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Abstract—The application of semidefinite programming to
the optimal power flow (OPF) problem has recently attracted
significant research interest. This paper provides advances in
modeling and computation required for solving the OPF problem
for large-scale, general power system models. Specifically, a
semidefinite programming relaxation of the OPF problem is
presented that incorporates multiple generators at the same
bus and parallel lines. Recent research in matrix completion
techniques that decompose a single large matrix constrained
to be positive semidefinite into many smaller matrices has
made solution of OPF problems using semidefinite programming
computationally tractable for large system models. We provide
three advances to existing decomposition techniques: a matrix
combination algorithm that further decreases solver time, a
modification to an existing decomposition technique that extends
its applicability to general power system networks, and a method
for obtaining the optimal voltage profile from the solution to a
decomposed semidefinite program.

Index Terms—Optimal power flow, Semidefinite optimization

I. I NTRODUCTION

T HE optimal power flow (OPF) problem determines an
optimal operating point for an electric power system in

terms of a specified objective function, subject to both network
equality constraints (i.e., the power flow equations, which
model the relationship between voltages and power injections)
and engineering limits (e.g., inequality constraints on voltage
magnitudes, active and reactive power generations, and flows
on transmission lines and transformers). Total variable gener-
ation cost per unit time is typically chosen as the objective
function.

The OPF problem is typically nonconvex due to the non-
linear power flow equations [1]. Nonconvexity of the OPF
problem has made solution techniques an ongoing research
topic. Many OPF solution techniques have been proposed, in-
cluding successive quadratic programs, Lagrangian relaxation,
genetic algorithms, particle swarm optimization, and interior
point methods [2], [3].

Recently, significant attention has focused on the application
of semidefinite programming to the OPF problem [4], [5].
Using a rank relaxation, the OPF problem is reformulated as a
convex semidefinite program. If the relaxed problem satisfies a
rank condition (i.e., the semidefinite program has zero duality
gap), the globally optimal solution to the original OPF problem
can be determined in polynomial time. No prior OPF solution
method offers a guarantee of finding a global solution in
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polynomial time; semidefinite programming approaches thus
have a substantial advantage over traditional solution tech-
niques. Note, however, that the rank condition is not always
satisfied, which means that semidefinite relaxations do not give
physically meaningful solutions for all realistic power system
models [6], [7]. The solution to the semidefinite relaxationfor
such cases may provide a good starting point for a local search
algorithm. Further, the solution to the semidefinite relaxation
always yields a lower bound to the unknown global solution,
which provides a measure of sub-optimality for any local
solution. It is important to note, however, that a solution
to the semidefinite relaxation with non-zero duality gap is
not necessarily a better approximation to the true solution
than other solution techniques. For instance, when appliedto
the three-bus system in [6], the DC OPF, a common linear
approximation to the OPF problem [3], yields more accurate
active power generation and active power Lagrange multipliers
(LMPs), as compared to a traditional AC OPF calculation, than
the solution with non-zero duality gap from the semidefinite
relaxation.

Recent research has investigated conditions under which
the rank condition is satisfied; to date, sufficient conditions
for rank condition satisfaction include highly limiting re-
quirements on power injection and voltage magnitude limits
and either radial networks (typical of distribution system
models) or unrealistically dense placement of controllable
phase shifting transformers [8]–[11]. Additional work includes
using semidefinite programming to create voltage stability
margins [12].

This paper first focuses on modeling aspects that must
be addressed in order to apply the semidefinite program to
general power system models. The first issue addressed is
that of allowing multiple generators at the same bus. By
equating bus power injections with power generation, existing
formulations only allow a single generator to exist at a bus.We
use the concept of equal marginal generation cost to producea
formulation allowing for multiple generators at the same bus,
each with separate cost functions and generation limits. This
paper considers both quadratic and convex piecewise-linear
generator cost functions.

A method for incorporating flow limits on parallel lines
is then presented. Existing formulations limit the total flow
between two buses, which cannot properly account for parallel
lines with different electrical properties and flow limits.In con-
trast, the proposed method limits the flow on each individual
line. Lines in this formulation can have off-nominal voltage
ratios and/or non-zero phase shifts.
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This paper next advances research in the computational
tractability of applying semidefinite programming to large
power system models. Semidefinite programming relaxations
of the OPF problem constrain a2n × 2n symmetric matrix
to be positive semidefinite, wheren is the number buses in
the system. The semidefinite program size thus grows as the
square of the number of buses, which makes solution of the
OPF problem by semidefinite programming computationally
challenging for large systems. Recent work using matrix com-
pletion [13]–[15] reduces the computational burden inherent in
solving large systems by taking advantage of the sparse matrix
structure created by realistic power system models. Sojoudi
and Lavaei [10], Jabr [16], and Bai and Wei [17] present
formulations that decompose the single large2n × 2n pos-
itive semidefinite matrix constraint into positive semidefinite
constraints on many smaller matrices. If the matrices from
these decompositions satisfy a rank condition, the2n × 2n
matrix also satisfies the rank condition and the optimal solution
can be obtained. Sojoudi and Lavaei’s decomposition [10]
uses a cycle basis of the network. The matrix decomposition
approach used by both Jabr [16] and Bai and Wei [17] is based
on the maximal cliques of a chordal extension of the network.

We provide several enhancements to the existing decom-
positions. Specifically, we present a heuristic algorithm for
combining some of the small matrices resulting from the
decomposition. Since linking constraints are required between
elements of the decomposed matrices that refer to the same
element in the2n× 2n matrix, it is not always advantageous
to create the smallest possible matrices. Combining matrices
eliminates some of these linking constraints, which can result
in significant computational speed increases. We justify the
claim that the proposed algorithm can substantially increase
computational speed using both theoretical arguments and
several test cases.

Note that this paper considers a centralized application of
these decompositions in the sense of creating one semidefinite
program that is solved on a single computer as opposed to
creating many subproblems that are solved using decentralized
techniques as in [18]. Centralized application allows for solu-
tion with existing generic semidefinite programming solvers.

A further enhancement presented in this paper is a technique
for recovering the optimal voltage profile from the decom-
posed matrices. While the steps are relatively straightfor-
ward, existing literature does not detail a method for actually
obtaining the optimal voltage profile from a solution to a
decomposed formulation.

Although we focus on the maximal clique decomposition
proposed by both Jabr [16] and Bai and Wei [17] due to
the voluminous literature on matrix completion with chordal
extensions (e.g., [13]–[15]), both of these enhancements could
be applied to Sojoudi and Lavaei’s decomposition [10] as well.

We also describe a modification to the maximal clique
decomposition as formulated by Jabr [16] that allows for
application to general power systems. This formulation cre-
ates a chordal extension of the network using a Cholesky
factorization of the absolute value of the imaginary part of
the bus admittance matrix. However, this matrix may fail to
be positive definite (for instance, in networks with significant

shunt capacitive compensation), thus preventing calculation of
a Cholesky factorization. We describe an alternative matrix
that is always positive definite and gives an equivalent chordal
extension, thus broadening the applicability of this decompo-
sition to general networks.

