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Abstract—Initializing internal variables in dynamic power
system simulations is a two-stage process. First, a power flow
model is used to find the steady state bus variables. Second,
values for the internal variables associated with bus connected
components are determined such that the components’ terminal
values match the bus variables calculated from the power flow
model. Initializing most components’ variables is a straightfor-
ward, direct process. However, initializing induction machine
variables traditionally uses an indirect, iterative process. In this
paper, eigenvalue formulations are detailed for both the induction
machine initialization and power flow models, which provide
a direct method for determining all possible sets of induction
machine initializations and offer a novel model for the power
flow equations.

Index Terms—Power system simulation, Eigenvalues, Power
flow, Induction machines

I. I NTRODUCTION

DYNAMIC simulations are essential to engineering anal-
ysis of electrical power systems. These simulations are

used in long-term planning and design environments and
increasingly in operational environments to facilitate flexible
power interchanges [1]. Dynamic simulations are required for
anticipatory analysis, such as determining voltage and power
flow operational limits in order to ensure transient stability, and
in post-mortem analysis of blackouts. Power system stability
is a major topic in power engineering research [2]–[5].

To initialize a dynamic power system simulation, it is neces-
sary to determine the initial conditions of all devices connected
to the system, including synchronous generators, loads, and
induction machines. Determining the initial conditions for
synchronous generators is straightforward [1]. Load models
for dynamic simulations are continually under development.
See, for instance, the most recent WECC composite load
model, which contains several induction motor models and
static voltage dependent components [6]. Initialization of most
components in the composite load model is straightforward.
Initializing induction machines, however, is a more complex
iterative process. Induction machines are particularly important
devices since they comprise a significant portion of the load
at many buses [7]. For each induction machine connected to
a bus, the initial conditions of the machine model’s internal
state variables must be obtained.

Determining the initial conditions for dynamic power sys-
tem simulations is a two-stage process: first, a power flow
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model is used to determine steady state values of the active
power (P ), the reactive power (Q), the voltage magnitude
(V ) and the voltage angle (δ) at each bus. Second, the
initial conditions for the internal variables of all connected
components are set to their steady state values such that the
terminal values of the models match the values ofP , Q, V ,
andδ obtained from the power flow model. Since initialization
of other components is generally direct and straightforward,
we focus on induction machines. Appropriate choice of the
internal states of the induction machine model match both the
machine’s active power and voltage to the bus values that are
obtained from the power flow model (i.e. in this initialization
approach, machine slip is calculated rather than specified). An
additional capacitor is added at the bus to match the reactive
power input to the machine with the reactive power obtained
from the power flow analysis [7], [8, p. 627].

There are existing solution techniques for both stages of the
initial conditions problem. For a textbook treatment on power
flow models, including several standard solution techniques
(Gauss-Seidel, Newton-Raphson, etc.), see [8]. There has also
been significant research attention to the problem of finding
all solutions to the power flow model. [9] uses analytic tools
from topology and geometry to determine bounds on the
number of solutions and the stability of solutions in a lossless
network of PV buses. [10] generalizes this analysis to lossy
systems of PV buses. Continuation power flow algorithms
that can find multiple solutions to the power flow equations
were published in [11] and [12]. Other solution techniques
for the power flow equations have also been attempted, such
as a biologically inspired ant colony algorithm in [13] and
a genetic algorithm [14]. To our knowledge, none of the
existing literature formulates the power flow model in terms
of eigenvalue problems.

A common approach for matching the active power and
voltage at the induction machine terminals to the values
obtained from the power flow model uses iteration on the
machine’s slip. This approach is used in such software as
Positive Sequence Load Flow Software (PSLF) [15, p. 963],
Power System Simulation for Engineering (PSS/E) [16, p. 20-
16], and PowerWorld [17]. (Note that other software, such
as Electro-Magnetic Transients Program (EMTP) [18, p. 9-
19], initializes induction machines by specifying machine
slip and calculating active and reactive power demands. This
does not require iteration and is straightforward; it is not,
therefore, discussed herein.) A potential disadvantage ofthe
iterative approach is that at most one solution is obtained when
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multiple solutions are often possible. For general purposes,
the highest speed stable solution is sought; however, for many
research purposes, studies can focus on other solutions. For
instance, extending work in bifurcation theory [3], [5] to
incorporate load models requires multiple solutions to the
induction machine initial conditions problem [19].

Our first contribution is a generalized eigenvalue formula-
tion for the induction machine initial conditions model. As-
suming linear magnetic relationships between machine fluxes
and currents, the steady state electrical equations for thein-
duction machine model are linear in the electric variables and
contain a machine speed multiplicative nonlinearity (see the
single multiplicative nonlinearity inωr in equation (1)). The
rotor speedωr serves as the eigenvalue in our formulation. The
eigenvector is composed of the machine electrical variables
(currents in this formulation). Once these are determined,the
torque equation is used to initialize the model’s mechanical
torque model. This paper uses a double-cage induction ma-
chine model; a single-cage model is reported in our previous
work [20] (double-cage models have been found to be well-
suited for aggregate motor load models [21]). This eigenvalue
approach has the advantage of providing all solutions, stable
and unstable, and can reliably determine when no solutions
exist that satisfy the terminal constraints, identified by the
absence of finite real eigenvalues.

