, other than the IEEE 118 athe maximum power mismatch, which supports the validity
300-bus systems, the large system models all represent dlichese measures of rank condition satisfaction.

same Polish system, the lack of more diverse system models

Iimi_ts th? ability to make more general statements conogrniD' Extending Jabr’'s Formulation of the Maximal Clique De-
satisfaction of the rank condition for large system models. composition to All Systems

An alternative test for satisfaction of the rank conditien i ) . , .
. ... _The first step in Jabr's formulation creates a chordal ex-
based on the mismatch between the calculated and specified . . .
ension of the network using a Cholesky factorization of the

active and reactive power injections at PQ buses. To Fe@VElhsolute value of the imaginary part of the bus admittance ma

candidate V(_)Ite}ge proflle_, we form the (_:Iosest rank one l_snatrt'| ix (i.e., chol (|Im (Y)])). Only positive definite matrices have
to the solution'sW matrix using the eigenvector associate N .
holesky factorizations. Since not all power system networ

with the largest eigenvalue oW. If the solution has zero . . .
duality gap, the matri¥V is rank one and the resulting voltageh"jwe admittance matrices that satisty (Y)| - 0 (e.g.,

profile will satisfy the power injection equality constrasinat hetworks with sufficiently large shunt capacitances), 'dabr

the PQ buses. Conversely, the closest rank one matrix tformulat|0n cannot be universally applied to such networks

o} ; : . .
solution with non-zero duality gap will typically not yield _a}labrs formulation only uses tfeparsity patterr(i.e., loca

. . 0 .tion of the non-zero elements) of the Cholesky factorizatio
a voltage profile that satisfies the power injection equali

constraints at PQ buses. Thus, the mismatch between hhéjs, an alternative, positive definite matrix whose CHoles

o L .factorization exhibits the same sparsity pattern wouldmectt
calculated and specified power injections at PQ buses @evi . .
) . i ... Jabr's formulation to general power systems. We next ptesen
an alternative measure for satisfaction of the rank coonliti . :
such an alternative matrix.

Figures 3a and 3b show the mismatch between the specified ot 1y represent the incidence matrix associated with the
and calculated active and reactive power injections at F@U ot vork (i.e., each row oD corresponds to a line and has
for the 300-bus and 3012-bus systems, respectively, soTtedy,, non-zero elementsi1 in the column corresponding to
order of increasing active power mismatch. The voltage rofiha fine’'s “from” bus and—1 in the column corresponding

yields small mismatches for the majority of buses, but a fely ihe Jine’s “to” bus). The matriE in (23) has a Cholesky

buses display large mismatches in both active and reacty@orization with the same sparsity patterrchsl (|Im (Y))).
power. The large power mismatches indicate solutions Ilgavin

non-zero duality gap. With small mismatch at the majority E-D'D+1 (23)

. . . - nXn
of PQ buses, such solutions with non-zero duality gap may
provide good starting points for a local search algorithmvherel, «,, is then x n identity matrix.
Table Il shows the maximum mismatch, considering both SinceD”D has a Laplacian structure, it is positive semidef-
active and reactive powers, for a variety of test systemisite. Adding an identity matrix increases all eigenvalilgs
Solutions to several of these system models have relativelye, and thus is positive definite. Note that the common
large power mismatches; for instance, mismatches for st tenodification for making a Laplacian matrix positive definite
systems in Table 1l except for the 118, 2736, and 2746 (wpja adding the matrix - 17, wherel is the vector of all ones,
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is not appropriate due to the fact that this modification nsake
the Cholesky factorization di dense.
The bus admittance matri¥Y has generalized Laplacian 5
structure, with weightings from the line admittances, pliss-
onal terms corresponding to shunt admittances.E Imeatrix’s
similar construction implies that its Cholesky factoripat
has the same sparsity pattern as the Cholesky factorization
of |Im (Y)|. Using the Cholesky factorization @& therefore
extends Jabr's method to general power networks.

2 3
E. Obtaining the Optimal Voltage Profile Fig. 4. lllustrative Voltage Profile Recovery Example Netko
The s_ol_utlon to_ a decomposed prpblem is a set of posmve Clique Tndex

semidefinite matrices. If all the matrices have nullspacitis w Bus 1 2 3
appropriate dimension, the optimal voltage profile can be 1 D | aga®
recovered [5], [16]. (For formulations that separate rea a 5 o jm =
imaginary voltage components, like (21), the nullspacellof a =2, )] )]

. . . 3 alug ) a2u asu
matrices must have dimension less than or equal to two.) 2 = el e
However, existing literature does not give a detailed metho c s | Bl

Q5Us

for recovering the optimal voltage profile. We next descidbe
technique for obtaining the optimal voltage profile. TABLE Il
. . - . . ILLUSTRATIVE VOLTAGE PROFILE RECOVERY EXAMPLE TABLE
An overview of this technique follows. First obtain vectors
in the nullspaces (hereafter referred to as nullvectorgach
positive semidefinite constrained matrix. Note that caltiah

of these nullvectors can be carried out in parallel since the|f maximal clique;j does not contain bug the (i, j) entry
nullspace computation for each matrix can be performeg ine table is empty.