This paper is organized as follows. Section II provides both
the classical formulation of the OPF problem and a proposed
semidefinite programming relaxation that incorporates multi-
ple generators at the same bus and parallel lines, including
lines with off-nominal voltage ratios and/or non-zero phase-
shifts. Section III first gives an overview of the maximal
clique decomposition and then presents three advances in
decompositions for large-scale system models: an algorithm
that improves computation speed by combining matrices, a
modification to Jabr’s maximal clique decomposition that
extends its applicability to general power system networks,
and a technique for recovering the optimal voltage profile
from a solution to a decomposed formulation. Section III also
discusses rank condition satisfaction for large system models.

II. T HE OPF PROBLEM AND MODELING ISSUES

We first present the OPF problem as it is classically formu-
lated. Specifically, this formulation is in terms of rectangular
voltage coordinates, active and reactive power generation, and
apparent power line-flow limits. Each bus may have multi-
ple generators, and parallel lines are allowed. This classical
OPF formulation is generally nonconvex. We then describe
a semidefinite programming relaxation of the OPF problem
adopted from [5] that handles the modeling issues of multiple
generators at the same bus and parallel lines.

A. Classical OPF Formulation

Consider ann-bus power system, whereN = {1, 2, . . . , n}
represents the set of all buses. DefineG as the set of all
generators, withGi the set of generators at busi. Let Gq

represent the set of all generators with quadratic cost functions,
with Gq

i those such generators at busi. Let Gpw represent the
set of generators with piecewise-linear cost functions, with
Gpw
i those such generators at busi. (Some of these sets may

be empty.)PGg + jQGg represents the active and reactive
power output of generatorg ∈ G. PDi + jQDi represents
the active and reactive load demand at each busi ∈ N .
Vi = Vdi + jVqi represents the voltage phasors in rectangular
coordinates at each busi ∈ N . Superscripts “max” and “min”
denote specified upper and lower limits. LetY = G + jB
denote the network admittance matrix.
L represents the set of all lines, where linek ∈ L has

terminals at buseslk andmk, with parallel lines allowed (i.e.,
more than one line between the same terminal buses). LetSk

represent the apparent power flow on the linek ∈ L.
Define a cost function associated with each generator,

typically representing a dollar/hour variable operating cost.
This paper considers quadratic and convex piecewise-linear
cost functions in (1a) and (1b), respectively. In (1a), the terms
cg2, cg1, andcg0 represent the quadratic cost coefficients for
generatorg ∈ Gq. In (1b), generatorg ∈ Gpw has a piecewise-
linear cost function composed ofrg line segments specified
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by slopesmg1, . . . , mgrg and breakpoints(agt, bgt) , t =
1, . . . , rg, whereagt is the power generation coordinate and
bgt is the cost coordinate for the breakpoint.

Cq
g (PGg) = cg2P

2
Gg + cg1PGg + cg0 (1a)

Cpw
g (PGg) =























mg1 (PGg − ag1) + bg1, PGg ≤ ag1

mg2 (PGg − ag2) + bg2, ag1 < PGg ≤ ag2

...
...

mgr (PGg − agr) + bgr, agr < PGg

(1b)

The classical OPF problem is then

min
∑

g∈Gq

Cq
g (PGg) +

∑

g∈Gpw

Cpw
g (PGg) (2a)

subject to

Pmin
Gg ≤ PGg ≤ Pmax

Gg ∀g ∈ G (2b)

Qmin
Gg ≤ QGg ≤ Qmax

Gg ∀g ∈ G (2c)
(

V min
i

)2
≤ V 2

di + V 2
qi ≤ (V max

i )2 ∀i ∈ N (2d)

|Sk| ≤ Smax
k ∀k ∈ L (2e)

∑

g∈Gi

(PGg)− PDi = Vdi

n
∑

h=1

(GihVdh −BihVqh) (2f)

+ Vqi

n
∑

h=1

(BihVdh +GihVqh) ∀i ∈ N

∑

g∈Gi

(QGg)−QDi = Vdi

n
∑

h=1

(−BihVdh −GihVqh) (2g)

+ Vqi

n
∑

h=1

(GihVdh −BihVqh) ∀i ∈ N

Note that this formulation limits the apparent power flow
measured at each end of a given line, recognizing that active
and reactive line losses can cause these quantities to differ.

B. Semidefinite Programming Relaxation of the OPF Problem

This section first describes the semidefinite relaxation of the
OPF problem, including the capability to incorporate parallel
lines and multiple generators at the same bus. Letei denote the
ith standard basis vector inRn. Define the matrixYi = eie

T
i Y,

where the superscriptT indicates the transpose operator.
Matrices employed in the bus power injection and voltage

magnitude constraints are

Yi =
1

2

[

Re
(

Yi + Y T
i

)

Im
(

Y T
i − Yi

)

Im
(

Yi − Y T
i

)

Re
(

Yi + Y T
i

)

]

(3)

Ȳi = −
1

2

[

Im
(

Yi + Y T
i

)

Re
(

Yi − Y T
i

)

Re
(

Y T
i − Yi

)

Im
(

Yi + Y T
i

)

]

(4)

Mi =

[

eie
T
i 0

0 eie
T
i

]

(5)

A “line” in this formulation includes both transmission lines
and transformers, where transformers may have both a phase

shift and/or an off-nominal voltage ratio. That is, linek is
modeled as aΠ circuit (with series admittancegk + jbk and
shunt capacitancesbsh, k

2 ) in series with an ideal transformer
(with turns ratio 1 : τke

jθk ) as in [3]. Note that a small
minimum resistance is enforced on all lines in accordance
with [5]. Define fi as theith standard basis vector inR2n.
Matrices employed in the line-flow constraints are

Zkl
=
gk
τ2k

(

flkf
T
lk
+ flk+nf

T
lk+n

)

− cl
(

flkf
T
mk

+ fmk
fT
lk
+ flk+nf

T
mk+n + fmk+nf

T
lk+n

)

+ sl
(

flkf
T
mk+n + fmk+nf

T
lk
− flk+nf

T
mk

− fmk
fT
lk+n

)

(6)

Zkm
= gk

(

fmk
fT
mk

+ fmk+nf
T
mk+n

)

− cm
(

flkf
T
mk

+ fmk
fT
lk
+ flk+nf

T
mk+n + fmk+nf

T
lk+n

)

+ sm
(

flk+nf
T
mk

+ fmk
fT
lk+n − flkf

T
mk+n − fmk+nf

T
lk

)

(7)

Z̄kl
= −

(

2bk + bsh,k
2τ2k

)

(

flkf
T
lk
+ flk+nf

T
lk+n

)