The eigenvalue formulation has immediate practical value
to researchers who study power systems under a wide range
of conditions. The advantages of the eigenvalue formulation
over traditional iterative methods include 1. Certain research
applications, such as determining stability margins and the
distance to bifurcation points [3], [5], require the determination

of multiple solutions. 2. Finding all solutions ensures that the
desired solution can be selected. The single solution obtained
from traditional iterative methods does not guarantee thatthe
obtained solution is in fact the desired solution. 3. In contrast
to traditional iterative methods, the eigenvalue formulation
explicitly indicates when no solutions exist.

Our second contribution is a multiparameter eigenvalue
formulation of the power flow model. The power flow model,
including active power, reactive power, and voltage magnitude
equations, is reformulated as a multiparameter eigenvalue
problem. The orthogonald andq components of the voltages
at each bus serve as the eigenvalues in this formulation. The
eigenvectors are also composed of these voltage components.
The two-parameter formulation of the power flow equations
for two-bus systems can be solved directly by decomposing
the problem into two generalized eigenvalue problems that
must be simultaneously satisfied. Sincen-bus systems require
2 (n− 1) parameter eigenvalue problems, which do not yet
have a general solution method forn > 2, the power flow
model for systems with more than two buses is not yet directly
solvable from the multiparameter eigenvalue formulation.

Given the limited ability to solve multiparameter eigenvalue
problems, this second contribution is mainly of theoretical
interest at this point. It does not offer an advance in the
ability to solve the power flow equations. Future developments
in multiparameter eigenvalue theory may provide additional
insights into solutions of the power flow equations. For in-
stance, general solution techniques for multiparameter eigen-
value problems with more than two parameters may enable
direct solution of the power flow equations. A method for
determining the number of real-valued solutions to multipa-



















Vds

Vqs

0

0

0

0



















=





































Rs − (Xls +Xm) 0 −Xm 0 −Xm

(Xls +Xm) Rs Xm 0 Xm 0

0 −Xm Rr1 − (Xlr1 +Xm) 0 −Xm

Xm 0 (Xlr1 +Xm) Rr1 Xm 0

0 −Xm 0 −Xm Rr2 − (Xlr2 +Xm)

Xm 0 Xm 0 (Xlr2 +Xm) Rr2



















+
ωr

ωs

















0 0 0 0 0 0

0 0 0 0 0 0

0 Xm 0 (Xlr1 +Xm) 0 Xm

−Xm 0− (Xlr1 +Xm) 0 −Xm 0

0 Xm 0 Xm 0 (Xlr2 +Xm)

−Xm 0 −Xm 0 − (Xlr2 +Xm) 0

















































Ids

Iqs

Idr1

Iqr1

Idr2

Iqr2

















(1)

+
1

ωs

















(Xls +Xm) 0 Xm 0 Xm 0

0 (Xls +Xm) 0 Xm 0 Xm

Xm 0 (Xlr1 +Xm) 0 Xm 0

0 Xm 0 (Xlr1 +Xm) 0 Xm

Xm 0 Xm 0 (Xlr2 +Xm) 0

0 Xm 0 Xm 0 (Xlr2 +Xm)

















d
dt

















Ids

Iqs

Idr1

Iqr1

Idr2

Iqr2

















2H

ωs

dωr

dt
= Te (Ids, Iqs, Idr1, Iqr1, Idr2, Iqr2)− Tm (ωr) (2)

Te (Ids, Iqs, Idr1, Iqr1, Idr2, Iqr2) = Xm (Iqs (Idr1 + Idr2)− Ids (Iqr1 + Iqr2)) (3)



3

rameter eigenvalue problems would be useful as a stopping
condition for continuation power flows [11]. Conditions forthe
existence of any real solutions to multiparameter eigenvalue
problems would be useful for finding the point of voltage
collapse and for analyzing power systems in heavily loaded
conditions. Such advances await future developments in mul-
tiparameter eigenvalue theory. Here we present the formulation
and analyze a small system for which existing multiparameter
techniques suffice.

We first focus on the induction machine initial conditions
model. A dynamic model for a double-cage induction ma-
chine adapted from [22] is presented. Next, our eigenvalue
formulation for the induction machine initial conditions model
is derived and applied to the double-cage machine model.
A numeric example and discussion is presented. We then
focus on a multiparameter eigenvalue formulation of the power
flow model. After presenting this formulation, we derive
expressions for the eigenvectors, provide a direct solution of
the formulation for two-bus systems, and discuss the potential
benefits of this formulation.