independently. These nullvectors, when rearranged suah th gince each row of the table represents a voltage phasor at the
they correspond to complex “phasor” voltages, can each Bgiresponding bus, values af Vi = 1, ..., d are chosen such
multiplied by a different complex scalar and remain in theif, ot a1l entries in each row are equal. Appropriate values; of
respective nullspaces. Since a bus can be in multiple maxiMg@e optained using a nullvector of an appropriately spetifie
cliques, elements in different vectors may correspond & thatrix. Specifically, use the following procedure to create
same bus voltage phasor. The complex scalars are chosen ${ghix C with d columns that enforces equality of all entries
that elements of different vectors that correspond to tieesayt each row of the table. For each roivof the table, find
bus voltage are equal. A centrally computed linear nullepage first non-empty entry and store the corresponding column
calculation of a specified matrix gives an appropriate aoic jnqey ;. (All rows of the table will have at least one non-empty
the scalar values. This allows for specification of a vedtat t entry because each bus is contained in at least one maximal
is a real scalar multiple of the optimal voltage profile. L@i”clique.) While there exists a non-empty entry in rewvith
a sir]gle bindipg constraint, th(_e resulting vector is scat®d ojumn index greater thaj (let the non-empty entry exist in
obtain the optimal voltage profile. columnk), add a row to the matrixC that enforces equality

We next present the details of this technique. Consider gpipe (i,7) and (i, k) entries. Setj = k and repeat until no
optimal solution to (21) consisting af positive semidefinite gthar non-empty entries exist in rowwith column indices
matricesA; with dim (null (A;)) <2, Vi € {1,...,d}. Let  greater thary. Then proceed to rowi+ 1.
u” be a nullvector ofA;. Letr; be the number of buses in the™ Consider the illustrative example system network in Fig-
maximal clique corresponding to matrixConvert each vector yre 4 and corresponding Table Ill. This system has three
u to complex “phasor” formu(") = Ugl)r + jug?—ﬁ—lﬁri’ maximal cliques composed of busgk 2, 3}, {1, 3, 4}, and
where subscript : r; indicates the first through!” elements {3, 4, 5}. The corresponding equation for the example is
of the corresponding vector.

Vectorsu(® remain in their corresponding nullspace after ygU _Q§2> 0 0
multiplication by complex scalars;. This property is used ) 2) ay
: . U —u 0 0
to enforce consistency between elements of different vecto Ca= |3 =2 | = (24)
that correspond to the same bus voltage phasor. Obtaining th 0 géQ) —g§3) N 0
optimal voltage profile requires determining valuesngfthat 0 ORI C) 3 0
Us Uy

create agreement between all elements representing thee sam
voltage from the nullvectors of different matrices. This dse The nullspace calculation has a non-trivial solution if all
visualized by forming a table with rows corresponding to bu&; matrices of the solution have nullspaces with dimension
indices and columns corresponding to maximal clique irglicdess than or equal to two. (For a solution to the semidefinite
If maximal clique;j contains bus, the (i, j) entry of the table relaxation where some of thd matrices have nullspace
is o; multiplied by the element ofi’) corresponding to bus dimension greater than two, the nullspace calculation nndy o
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have the trivial solutiox = 0, indicating that a consistent Next, Jabr’s formulation of the maximal clique decomposi-
voltage profile cannot be obtained.) A nullvectoryields a tion [16] was extended to general power system networks Thi
table where all entries of each row have the same value. €refarmulation uses a Cholesky factorization of the absolalee
a vectom of lengthn where; is equal to the value of an entryof the imaginary part of the bus admittance matrix. Since a
in the i*" row of the table. The vectoy is a scalar multiple Cholesky factorization requires a positive definite mattis
of the optimal voltage vector. approach cannot be used for some networks (e.g., networks
Sincea has one degree of freedom in its length, the optimalith large shunt capacitive compensation). Jabr’s formmta
voltage profile is a real scalar multiple of n. To determine only uses the sparsity pattern of the Cholesky factoripatio
the value ofy, one additional piece of information is requiredVe propose an alternative positive definite matrix with the
from a binding constraint. Reference [5] suggests the usame sparsity pattern to extend Jabr’s formulation to ggner
of a binding voltage magnitude constraint. However, not ghlower system networks.
solutions have a binding voltage magnitude constraint,(thg A final computational advance is a method for constructing
three-bus system in [6]). Optimal solutions to OPF problentke optimal voltage profile from a solution consisting of
have at least one binding constraint, but not necessarilydacomposed matrices. Although existing literature dises's
binding voltage magnitude constraint. the use of matrix decompositions [10], [16], [17], it does
A binding constraint is identified by a non-zero value of theot give a detailed method for obtaining the optimal voltage
corresponding Lagrange multiplier. Consider a solutiothwai  profile.
binding voltage magnitude constraint. L&t be the value of  Future work includes investigation of alternative load mod
a binding voltage magnitude constraint at BusThe value of els. Currently, the formulation includes the capabilityr fo

x Is chosen using this voltage magnitude: constant power and constant impedance load models. Another
B common load model is constant current, which is not triyiall
Y= Vi (25) incorporated into the semidefinite programming formulatio
(77| Investigation of whether a constant current model can be

included in a semidefinite programming-based OPF solver is

For solutions without a binding voltage magnitude conattai
9 9 9 ! thus valuable.

use an alternative binding constraint to determine
The optimal voltage profile is then constructed by scaljing

by y and rotating the resulting vector to obtain zero reference ACKNOWLEDGMENT
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