+ cl
(

flkf
T
mk+n + fmk+nf

T
lk
− flk+nf

T
mk

− fmk
fT
lk+n

)

+ sl
(

flkf
T
mk

+ fmk
fT
lk
+ flk+nf

T
mk+n + fmk+nf

T
lk+n

)

(8)

Z̄km
= −

(

bk +
bsh,k
2

)

(

fmk
fT
mk

+ fmk+nf
T
mk+n

)

+ cm
(

flk+nf
T
mk

+ fmk
fT
lk+n − flkf

T
mk+n − fmk+nf

T
lk

)

+ sm
(

flkf
T
mk

+ fmk
fT
lk
+ flk+nf

T
mk+n + fmk+nf

T
lk+n

)

(9)

where, for notational convenience,

cl =
(

gk cos (θk) + bk cos
(

θk +
π

2

))

/ (2τk) (10)

cm =
(

gk cos (−θk) + bk cos
(

−θk +
π

2

))

/ (2τk) (11)

sl =
(

gk sin (θk) + bk sin
(

θk +
π

2

))

/ (2τk) (12)

sm =
(

gk sin (−θk) + bk sin
(

−θk +
π

2

))

/ (2τk) (13)

To write the semidefinite relaxation, first define the vector
of voltage coordinates

x =
[

Vd1 Vd2 . . . Vdn Vq1 Vq2 . . . Vqn
]

(14)

Then define the rank one matrix

W = xxT (15)

The active and reactive power injections at busi are then
given by tr (YiW) and tr

(

ȲiW
)

, respectively, wheretr
indicates the matrix trace operator (i.e., sum of the diagonal
elements). The square of the voltage magnitude at busi is
given by tr (MiW).

Similarly, the active and reactive line flows for linek ∈ L at
terminal busl are given bytr (Zkl

W) and tr
(

Z̄kl
W

)

. Due
to the asymmetry introduced by allowing transformers with
off-nominal voltage ratios and non-zero phase shifts, we also
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require separate matrices to represent active and reactivepower
flows from the other terminal of linek at busm: tr (Zkm

W)
and tr

(

Z̄km
W

)

, respectively.
Replacement of the rank one constraint (15) by the less

stringent constraintW � 0, where� 0 indicates the corre-
sponding matrix is positive semidefinite, yields the semidefi-
nite relaxation. The semidefinite relaxation is “tight” when the
solution has zero duality gap. The duality gap for a solution
to the semidefinite relaxation refers to the difference between
the optimal objective value for the semidefinite relaxation
and the objective value for a global solution to the classi-
cal formulation of the OPF problem (2). A solution to the
semidefinite relaxation has zero duality gap if and only if the
rank conditionrank (W) ≤ 2 is satisfied. For a solution with
zero duality gap, a unique rank one matrixW can be recovered
by enforcing the known voltage angle at the reference bus [5].

The semidefinite relaxation of the OPF problem is

min
∑

g∈Gq

αg +
∑

g∈Gpw

βg (16a)

subject to

P
min
Gg ≤ PGg ≤ P

max
Gg ∀g ∈ G (16b)

− PDi +
∑

g∈Gi

PGg = tr (YiW) ∀i ∈ N (16c)

Q
min
i ≤ tr

(

ȲiW
)

≤ Q
max
i ∀i ∈ N (16d)

(

V
min
i

)2

≤ tr (MiW) ≤ (V max
i )2 ∀i ∈ N (16e)







− (Smax
k )2 tr (Zkl

W) tr
(

Z̄kl
W

)

tr (Zkl
W) −1 0

tr
(

Z̄kl
W

)

0 −1






� 0 ∀k ∈ L (16f)







− (Smax
k )2 tr (ZkmW) tr

(

Z̄kmW
)

tr (ZkmW) −1 0

tr
(

Z̄kmW
)

0 −1






� 0 ∀k ∈ L (16g)

[

cg1PGg + cg0 − αg
√
cg2PGg√

cg2PGg −1

]

� 0 ∀g ∈ Gq (16h)

{βg ≥ mgt (PGg − agt) + bgt ∀t = 1, . . . , rg} ∀g ∈ Gpw

(16i)

W � 0 (16j)

where apparent power line-flow limits and quadratic generator
cost functions are implemented using Schur’s complement
formula in (16f)–(16g) and (16h), respectively; in (16i), the
piecewise-linear generator cost functions are implemented
using the “constrained cost variable” method as in [3]; and,for
notational convenience, the maximum and minimum reactive
power injections at each bus are defined as

Qmax
i = −QDi +

∑

g∈Gi

Qmax
Gg (17)

Qmin
i = −QDi +

∑

g∈Gi

Qmin
Gg (18)

The dual form of the semidefinite relaxation (i.e., the dual of
(16)) requires definition of Lagrange multipliers correspond-
ing to each constraint in (16). Define vectors of Lagrange
multipliers associated with lower inequality bounds on active
power, reactive power, and voltage magnitude asψ

k
, γ

i
, and

µ
i
, and those associated with upper bounds asψ̄k, γ̄i, and

µ̄i, respectively. Define a scalar variableλi as the aggregated
Lagrange multiplier (i.e., the locational marginal price (LMP))
of active power at each busi. Note thatλi is not constrained to
be non-negative. Define two3×3 symmetric matrices per line
for the line-flow limits measured from each line terminal:Hkl

andHkm
, with H

cd
kl

andHcd
km

indicating the(c, d) element of
the corresponding matrix. Define2×2 symmetric matrices for
each generator with a quadratic cost function:Rg, with R

cd
g

the (c, d) element ofRg. Define a Lagrange multiplierζgt for
each line segmentt of each generatorg with a piecewise-linear
cost function.

Define a matrix-valued functionA.

A =
∑

i∈N

{

λiYi +
(

γ̄i − γ
i

)

Ȳi +
(

µ̄i − µ
i

)

Mi

}

+ 2
∑

k∈L

{

H
12
kl
Zkl

+H
12
km

Zkm
+H

13
kl
Z̄kl

+H
13
km

Z̄km

}

(19)

Define a scalar real-valued functionρ.