II. A N EIGENVALUE FORMULATION OF THE INDUCTION

MACHINES INITIAL CONDITIONS MODEL

A. Dynamic Double-Cage Induction Machine Model

A dynamic double-cage induction machine model in thedq

frame with linear magnetic relationships and short-circuited
rotor windings is adapted from [22]. The double-cage machine
model is commonly used to represent the deep-bar effect and
is similar to the single-cage induction machine model with an
additional rotor circuit branch. The model is given in (1), (2),
and (3), whereωs refers to the electrical excitation frequency
and ωr refers to the rotor speed.Xls is the stator leakage
reactance,Xlr1 andXlr2 are the rotor leakage reactances,Xm

is the mutual reactance,Rs is the stator resistance,Rr1 and
Rr2 are the rotor resistances, andH is the inertia constant of
the machine and mechanical load.Tm (ωr) represents the load
torque model, which has parameters whose values must be
determined. All quantities are given in per unit representation.

Consistent with common power system simulation packages
[15]–[17], machine core losses are neglected. A common
representation of core losses involving a linear resistor [23] can
easily be incorporated into the induction machine model with
no added complexity. However, over a wide range of possible
solutions, a linear resistance model of core losses may not
be accurate. Neglecting magnetic saturation and core losses
is common practice in system-wide studies with induction
machine load models [15], [16], [24]. For such large-scale
system simulations, the induction motors serve as a coarse
representation of aggregate motor load. As this is intendedto
capture qualitative features of the system response, the details
of magnetic saturation and core losses are neglected. More
important, from a load modeling perspective, are assumptions
of motor mechanical load characteristics. Consequently, sat-
uration and core losses are not typically included in system
studies as they would be for detailed simulations of individual
machinery. We discuss this further at the end of this section.

The steady state electrical equations for the double-cage
induction machine model can be represented in phasor form

as shown in (4). The stator current isIs = Ids + jIqs, the
rotor currents areIr1 = Idr1 + jIqr1 andIr2 = Idr2 + jIqr2,
and the stator voltage isVs = Vds + jVqs.

[
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]
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(4)

The equivalent circuit representation for (4) is presentedin
Fig. 1, wheres = 1− ωr

ωs
.

Rs
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X ls

Xm

X lr1

Ir1

R r1

s

X lr2

Ir2

R r2

s

+

−

Vs

Fig. 1. Double-Cage Induction Machine Steady State Equivalent Circuit

In steady state, shifting the angle of the stator voltageVs by
δ shifts all the currents by the same angleδ. This can be seen
by multiplying both sides of (4) byejδ. Therefore, the input
complex powerP + jQ = VsI

∗
s is invariant to shifts in the

stator voltage angle. We exploit this property in the method
to follow.

B. Eigenvalue Formulation of the Initial Conditions Model

The dynamic double-cage induction machine model given
by (1), (2), and (3) fits into a more general induction machine
dynamic model framework.

y = [A+ ωrB]x+C
dx
dt

(5)

2H

ωs

dωr

dt
= Te (x) − Tm (ωr) (6)

This model has the applied voltage contained in the vector
y and stator and rotor currents contained in the vectorx. The
rotor windings are short circuited.A contains all terms that
do not depend on the rotational speedωr, B contains all terms
that do depend onωr, andC contains all terms that depend
on the derivative of the currents. The electrical portion ofthe
model (5) thus has a single multiplicative non-linearity, namely
a dependence onωr.

In steady state,dωr

dt = 0 and dx
dt = 0, and equations (5) and

(6) become

y = [A+ ωrB]x (7)

Te (x) = Tm (ωr) (8)
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MatricesA andB are completely defined by the machine
parameters. Since the phase angle of the applied voltage does
not affect the power consumption of the motor, we specify
the stator d-axis voltageVds equal to the magnitude of the
bus voltageV obtained from the power flow analysis and the
stator q-axis voltageVqs equal to zero. The voltage is then
directed entirely in the d-axis. This specification is corrected
at the end of the method by rotating the current angles by the
bus voltage angleδ obtained from the power flow analysis.
Therefore, the voltage vectory in (7) is completely known.
SinceVqs is specified to be zero, the active power used by the
machine isP = VdsIds. The active power is also known from
the power flow analysis, so the d-axis current can be directly
determined:

Ids =
P

Vds

(9)

With predetermined values ofP , Q, andVs from a power
flow model and specified machine parameters, it is not possible
to satisfy all terminal conditions using only induction machine
variables. In other words, with fixed values ofVs and given
machine parameters, there are not sufficient degrees of free-
dom to specify both the active powerP and reactive power
Q at the machine terminals. It is common practice to enforce
reactive power balance at the bus using a shunt capacitor (see
[7] and [8, p. 627] for further discussion and [15, p. 963], [16,
p. 20-16], and [17] for commercial software implementations
using an additional capacitor). Thus, (9) does not depend on
the reactive powerQ.

The machine model can be put into the form of an eigen-
value problem by combining the known voltage vector and the
known matrixA. First rewrite the voltage vectory as
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where, using (9),RA is specified in terms of known terminal
quantitiesV andP .

RA =
Vds

Ids
=

V 2

P
(11)

Then define the matrixD as

−D = −

[

RA 0

0 0

]

+A (12)

and rewrite (7) as

−Dx+ ωrBx = 0 (13)

or, in a well-known generalized eigenvalue form

Dx = ωrBx (14)

The formulation (14) can be solved with generalized eigen-
value solution techniques or, ifD is invertible, converted to

standard eigenvalue form and solved with standard eigenvalue
techniques [25].

1

ωr

x = D
−1

Bx (15)

Since the eigenvectorx can be arbitrarily scaled, rescaling
the eigenvector using the known value ofIds from (9) is
required. Additionally, correction for the voltage angleδ from
the power flow analysis is needed: rotate the current vectorx

by δ after solving the eigenvalue problem.
The solution to the electrical portion of the induction

machine model derived in this section will match the active
power input to the induction machine with the value ofP

obtained from the power flow model. However, the reactive
power input to the induction machine will not generally match
the value of reactive powerQ delivered to the bus obtained
from the power flow model. As discussed previously, a shunt
capacitor at the machine terminals gives an additional degree
of freedom that is used to enforce reactive power balance at
the bus [7], [8, p. 627], [15, p. 963], [16, p. 20-16], [17]. The
reactive power consumed by the induction machine is

Qmachine = VqsIds − VdsIqs (16)

The necessary reactive power injected by the capacitor can
then be determined.

Qcap = Qmachine −Q (17)

After solving the electrical portion of the induction machine
model to obtain the currents and the rotor speedωr, the
mechanical portion of the model (2), (3) is solved to initialize
the load torque model. This requires specification of the load
torque modelTm (ωr). A load torque model used in many
common power system simulation packages [15], [16] is given
by

Tm (ωr) = T0 · (ωr)
γ (18)

whereT0 is the parameter that requires initialization andγ
is a specified constant that is selected based on the type of
mechanical load being driven by the induction motor. Other
load torque models may be required for specific systems [16,
p. 20-19]. The induction machine initial conditions model is
completed by using (8) and (18) to determine values for the
load torque model parameters.

We conclude this section by showing that all solutions to
the induction machine initialization problem can be obtained
by solving the generalized eigenvalue problem (14). The
derivation in this section has made no mathematical approx-
imations, and thus solutions to (14) are indeed solutions to
the induction machine initialization problem. A finite number
of eigenvalues exist forregular (as opposed tosingular)
generalized eigenvalue problems. Furthermore, robust codes
exist for solving regular generalized eigenvalue problems[25],
[26]. The generalized eigenvalue problem (14) is singular if

det (D− ωrB) = 0 (19)
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for all values ofωr (i.e. all values ofωr are eigenvalues of
(14)). Otherwise it is regular [26]. We now show that the
generalized eigenvalue problem (14) is regular.

Physically meaningful choices of the machine parameters
require strictly positive reactancesXs, Xm, Xlr1, Xlr2 and
resistancesRs, Rr1, Rr2. AlthoughRA has the same units as
a resistance, it does not represent a physical resistance and can
be either positive, when the machine is operating as a motor,
or negative, when the machine is operating as a generator.

The matrixB is singular, and, depending on the value of
RA, the matrixD may be either singular or invertible. The
matrix D is singular whenRA = det(A)

det(A1)
, where the matrix

A is defined in (5) and the matrixA1 is the minor formed by
eliminating the first row and first column ofA.

If the matrix D is non-singular, invertD to obtain the
standard eigenvalue form (15). The generalized eigenvalue
problem (14) is regular for the case of non-singularD [26].

For the case of singularD, the generalized eigenvalue
problem (14) is regular ifdet (D− ωrB) 6= 0 for some value
of ωr. To show this condition holds, consider a permuted
version of the double-cage machine model given in (1) where
the even and odd rows and columns of the matrix are gathered
to emphasize the structure of this matrix. Application to other
induction machine models follows from these same arguments.
Define the matrixG0 as a function ofc
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wherec = 1 − ωr, Xs = Xls +Xm, X1 = Xlr1 +Xm, and
X2 = Xlr2 +Xm.

From a permuted form of (19), the generalized eigenvalue
problem (14) is singular if
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for all values ofc. The permutation matrixU gathers the even
and odd rows and columns of the matrix(D− ωrB) in order
to emphasize the structure of this matrix, which we exploit in
the remainder of this section.

DefineG1 (c) as the minor formed by eliminating the first
row and first column ofG0 (c). Then (21) can be rewritten as

c4det (G0 (c)) + c4RAdet (G1 (c)) = 0 (22)

Assuming non-zeroc, (22) holds when

RA = −
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(23)
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SinceG1 (c) is negative definite, it is invertible. The matrix
determinant lemma [27] can therefore be used to rewrite
det (G0 (c)) as

det (G0 (c)) = −Rsdet (G1 (c)) det
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1 0

0 1
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wherex =
[

0 0 Xs Xm Xm

]T
.