ρ =
∑

i∈N











λiPDi + γ
i
Qmin

i − γ̄iQ
max
i + µ

i

(

V min
i

)2
− µ̄i (V

max
i )2

+
∑

g∈G
q
i

(

ψ
g
Pmin
Gg − ψ̄gP

max
Gg + cg0 −R

22
g

)

−

∑

g∈G
pw
i

rg
∑

t=1

(ζgt (mgtagt − bgt))











−

∑

k∈L

{

(Smax
k )2

(

H
11
kl

+H
11
km

)

+H
22
kl

+H
22
km

+H
33
kl

+H
33
km

}

(20)

The dual form of the semidefinite programing relaxation of
the OPF problem is then written as

max ρ (21a)

subject to

A � 0 (21b)

Hkl
� 0, Hkm � 0 ∀k ∈ L (21c)

Rg � 0, R
11
g = 1 ∀g ∈ Gq (21d)

rg
∑

t=1

ζgt = 1 ∀g ∈ Gpw (21e)

{

λi = cg1 + 2
√
cg2R

12
g + ψ̄g − ψ

g
∀g ∈ Gq

i

}

∀i ∈ N (21f)
{

λi =

rg
∑

t=1

ζgtmgt ∀g ∈ Gpw
i

}

∀i ∈ N (21g)

ψ
g
≥ 0, ψ̄g ≥ 0, γ

i
≥ 0, γ̄i ≥ 0, µ

i
≥ 0, µ̄i ≥ 0, ζgt ≥ 0

(21h)
The semidefinite relaxation has zero duality gap and yields

a physically meaningful solution if and only if the solutionto
(21) satisfies the rank conditiondim (null (A)) ≤ 2.

C. Discussion

Several aspects of the semidefinite programming formu-
lation deserve special attention. We focus on those aspects
that differ from previous formulations (e.g., [5]) due to the
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proposed formulation’s allowing of multiple generators atthe
same bus and the possibility of parallel lines.

The semidefinite relaxation includes the possibility of mul-
tiple generators at the same bus. As shown in (21f) and (21g),
all generators at the same busi must have the same aggregate
active power Lagrange multiplierλi. This is related to the
principle of equal marginal costs in the economic dispatch
problem [19]. Since generator reactive power injections donot
appear in the cost function of (2), reactive power Lagrange
multipliers are only needed for each generator bus rather
than for each generator. This is seen in (17) and (18), which
determine the allowed range of busi reactive power injection.

The semidefinite relaxation also includes the possibility
of parallel lines (i.e., multiple lines with the same terminal
buses) and the ability to represent transformers with off-
nominal voltage ratios and/or non-zero phase-shifts. Previous
formulations limited line flows by constraining the total power
flow between two buses, precluding the ability to separately
limit line flows on parallel lines. This modeling flexibility
comes at the price of additional complexity. Incorporating
parallel lines removes the ability to form the line-flow matrices
directly from the bus admittance matrix, instead requiringthe
more complicated expressions in (6)–(9). Incorporating off-
nominal voltage ratios and non-zero phase shifts breaks the
symmetry of theΠ model such that different line-flow matrices
are required for each line terminal (i.e.,Zkl

in (6) and Z̄kl

in (8) for active and reactive power flows measured from
the sending terminal andZkm

in (7) andZ̄km
in (9) for the

receiving terminal).

For large system models, numerical difficulties in the
semidefinite programming solver may prevent convergence
to acceptable precision. We have found several pragmatic
techniques that reduce numerical difficulties with large sys-
tems. First, ignore engineering limits that will clearly not be
binding at the solution. Many power system data sets specify
large values for limits that are intended to be unconstrained,
particularly for reactive power generation and line-flow limits.
We do not incorporate terms corresponding to very large
limits. Similarly, some generators specified with quadratic cost
functions actually have linear cost functions (i.e.,cg2 = 0).
The correspondingRg matrix is eliminated. These techniques
do not affect the optimality of the resulting solution.

Numerical difficulties often occur when the system model
has very “tight” limits. For instance, the active power gener-
ation of a synchronous condenser is constrained to be zero.
A second technique for reducing numerical difficulties is to
use equality constraints rather than inequality constraints to
model these limits. When the power output of a generator is
constrained to a very small range, fix the generator at the mid-
point of this range and directly add the associated generation
cost to the objective function. The degree of suboptimality
of the resulting solution can be estimated by multiplying the
Lagrange multiplier corresponding to the equality constraint
by the half of the difference between the maximum and
minimum limits.

III. A DVANCES IN MATRIX COMPLETION

DECOMPOSITIONS

In this section, we describe several advances in the decom-
position techniques used to reduce the computational burden
of semidefinite relaxations of large OPF problems. First, we
review the maximal clique decomposition as introduced by
Jabr [16]. Next, we present a matrix combination algorithm
that significantly reduces the required computation time of
this decomposition. We then discuss the rank condition prop-
erties of solutions to large system models. We next present
a modification to Jabr’s formulation of the maximal clique
decomposition that extends this decomposition to general
networks rather than only networks with admittance matrices
that satisfy a definiteness requirement. Finally, we describe a
technique for obtaining the optimal voltage profile from the
decomposed matrices.

A. Overview of Jabr’s Maximal Clique Decomposition

Jabr’s formulation of the maximal clique decomposition
uses a matrix completion theorem [13]. Several graph theoretic
definitions aid understanding of this theorem. A “clique” isa
subset of the graph vertices for which each vertex in the clique
is connected to all other vertices in the clique. A “maximal
clique” is a clique that is not a proper subset of another clique.
A graph is “chordal” if each cycle of length four or more nodes
has a chord, which is an edge connecting two nodes that are
not adjacent in the cycle. The maximal cliques of a chordal
graph can be determined in linear time [20]. See [16] and [21]
for more details on these definitions.

The matrix completion theorem can now be stated. LetĀ

be a symmetric matrix with partial information (i.e., not all
entries ofĀ have known values) with an associated undirected
graph. Note that the graph of interest has the power system
buses as vertices and the branch susceptances as edge weights.
The matrix Ā can be completed to a positive semidefinite
matrix (i.e., the unknown entries of̄A can be chosen such
that Ā � 0) if and only if the submatrices associated with
each of the maximal cliques of the graph associated withĀ

are all positive semidefinite.
The matrix completion theorem allows replacing the single

large2n× 2n positive semidefinite constraint (21b) by many
smaller matrices that are each constrained to be positive
semidefinite. This significantly reduces the problem size for
large, sparse power networks.

There are two important aspects of this decomposition that
are relevant to our advances. First, since the maximal cliques
can have non-empty intersection (i.e., contain some of the
same buses), different matrices may contain elements that refer
to the same element in the2n× 2n matrix. Therefore, linking
constraints are required to force equality between elements
that are shared between maximal cliques. To specify these
linking constraints, Jabr recommends forming a “clique tree”:
a maximum weight spanning tree of a graph with nodes
corresponding to the maximal cliques and the edge weights
between each node pair given by the number of shared buses
in each clique pair. A maximal weight spanning tree of this
graph, which can be calculated using Prim’s algorithm [22],
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is used to reduce the number of linking constraints: equality
constraints are only enforced between the appropriate elements
in maximal cliques that are adjacent in the maximal weight
spanning tree.

Second, graphs corresponding to realistic power networks
are not chordal. A chordal extension of the graph is thus
required in order to use the matrix completion theorem. A
chordal extension adds edges between non-physically con-
nected nodes (i.e., edges in the chordal extension of the graph
may exist between buses that are not connected by a line in
the power system) to obtain a chordal graph. Jabr recommends
obtaining a chordal extension using a Cholesky factorization
of the absolute value of the imaginary part of the network’s
admittance matrix. To minimize the total number of edges, a
Cholesky factorization with minimum fill-in is obtained from
a minimum degree ordering of the row/column indices [23].