Simplifying and substituting (25) into (23) gives

RA = Rs − xT
G1 (c)

−1
x (26)

SincexT
G1 (c)x is a function ofc, xT

G1 (c)
−1

x is also a
function of c. Thus, (26) shows that the value ofRA required
for the generalized eigenvalue problem (14) to be singular is a
function of c. SinceRA is only dependent on the input power
P and terminal voltage magnitudeV as shown in (11),RA

is a fixed value for a given induction machine initialization
problem. Therefore, the singularity condition (19) does not
hold for all values ofωr and the generalized eigenvalue
problem (14) is regular.

Regularity implies that (14) has a finite number of eigen-
values. Robust codes exist for solving regular generalized
eigenvalue problems [25], [26]. For physically meaningful
machine parameters, the matrixB has a two-dimensional
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nullspace. The generalized eigenvalue problem (14) will there-
fore have at least two infinite valued eigenvalues. These infinite
valued eigenvalues are not physically meaningful and can be
neglected. The finite eigenvalues and associated eigenvectors
correspond to the physically meaningful solutions of the
induction machine initialization model. Since the derivation
in this section has made no mathematical approximations,
solving the generalized eigenvalue problem (14) will provide
all solutions to the induction machine initial conditions model.

Additionally, assumingD is non-singular,D−1
B in (15)

has at most rank four for the double-cage machine model.
Therefore, the largest possible factor in the eigenvalue char-
acteristic equation for the double-cage induction machine
model is a fourth-order polynomial. Hence, the eigenvalue
formulation can be non-iteratively solved using the equation
for roots of quartic polynomials as given in [28]. This may be
convenient for codes in large-scale simulation programs.

C. Double-Cage Induction Machine Numeric Example

AssumeVin is obtained from a power flow analysis. Specify
Vds = Vin andVqs = 0. The matricesB andD are

B =

1

ωs















0 0 0 0 0 0

0 0 0 0 0 0

0 Xm 0 (Xlr1 +Xm) 0 Xm

−Xm 0 − (Xlr1 +Xm) 0 −Xm 0

0 Xm 0 Xm 0 (Xlr2 +Xm)

−Xm 0 −Xm 0 − (Xlr2 +Xm) 0















(27)

D =
















(RA −Rs) Xs 0 Xm 0 Xm

−Xs −Rs −Xm 0 −Xm 0

0 Xm −Rr1 (Xlr1 +Xm) 0 Xm

−Xm 0 − (Xrl1 +Xm) −Rr1 −Xm 0

0 Xm 0 Xm −Rr2 (Xlr2 +Xm)

−Xm 0 −Xm 0 − (Xr2 +Xm) −Rr2

















(28)

Now ωr and the currents inx can be found by solving (14).
Note that the eigenvectorx must be scaled correctly. Since the
first entry ofx should beIds, scaling is done by multiplying
each entry in the eigenvectorx by Ids divided by the first
entry of x.

Consider a double-cage induction machine with the param-
eter values in per unit representation given in Table I. These
parameter values were obtained from the 37 kW double-cage
machine in Table 2 of [22]. Assume that the per unit values in
Table II are obtained from a power flow analysis. An example
power flow model that provides these values will be solved in
Section III-C.

Also consider a constant torque load model representing
aggregated compressor load.γ in (18) is0 for this load torque
model, and thusTm = T0.

Xls Xlr1 Xlr2 Xm

0.0572 0.1479 0.0572 1.9860

Rs Rr1 Rr2 ωs (rad/sec)
0.0050 0.0123 0.1129 377.0

TABLE I
DOUBLE-CAGE INDUCTION MACHINE EQUIVALENT CIRCUIT

PARAMETERS

P Vin δ

2.5 1.0 −20◦

TABLE II
POWER FLOW PARAMETERS

From this data, (9) shows thatIds = 2.500 and (11) shows
thatRA = 0.400. D can then be obtained from (28).

D =















0.395 2.043 0 1.986 0 1.986

−2.043 −0.005 −1.986 0 −1.986 0

0 1.986 −0.012 2.134 0 1.986

−1.986 0 −2.134 −0.012 −1.986 0

0 1.986 0 1.986 −0.113 2.043

−1.986 0 −1.986 0 −2.043 −0.113















Solving (14) gives four finite solutions forωr (the two
infinite eigenvalues are artifacts of the generalized eigenvalue
specification). The eigenvectorx was scaled such that the
entry corresponding toIds is equal to its known value of
2.500. After scaling the eigenvector, the currents were ro-
tated byδ. This was accomplished by calculating the vectors
Ik = (Idk + jIqk) e

jδ for k = {s, r1, r2}. The rotated d-axis
currents correspond to the real parts ofIk, and the rotated q-
axis currents correspond to the imaginary parts ofIk. Finally,
torque was calculated using (3).

The solutions forωr in radians per second and the currents
and torque in per unit are presented in Table III. Note that
four solutions are acquired rather than the single solutionthat
would be obtained from an iterative method. Directly obtaining
all solutions is an advantage of this method over traditional
iterative methods. Solutions two and four are stable, while
solutions one and three are unstable. The high-speed, stable
solution four is presented in bold. Stability was determined by
calculating the eigenvalues of the Jacobian of the linearization
of the induction machine equations (1), (2), (3) [29]. All eigen-
values for stable solutions had negative real parts, whereas at
least one of the eigenvalues for each unstable solution had a
positive real part.