B. Matrix Combination Algorithm

We first describe a modification to the maximal clique
decomposition that yields a significant computational speed
improvement. This modification accounts for the trade-off
between the size of maximal cliques and the number of linking
constraints. Smaller maximal cliques generally reduce thetotal
size of the positive semidefinite constrained matrices. The
overlap between maximal cliques, as determined by the clique
tree approach, establishes the number of linking constraints.

The maximal clique decomposition uses a Cholesky factor-
ization with minimum fill-in to obtain small maximal cliques
as a heuristic for minimizing the number of variables in
the positive semidefinite matrix constraints. This approach
does not account for the computational burden of the linking
constraints. The optimization literature provides theoretical
support for the concept of reducing computational burden by
combining matrices (see [13] and Section 4 of [14]). Specifi-
cally, this literature discusses the potential trade off insolver
time between the sizes of the semidefinite-constrained matrices
and the number of linking constraints, which require solution
of a system of linear equations in the semidefinite program
algorithm. Combining matrices eliminates the need for linking
constraints between the matrices at the computational price of
a larger matrix. A heuristic for combining matrices to gain the
benefits of small matrices while reducing linking constraints
thus has the potential for computational speed improvements.

Many common semidefinite program solvers, such as
SeDuMi [24] and SDPT3 [25], use primal–dual methods that
solve both the primal and dual problems simultaneously. More-
over, since a primal constraint corresponds to a dual variable,
the “size” of the semidefinite program can be estimated by
adding the total number of scalar variables required to form
the matrices with the number of linking constraints. This
approximation for the “size” of a semidefinite program forms
the basis of our matrix combination heuristic. In a greedy
manner, we repeatedly combine the pair of matrices that most
reduces the “size” of the semidefinite program as measured
by the total number of variables plus the number of linking
constraints.

We next detail our matrix combination heuristic. LetL be
a parameter specifying the maximum number of matrices.

Consider a semidefinite program formed from the chordal
extension of a power system network, with maximal clique
i containingdi buses. Since the matrices corresponding to
the maximal cliques are symmetric and contain both real
and imaginary voltage components, matrixi (corresponding
to maximal cliquei) has di (2di + 1) variables. If maximal
cliques i and k, adjacent in the clique tree, sharesik buses,
then sik (2sik + 1) linking constraints are required between
the corresponding matrices. For each pair of adjacent maximal
cliques in the clique tree, the change in the optimization
problem “size” ∆ik if the cliques i and k were combined
is given by

∆ik = dik (2dik + 1)− di (2di + 1)

− dk (2dk + 1)− sik (2sik + 1) (22)

where dik = di + dk − sik is the number of buses in the
combined clique.

While the number of matrices is greater thanL, combine
a pair of adjacent maximal cliques with smallest∆ik. Then
recalculate the value of∆ik for all maximal cliques adjacent
to the newly combined clique. Repeat until the number of
matrices is equal toL. Constrain the resulting set of matrices
to be positive semidefinite in the OPF formulation.

We test this heuristic using two large system models: the
IEEE 300-bus system [26] and a 3012-bus model of the Polish
system for evening peak demand in winter 2007-2008 [3].
These systems were chosen to examine how the heuristic
scales with system size. Matrix decomposition techniques do
not result in a notable speed improvement for small systems;
no matrix decomposition significantly reduced the computa-
tional time for the IEEE 14, 30, and 57-bus systems [26].

The OPF formulation in (21) was implemented using
YALMIP version 3 [27], SeDuMi version 1.3 [24], and
MATLAB R2011a. One computer with an 64-bit Intel i7-2600
Quad Core CPU at 3.40 GHz with 16 GB of RAM was used to
run the formulation. By using the matrix completion decom-
positions to exploit the inherent sparsity, these computational
resources were sufficient for the 300 and 3012-bus system
models. A tolerance of1× 10−9 for SeDuMi’seps was used
in the calculation of the results.

Figures 1a and 1b show variation in total solver time
(i.e., the time used by the semidefinite programming solver
SeDuMi), with the parameterL. These figures do not include
the set up time required to initialize the formulation. However,
the set up time is typically only 15% to 20% of the solver time.

The solver times for Jabr’s formulation of the maximal
clique decomposition are the rightmost points (no matrix
combinations) in Figures 1a and 1b. AsL decreases from
the rightmost point, the solver times decrease by, at most,
approximately a factor of 2.5 for the 300-bus system and a
factor of 3.6 for the 3012-bus system as compared to the solver
time without combining matrices.

The solution time graphs in Figures 1a and 1b appear to
be “noisy,” which we attribute to differences in the number
of iterations needed to reach the specified tolerance. That is,
solver times can vary among choices ofL if it requires one
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(b) Solver time vs.L for 3012-Bus System. Note that the time withL = 2
of approximately1 × 105 seconds is not shown on the plot and the system
could not be solved withL = 1.

Fig. 1. Solver Time vs.L

more solver iteration to reach the desired solution tolerance.
Despite this noise, there is a clear trend. The plots show that
reducingL results in significant improvements in solver time
as compared to the case without matrix combining. However,
as L continues to decrease, the speed improvements from
removing linking constraints are overcome by the additional
variables required for the larger matrices (in the extreme,
returning to a single2n × 2n matrix for L = 1). Thus, the
solver times exhibit a steep increase for smallL. (Solution
times for very smallL are not shown on Figures 1a and 1b.
For the 300-bus system, the full2n × 2n matrix constraint
corresponding toL = 1 solved in 69.5 seconds. The 3012-bus
system could not be solved withL = 1; the system required
approximately1.0× 105 seconds forL = 2.)

Rather than combining matrices until below a specified
parameter value, we also tried combining matrices until no
pair of adjacent maximal cliques had a negative value of
∆ik (i.e., stopping combining matrices once the heuristic
indicated no further advantage to doing so). In our numerical
experience, however, this approach typically did not identify
a set of matrices that minimized the solver time. The number
of matrices for which no remaining adjacent pairs of maximal
cliques had negative∆ik wasL = 150 for the 300-bus system
and L = 1376 for the 3012-bus system. In both systems,
faster solver times were obtained for smaller values ofL. This
reinforces the fact that our measure of semidefinite program
size is a heuristic approximation of the computational burden.

Based on these empirical results, choosingL equal to 10%
of the initial number of matrices appears to give near minimum
solver times. (ExpressingL as a percentage of the original
number of matrices allows for easy comparison between
systems.) A minimum computational time consistently appears
at approximately this value ofL for the available power system
models; however, limited diversity of available large system
models precludes more general comments on this value. We
speculate that system models that are strongly interconnected
(i.e., have a relatively low amount of sparsity) will inherently

have large maximal cliques and thus not benefit from as many
matrix combinations as compared to more sparsely connected
system models. We therefore anticipate that a larger value of
L would be appropriate for strongly interconnected models.

Note that solution times are not greatly affected by the ad-
dition of parallel lines or multiple generators at the same bus;
models with these features have comparable computational
burden relative to other models with the same total numbers
of lines and generators.

Table I summarizes these results by providing the solver
times for each system / decomposition pair along with a
“speed up factor” (SUF) for the improvement of the matrix
combination approach withL = 10% of the original number
of matrices as compared to not combining matrices. Results
using the full2n×2nmatrix for the 3012-bus system could not
be computed. Note that solver times withL = 10% for other
models of the Polish system that is represented in the 3012-
bus system model are available in Table II. Also note that the
proposed heuristic yields improvements for the intermediate-
sized 118-bus system.

System 2n× 2n No Combining SUF
Combining (L = 10%)

IEEE 118-bus 6.63 4.84 2.06 2.349
IEEE 300-bus 69.45 13.18 5.71 2.309

Polish 3012-bus – 3578.5 1197.4 2.989

TABLE I
SOLVER T IMES (SEC) FOR VARIOUS ALGORITHMS

We attempted several alternatives to the proposed heuristic:
a variant of the proposed algorithm that, at each step, randomly
(weighted by ∆ik) selects a pair of maximal cliques to
combine; the heuristic proposed in [14]; and a “top-down”
approach that groups maximal cliques using a normalized cut
algorithm on the clique tree. As compared to the proposed
heuristic, these alternatives sometimes had comparable, but
not faster, solution times.
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Fig. 2. Eigenvalues for SelectedA Matrices of the Solution to the 3012-Bus System

C. Analysis of Duality Gap Properties of Solution to OPF
Problems for Large System Models

While solutions to many OPF problems satisfy the rank
condition and thus have zero duality gaps [5], it is known
that some small system models yield solutions with non-zero
duality gaps [6], [7]. Until the recent exploitation of power
system sparsity, computational challenges have precludedin-
vestigation of the rank properties of the semidefinite relaxation
for large system models. Harnessing the computational meth-
ods described in this paper, we conduct further investigation
of rank condition satisfaction for large system models. Note
that, as in the previous section, the results in this sectionare
calculated with a minimum line resistance of1×10−4 per unit
in accordance with [5] and with SeDuMi’s tolerance parameter
eps set to1× 10−9.

When using a matrix completion decomposition, solutions
to the dual formulation of the semidefinite relaxation consist
of a set ofA matrices. For a solution that satisfies the rank
condition, the nullspaces of allA matrices have dimension
less than or equal to two. However, for numerical reasons,
solvers do not yield a “hard zero” value for the eigenvalues
corresponding to the nullspaces of these matrices. Therefore, it
can be difficult to determine when anA matrix has nullspace
with dimension two. For illustration of this challenge, Figure 2
shows the eigenvalues, sorted in order of ascending magnitude,
for selectedA matrices from theL = 10% decomposition
of the Polish 3012-bus system model. With two smallest
eigenvalues that are four orders of magnitude below the next
smallest eigenvalues, Figure 2a shows a typical matrix that
has nullspace with dimension two. Conversely, the smallest
eigenvalues in Figure 2b are only two orders of magnitude
below the next smallest eigenvalues; the nullspace dimension
for this matrix is more difficult to determine. Characterizing
the overall satisfaction of the rank condition for the Polish
3012-bus system is correspondingly difficult.

To evaluate the satisfaction of the rank condition for
methods that exploit power system sparsity by using matrix
completion decompositions, we propose the following metric
to measure closeness to a nullspace with dimension two.

The metric is based on the ratio between the third and
second smallest magnitude eigenvalues. The minimum such
ratio among all theA matrices is termed the “minimum
eigenvalue ratio.” If the solution did yield “hard zeros” for zero
eigenvalues, the second smallest eigenvalue would be zero and
the third smallest eigenvalue would be non-zero, resultingin
a minimum eigenvalue ratio of infinity. In practice, numerical
issues result in minimum eigenvalue ratios that are large
(typical values are greater than1× 107 for small systems that
are known to satisfy the rank condition). Further, if the solution
does not satisfy the rank condition, both the second and third
smallest eigenvalues will have similar magnitudes near zero,
therefore yielding a small value for the minimum eigenvalue
ratio. Thus, a large value for the minimum eigenvalue ratio
indicates a solution with zero duality gap while a small value
indicates a non-zero duality gap solution. Note that more
complex metrics than the proposed minimum eigenvalue ratio
are possible; the proposed metric is intended to be a simple
but meaningful measure.

Table II shows the minimum eigenvalue ratios for several
test systems. The solution times withL = 10% are also given.
The systems with more than 300 buses are representations
of the Polish grid with various levels of modeling detail and
different loading scenarios (winter peak (wp), winter off peak

System Min Eigenvalue Max Mismatch Solver Time
Model Ratio (L = 10%)

IEEE 118-bus 2.86× 109 3.9× 10−5 MVAr 2.1 sec
IEEE 300-bus 2.25× 102 4.7× 100 MVAr 5.7 sec
2383-bus (wp) 7.90× 102 2.9× 102 MVAr 730 sec
2736-bus (sp) 3.07× 104 2.7× 10−2 MVAr 622 sec
2737-bus (sop) 4.11× 104 3.7× 10−1 MVAr 607 sec
2746-bus (wp) 8.65× 104 5.5× 10−2 MW 752 sec
2746-bus (wop) 1.95× 104 1.4× 10−1 MW 738 sec
3012-bus (wp) 1.72× 102 4.1× 102 MVAr 1197 sec
3120-bus (sp) 5.84× 102 4.6× 101 MVAr 1619 sec
3375-bus (wp) 1.64× 102 5.2× 102 MVAr 1457 sec

TABLE II
MEASURES OFRANK CONDITION SATISFACTION AND SOLVER T IMES

FOR VARIOUS SYSTEM MODELS
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Fig. 3. Active and Reactive Power Mismatch at PQ Buses

(wop), summer peak (sp), and summer off peak (sop)). These
results indicate that, according to the proposed metric, the
large system models do not satisfy the rank condition as
well as many smaller system models, which generally have
minimum eigenvalue ratios greater than1 × 107 when they
satisfy the rank condition. Since, other than the IEEE 118 and
300-bus systems, the large system models all represent the
same Polish system, the lack of more diverse system models
limits the ability to make more general statements concerning
satisfaction of the rank condition for large system models.