Solution 1 2 3 4
ωr

(

rad

sec

)

-486.2 187.7 331.5 360.3
Tm 2.062 2.295 2.375 2.445
Ids -0.736 0.333 0.869 1.610
Iqs -9.332 -6.395 -4.922 -2.886
Idr1 1.610 1.542 -0.381 -1.524
Iqr1 2.828 4.125 4.158 2.328
Idr2 -1.001 -2.040 -0.673 -0.298
Iqr2 6.298 1.982 0.434 0.172

TABLE III
SOLUTION TO DOUBLE-CAGE INDUCTION MACHINE EXAMPLE
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Fig. 2a. Torque vs. Speed Curve and Solutions
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Fig. 2b. Input Power vs. Speed Curve and Solutions

The torque versus speed curve for this machine is given
in Fig. 2a. Torque-speed curves with shapes similar to the
curves in this figure, with increasing torque near zero speed,
are common (see, for instance, the NEMA Class C torque-
speed curves in references [23, p. 346] and [30, p. 337], and
the discussion in [31, pp. 287-289]). Solution 2 in Table III
is in this portion of the torque-speed curve. This solution
is not a mathematical artifact; it is a stable operating point
for the induction machine. To show the existence of such
solutions, consider a dynamic simulation of the induction
machine initialized from the high-speed, stable solution 4
performed using PowerWorld [17] as shown in Fig. 3. One
second into the simulation, a balanced three-phase fault is
applied for 0.25 seconds at the machine terminals. Note that
the machine does not return to the high-voltage, stable solution
4 after the fault clears. Rather, the machine operates at a stable,
lower-speed solution. (This solution is not the same as solution
2 in Table III since the reactive power demand at the machine
terminals for solution 2 does not match the value of reactive
power supplied from the initialization using solution 4.)

Changing the power flow parameters may reduce the num-
ber of real solutions. For instance, increasingVin from 1.0 to
1.10 per unit will result in two real and two complex solutions.
Since the machine speed must be real-valued, the complex
solutions are not physically meaningful.

While power engineers are accustomed to induction ma-
chine torque vs. speed curves, this example also benefits from
investigating the input power vs. speed curve given in Fig.
2b. It is clear from Fig. 2a that the input power for the
solutions is equal to the specified value of 2.50 per unit.
Resisitive losses comprise an increasing proportion of theinput
power as the speed decreases. In fact, with positive torque and
negative speed, resistive losses in solution one require both
mechanical and electrical input power. This unstable, negative-
speed solution may not be physical; data are not collected in
[22] for the negative portion of the torque-speed curve.

Note that the solutions in Table III were obtained by
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Fig. 3. Simulation of Fault at Induction Machine Terminals

neglecting core losses and magnetic saturation. A linear re-
sistor representing core losses could be incorporated intothis
formulation, but this representation may not be accurate for
a wide range of solutions. More detailed representations of
core losses and magnetic saturation could be handled using an
iterative approach: solve the model assuming linearity anduse
the solution to update the machine parameters, accounting for
core losses and magnetic saturation. Iteration is typically not
necessary for system-wide studies where errors introducedby
neglecting saturation and core losses are negligible compared
to uncertainties in other parameters, such as those in the load
torque models.
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III. A M ULTIPARAMETER EIGENVALUE FORMULATION OF

THE POWER FLOW MODEL

A. Introduction to the Power Flow Model

The power flow model relates the active and reactive power
injected at each bus to the voltage magnitude and angle at each
bus. There are four variables associated with each busi: the
net active power injection (Pi), the net reactive power injection
(Qi), the voltage magnitude (Vi) and the voltage angle (δi).

While many derivations of the power flow model use
the voltage magnitudeVi and voltage angleδi directly, we
decompose the voltages at each bus into orthogonald and
q components. Decomposing bus voltages into orthogonal
components is often done when convenient [32]–[34].

Vdi = Vi cos (δi) (29)

Vqi = Vi sin (δi) (30)

The power flow model can be defined as

Pi = Vdi

n
∑

k=1

(GikVdk −BikVqk) + Vqi

n
∑

k=1

(BikVdk +GikVqk)

(31)

Qi = Vdi

n
∑

k=1

(−BikVdk −GikVqk) + Vqi

n
∑

k=1

(GikVdk −BikVqk)

(32)

V
2

i = V
2

di + V
2

qi (33)

whereY = G + jB is the admittance matrix relating the
voltages and currents.

While (31), (32), and (33) must all be satisfied at all buses,
only two equations are directly enforced at each bus when
solving the power flow model. There are three bus types in
the power flow model: PQ, PV, and slack. PQ buses, which
typically correspond to loads, enforce the active and reactive
power equations (31) and (32). The resulting values ofVdi and
Vqi are used to determine the voltage magnitudeVi from (33).
PV buses, which typically correspond to generators, enforce
the active power and voltage magnitude equations (31) and
(33). The resulting values ofVdi andVqi are used to determine
the reactive powerQi using (32). Finally, a single slack bus
is specified to provide active and reactive power balance. The
slack bus has specified values ofVdi andVqi. The active power
Pi, reactive powerQi, and voltage magnitudeVi at the slack
bus are determined from (31), (32), and (33).