An alternative test for satisfaction of the rank condition is
based on the mismatch between the calculated and specified
active and reactive power injections at PQ buses. To recovera
candidate voltage profile, we form the closest rank one matrix
to the solution’sW matrix using the eigenvector associated
with the largest eigenvalue ofW. If the solution has zero
duality gap, the matrixW is rank one and the resulting voltage
profile will satisfy the power injection equality constraints at
the PQ buses. Conversely, the closest rank one matrix to a
solution with non-zero duality gap will typically not yield
a voltage profile that satisfies the power injection equality
constraints at PQ buses. Thus, the mismatch between the
calculated and specified power injections at PQ buses provides
an alternative measure for satisfaction of the rank condition.

Figures 3a and 3b show the mismatch between the specified
and calculated active and reactive power injections at PQ buses
for the 300-bus and 3012-bus systems, respectively, sortedin
order of increasing active power mismatch. The voltage profile
yields small mismatches for the majority of buses, but a few
buses display large mismatches in both active and reactive
power. The large power mismatches indicate solutions having
non-zero duality gap. With small mismatch at the majority
of PQ buses, such solutions with non-zero duality gap may
provide good starting points for a local search algorithm.
Table II shows the maximum mismatch, considering both
active and reactive powers, for a variety of test systems.
Solutions to several of these system models have relatively
large power mismatches; for instance, mismatches for all test
systems in Table II except for the 118, 2736, and 2746 (wp)

bus systems are greater than the default Newton solution
tolerance of 0.1 MW/MVAr used by the power flow solution
package PSS/E [28]. Large power mismatches indicate that the
corresponding solutions do not satisfy the rank condition.Note
the correlation between the minimum eigenvalue ratio and
the maximum power mismatch, which supports the validity
of these measures of rank condition satisfaction.

D. Extending Jabr’s Formulation of the Maximal Clique De-
composition to All Systems

The first step in Jabr’s formulation creates a chordal ex-
tension of the network using a Cholesky factorization of the
absolute value of the imaginary part of the bus admittance ma-
trix (i.e., chol (|Im (Y)|)). Only positive definite matrices have
Cholesky factorizations. Since not all power system networks
have admittance matrices that satisfy|Im (Y)| ≻ 0 (e.g.,
networks with sufficiently large shunt capacitances), Jabr’s
formulation cannot be universally applied to such networks.

Jabr’s formulation only uses thesparsity pattern(i.e., loca-
tion of the non-zero elements) of the Cholesky factorization.
Thus, an alternative, positive definite matrix whose Cholesky
factorization exhibits the same sparsity pattern would extend
Jabr’s formulation to general power systems. We next present
such an alternative matrix.

Let D represent the incidence matrix associated with the
network (i.e., each row ofD corresponds to a line and has
two non-zero elements:+1 in the column corresponding to
the line’s “from” bus and−1 in the column corresponding
to the line’s “to” bus). The matrixE in (23) has a Cholesky
factorization with the same sparsity pattern aschol (|Im (Y)|).

E = D
T
D+ In×n (23)

whereIn×n is then× n identity matrix.
SinceDT

D has a Laplacian structure, it is positive semidef-
inite. Adding an identity matrix increases all eigenvaluesby
one, and thusE is positive definite. Note that the common
modification for making a Laplacian matrix positive definite
via adding the matrix1 ·1T , where1 is the vector of all ones,
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is not appropriate due to the fact that this modification makes
the Cholesky factorization ofE dense.

The bus admittance matrixY has generalized Laplacian
structure, with weightings from the line admittances, plusdiag-
onal terms corresponding to shunt admittances. TheE matrix’s
similar construction implies that its Cholesky factorization
has the same sparsity pattern as the Cholesky factorization
of |Im (Y)|. Using the Cholesky factorization ofE therefore
extends Jabr’s method to general power networks.

E. Obtaining the Optimal Voltage Profile

The solution to a decomposed problem is a set of positive
semidefinite matrices. If all the matrices have nullspaces with
appropriate dimension, the optimal voltage profile can be
recovered [5], [16]. (For formulations that separate real and
imaginary voltage components, like (21), the nullspace of all
matrices must have dimension less than or equal to two.)
However, existing literature does not give a detailed method
for recovering the optimal voltage profile. We next describea
technique for obtaining the optimal voltage profile.

An overview of this technique follows. First obtain vectors
in the nullspaces (hereafter referred to as nullvectors) ofeach
positive semidefinite constrained matrix. Note that calculation
of these nullvectors can be carried out in parallel since the
nullspace computation for each matrix can be performed
independently. These nullvectors, when rearranged such that
they correspond to complex “phasor” voltages, can each be
multiplied by a different complex scalar and remain in their
respective nullspaces. Since a bus can be in multiple maximal
cliques, elements in different vectors may correspond to the
same bus voltage phasor. The complex scalars are chosen such
that elements of different vectors that correspond to the same
bus voltage are equal. A centrally computed linear nullspace
calculation of a specified matrix gives an appropriate choice of
the scalar values. This allows for specification of a vector that
is a real scalar multiple of the optimal voltage profile. Using
a single binding constraint, the resulting vector is scaledto
obtain the optimal voltage profile.

We next present the details of this technique. Consider an
optimal solution to (21) consisting ofd positive semidefinite
matricesĀi with dim

(

null
(

Āi

))

≤ 2, ∀i ∈ {1, . . . , d}. Let
u(i) be a nullvector of̄Ai. Let ri be the number of buses in the
maximal clique corresponding to matrixi. Convert each vector
u(i) to complex “phasor” form:u(i) = u

(i)
1:ri

+ ju
(i)
ri+1:2ri

,
where subscript1 : ri indicates the first throughrthi elements
of the corresponding vector.

Vectorsu(i) remain in their corresponding nullspace after
multiplication by complex scalarsαi. This property is used
to enforce consistency between elements of different vectors
that correspond to the same bus voltage phasor. Obtaining the
optimal voltage profile requires determining values ofαi that
create agreement between all elements representing the same
voltage from the nullvectors of different matrices. This can be
visualized by forming a table with rows corresponding to bus
indices and columns corresponding to maximal clique indices.
If maximal cliquej contains busi, the(i, j) entry of the table
is αj multiplied by the element ofu(j) corresponding to bus

1
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5

Fig. 4. Illustrative Voltage Profile Recovery Example Network
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3 α1u
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3 α2u
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2 α3u

(3)
1

4 α2u
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3 α3u
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2

5 α5u
(3)
3

TABLE III
ILLUSTRATIVE VOLTAGE PROFILE RECOVERY EXAMPLE TABLE

i. If maximal cliquej does not contain busi, the (i, j) entry
of the table is empty.

Since each row of the table represents a voltage phasor at the
corresponding bus, values ofαi ∀i = 1, . . . , d are chosen such
that all entries in each row are equal. Appropriate values ofαi

are obtained using a nullvector of an appropriately specified
matrix. Specifically, use the following procedure to createa
matrix C with d columns that enforces equality of all entries
of each row of the table. For each rowi of the table, find
the first non-empty entry and store the corresponding column
indexj. (All rows of the table will have at least one non-empty
entry because each bus is contained in at least one maximal
clique.) While there exists a non-empty entry in rowi with
column index greater thanj (let the non-empty entry exist in
columnk), add a row to the matrixC that enforces equality
of the (i, j) and (i, k) entries. Setj = k and repeat until no
other non-empty entries exist in rowi with column indices
greater thanj. Then proceed to rowi+ 1.