B. The Power Flow Equations Formulated as a Multiparam-
eter Eigenvalue Problem

The k-parameter eigenvalue problem combinesk eigen-
values andk equations into a single problem. The rightk-
parameter eigenvalue problem can be represented as in (34),
whereλj is a scalar eigenvalue,Mij is a matrix, andxi is an
eigenvector.



Mi0 +
k
∑

j=1

λjMij



xi = 0, i = 1, . . . , k (34)

The power flow equations are next described in a multipa-
rameter eigenvalue form. Each bus contributes an additional
two voltage parameters. Equations (35), (36) and (37) are the
power flow equations presented in multiparameter eigenvalue













0 0 −Pi

0 0 0

−1 0 0






+ Vdi







Gii 0 0

0 −1 0

0 0 1






+ Vqi







0 Gii 0

1 0 0

0 0 0







+
∑

k=1,...,n k 6=i











Vdk







Gik Bik 0

0 0 0

0 0 0






+ Vqk







−Bik Gik 0

0 0 0

0 0 0





























x1i

x2i

x3i






=







0

0

0






(35)













0 0 −Qi

0 0 0

−1 0 0






+ Vdi







−Bii 0 0

0 −1 0

0 0 1






+ Vqi







0 −Bii 0

1 0 0

0 0 0







+
∑

k=1,...,n k 6=i











Vdk







−Bik Gik 0

0 0 0

0 0 0






+ Vqk







−Gik −Bik 0

0 0 0

0 0 0





























y1i

y2i

y3i






=







0

0

0






(36)













0 0 −V 2
i

0 0 0

−1 0 0






+ Vdi







1 0 0

0 −1 0

0 0 1






+ Vqi







0 1 0

1 0 0

0 0 0



















w1i

w2i

w3i






=







0

0

0






(37)
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form for busi and correspond to (31), (32), and (33), respec-
tively.

The eigenvalues of the multiparameter eigenvalue formu-
lation can be easily recognized as theVd and Vq voltages.
Expressions for the eigenvectors can be obtained by expanding
the second and third rows of the corresponding multiparameter
eigenvalue equation and examining the relationships between
the elements of the eigenvector. For instance, the second and
third rows of the multiparameter eigenvalue formulation ofthe
active power equation (35) are

−Vdix2i + Vqix1i = 0 ⇒ x2i =
Vqi

Vdi

x1i (38)

−x1i + Vdix3i = 0 ⇒ x3i =
1

Vdi

x1i (39)

Thus, the eigenvectorxi can be rewritten as

xi =







x1i

Vqi

Vdi
x1i

1
Vdi

x1i






= x1i

1

Vdi







Vdi

Vqi

1






(40)

Since eigenvectors have a single degree of freedom in
their magnitude (ifv is an eigenvector, thenav is also an
eigenvector for scalara 6= 0), assumingVdi 6= 0 andx1i 6= 0,
(40) can be rewritten as

xi =







Vdi

Vqi

1






(41)

Since the second and third rows of all right multiparameter
equations are identical, (35), (36), and (37) have identical
eigenvectors

xi = yi = wi =







Vdi

Vqi

1






(42)

C. Direct Solution for Two Bus Systems

The theory of multiparameter eigenvalue problems is not as
mature as the theory of other eigenvalue problems. Much of
multiparameter eigenvalue theory assumes that theMij matri-

ces are Hermitian or that the matrix
(

Mi0 +
∑k

j=1 λjMij

)

is left or right definite. For instance, the books [35] and [36]
work almost entirely with Hermitian multiparameter eigen-
value problems. The multiparameter eigenvalue formulation of
the power flow equations is neither Hermitian nor left or right
definite and thus cannot be analyzed with theory developed
for specialized forms of multiparameter eigenvalue problems.

However, multiparameter eigenvalue theory does enable the
general solution of two-parameter eigenvalue problems. Since
each bus besides the slack bus has two degrees of freedom, the
number of parameters necessary to represent ann-bus power
system is2 (n− 1). Hence, two-bus systems with specified
slack bus voltage can be represented as a two-parameter
eigenvalue problem.

The power flow model for two-bus systems can be easily
solved using many existing solution techniques [8]. In fact,
solutions to two-bus systems can be expressed explicitly.
Solving the power flow model for two-bus systems with
the multiparameter eigenvalue formulation has no numerical
advantages over existing techniques. This section is intended
to demonstrate the validity of applying multiparameter eigen-
value solution techniques to the power flow model. Future
advances in multiparameter eigenvalue theory may enable
application to larger systems or give other insights into the
power flow model. This is discussed further in Section III-D.