Consider the illustrative example system network in Fig-
ure 4 and corresponding Table III. This system has three
maximal cliques composed of buses{1, 2, 3}, {1, 3, 4}, and
{3, 4, 5}. The corresponding equation for the example is

Cα =















u
(1)
1 −u

(2)
1 0

u
(1)
3 −u

(2)
2 0

0 u
(2)
2 −u

(3)
1

0 u
(2)
3 −u

(3)
2


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
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

(24)

The nullspace calculation has a non-trivial solution if all
Āi matrices of the solution have nullspaces with dimension
less than or equal to two. (For a solution to the semidefinite
relaxation where some of thēA matrices have nullspace
dimension greater than two, the nullspace calculation may only
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have the trivial solutionα = 0, indicating that a consistent
voltage profile cannot be obtained.) A nullvectorα yields a
table where all entries of each row have the same value. Create
a vectorη of lengthn whereηi is equal to the value of an entry
in the ith row of the table. The vectorη is a scalar multiple
of the optimal voltage vector.

Sinceα has one degree of freedom in its length, the optimal
voltage profile is a real scalar multipleχ of η. To determine
the value ofχ, one additional piece of information is required
from a binding constraint. Reference [5] suggests the use
of a binding voltage magnitude constraint. However, not all
solutions have a binding voltage magnitude constraint (e.g., the
three-bus system in [6]). Optimal solutions to OPF problems
have at least one binding constraint, but not necessarily a
binding voltage magnitude constraint.

A binding constraint is identified by a non-zero value of the
corresponding Lagrange multiplier. Consider a solution with a
binding voltage magnitude constraint. LetV̄k be the value of
a binding voltage magnitude constraint at busk. The value of
χ is chosen using this voltage magnitude:

χ =
V̄k
|ηk|

(25)

For solutions without a binding voltage magnitude constraint,
use an alternative binding constraint to determineχ.

The optimal voltage profile is then constructed by scalingη
by χ and rotating the resulting vector to obtain zero reference
angle.

V opt = χηe−jθref (26)

whereθref is the angle of the element ofη corresponding to
the reference bus.

IV. CONCLUSION AND FUTURE WORK

This paper has addressed two categories of practical issues
associated with implementing a large-scale optimal power flow
solver based on semidefinite programming: modeling issues
associated with general power systems and computational
issues. Specific modeling issues addressed include multiple
generators at the same bus and limiting flows on parallel
lines. Both quadratic and convex piecewise-linear generator
cost functions are considered.

The paper provides three computational advances for ex-
ploiting power system sparsity using matrix completion de-
compositions. First, a proposed matrix combination algorithm
considers the impact of “linking constraints” between elements
in certain decomposed matrices that refer to the same element
in the original 2n × 2n matrix. Since combining matrices
eliminates linking constraints, matrix combination can reduce
computation time. Calculations using test systems show the
efficacy of the matrix combination approach: the IEEE 300-
bus system shows a factor of approximately 2.3 decrease
in solver time and a 3012-bus model of the Polish system
shows a factor of 3.0 decrease in solver time compared to not
combining matrices. The rank characteristics of solutionsto
OPF problems for large system models are also examined.

Next, Jabr’s formulation of the maximal clique decomposi-
tion [16] was extended to general power system networks. This
formulation uses a Cholesky factorization of the absolute value
of the imaginary part of the bus admittance matrix. Since a
Cholesky factorization requires a positive definite matrix, this
approach cannot be used for some networks (e.g., networks
with large shunt capacitive compensation). Jabr’s formulation
only uses the sparsity pattern of the Cholesky factorization.
We propose an alternative positive definite matrix with the
same sparsity pattern to extend Jabr’s formulation to general
power system networks.

A final computational advance is a method for constructing
the optimal voltage profile from a solution consisting of
decomposed matrices. Although existing literature discusses
the use of matrix decompositions [10], [16], [17], it does
not give a detailed method for obtaining the optimal voltage
profile.

Future work includes investigation of alternative load mod-
els. Currently, the formulation includes the capability for
constant power and constant impedance load models. Another
common load model is constant current, which is not trivially
incorporated into the semidefinite programming formulation.
Investigation of whether a constant current model can be
included in a semidefinite programming-based OPF solver is
thus valuable.
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[25] R. Tütüncü, K. Toh, and M. Todd, “Solving Semidefinite-Quadratic-
Linear Programs using SDPT3,”Mathematical Programming, vol. 95,
no. 2, pp. 189–217, 2003.

[26] Power Systems Test Case Archive. University of Washington De-
partment of Electrical Engineering. [Online]. Available:http://www.ee.
washington.edu/research/pstca/

[27] J. Lofberg, “YALMIP: A Toolbox for Modeling and Optimization
in MATLAB,” in IEEE International Symposium on Computer Aided
Control Systems Design, 2004. IEEE, 2004, pp. 284–289.

[28] Siemens PTI, “OPF Manual,”Power System Simulation for Engineering
(PSS/E), vol. 31.0, December 2007.

Daniel K. Molzahn (S’09) received the B.S. and
the M.S. degrees in electrical engineering from the
University of Wisconsin-Madison in 2008 and 2010,
respectively, where he is currently pursuing the
Ph.D. degree.

Jesse T. Holzer is a Ph.D. student in the Math
Department at the University of Wisconsin-Madison.
His academic interests are variational inequalities for
large scale equilibrium problems and optimization
modeling for energy systems. In his free time he
can be found running for distance or biking the hills
west of Madison.

Bernard C. Lesieutre (S’86-M’93-SM’06) received
the B.S., M.S., and Ph.D. degrees in electrical en-
gineering from the University of Illinois at Urbana-
Champaign.

He is currently an Associate Professor of Electri-
cal and Computer Engineering at the University of
Wisconsin-Madison. His research interests include
the modeling, monitoring, and analysis of electric
power systems and electric energy markets.

Christopher L. DeMarco (M’85) is the Grainger
Professor of Electrical and Computer Engineering
at the University of Wisconsin-Madison, where he
has been a member of the faculty since 1985. At
the University of Wisconsin-Madison, he has served
as Electrical and Computer Engineering Department
Chair, and currently serves as Site Director for
the Power Systems Engineering Research Center
(PSERC). His research and teaching interests center
on dynamics, optimization and control of electrical
energy systems. He received the B.S. degree at the

Massachusetts Institute of Technology, and the Ph.D. degree at the University
of California, Berkeley, both in electrical engineering and computer sciences.