Since the matrices used in the power flow equations (35),
(36), and (37) are small (3×3), the Kronecker product method
described in Chapter 2 of [37] can be used to solve the
power flow model for two-bus systems. This method converts
a two-parameter eigenvalue problem into a set of generalized
eigenvalue problems. Consider the two-parameter eigenvalue
problem described in (43) and (44), whereλ1 and λ2 are
eigenvalues andx1 andx2 are eigenvectors.

A0x1 + λ1A1x1 + λ2A2x1 = 0 (43)

B0x2 + λ1B1x2 + λ2B2x2 = 0 (44)

(43) and (44) can be rewritten using the Kronecker product
method as two generalized eigenvalue problems.

∆1z = λ1∆0z (45)

∆2z = λ2∆0z (46)

where

∆0 = A1 ⊗B2 −A2 ⊗B1 (47)

∆1 = A2 ⊗B0 −A0 ⊗B2 (48)

∆2 = A0 ⊗B1 −A1 ⊗B0 (49)

z = x1 ⊗ x2 (50)

The Kronecker product is denoted by⊗. See [28] for further
discussion on the Kronecker product. The solution to the
two-parameter eigenvalue problem can be obtained from a
simultaneous solution of (45) and (46). Applying this to a two-
bus power system, where bus 1 is the slack bus with known
values ofVd1 andVq1, bus 2 is a PQ bus with active power
injectionP2 and reactive power injectionQ2, and the system
has a2×2 admittance matrixY = G+jB, gives the following
result.

∆1z = Vd2∆0z (51)

∆2z = Vq2∆0z (52)

where
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∆0, PQ =






























0 −G22B22 0 G22B22 0 0 0 0 0

G22 0 0 0 G22 0 0 0 0

0 0 0 0 0 −G22 0 0 0

B22 0 0 0 B22 0 0 0 0

0 1 0 −1 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 −B22 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0































(53)

∆1, PQ =






























0 aB22 0 −bG22 (aG22 + bB22) −Q2G22 0 −P2B220

−a 0 0 −b 0 0 P2 0 0

0 0 0 −G22 0 0 0 0 0

−b a −Q2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0

0 −B22 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0































(54)

∆2, PQ =






























(−aB22 + bG22) −aG22 Q2G22 −bB22 0 0 P2B22 0 0

0 −a 0 0 −b 0 0 P2 0

G22 0 a 0 0 b 0 0 −P2

0 0 0 −b a −Q2 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

B22 0 0 0 0 0 b −a Q2

0 1 0 0 0 0 0 0 0

0 0 −1 0 0 0 1 0 0































(55)

and, for notational convenience,a = G21Vd1 − B21Vq1 and
b = B21Vd1 +G21Vq1.

Solving (51) and (52) provides the possible values for
both Vd2 andVq2, respectively. To determine which pairs of
eigenvalues are actually solutions to the power flow equations,
test each of the possible voltage combinations (Vd2, Vq2) in
the power flow equations (31) and (32). Voltage combinations
that yield the specified values of active and reactive power
injectionsPi andQi are solutions to the power flow equations.

A similar process can be done for a two-bus system where
bus 2 is a PV bus with active power injectionP2 and
voltage magnitudeV2. (51) and (52) must be solved, where
∆0, PV , ∆1, PV , and∆2, PV are given in the appendix. Each
combination of eigenvalues must be checked in the power
flow equations for active power (31) and voltage magnitude
(33). Voltage combinations that satisfy these equations are the
solutions to the power flow model.

Direct solutions for systems with more than two buses
requires general solution methods for multiparameter eigen-
value problems with more than two parameters. No solution

techniques for this category of problems were found in any
existing literature. Therefore, new developments in multipa-
rameter eigenvalue theory will be needed before direct solution
of the multiparmeter eigenvalue formulation of the power flow
model will be possible for practical size power systems.

We next present a numeric example of the two-bus system
shown in Fig. 4. This example completes the induction ma-
chine initialization example given in Section II-C. Bus 1 is
a slack bus with known values ofVd1 and Vq1, and bus 2
is a PQ bus with known values of power injectionsP2 and
Q2, as given in Table IV. The capacitor at bus 2 is used to
balance the difference in reactive power between the induction
machine and power flow models [7].

IM

V   + jVd1 q1

P
Q

1

1

V   + jVd2 q2

P
Q

2

2

Fig. 4. Two Bus System

Vd1 Vq1 P2 Q2

1.05 0 -2.500 0.180

TABLE IV
TWO BUS SYSTEM SPECIFIEDPOWER FLOW VALUES

The transmission line is assumed to have impedance
0.0050+j0.1433 per unit, or equivalently, admittance0.2432−
j6.9699 per unit. Thus, the system has an admittance matrix
given by

Y = G+ jB =

[

0.2432− j6.9699 −0.2432 + j6.9699

−0.2432+ j6.9699 0.2432− j6.9699

]

Using these values to solve (51) indicates that for any
solution to the power flow equations,Vd2 must take one of
the following values:{0, 0.1103, 0.9397}. Similarly, solving
(52) indicates thatVq2 must take one of the following values:
{−14.4413,−0.3420, 30.4857}.

The two solutions to the two-bus power flow model can
be obtained by testing each of the 9 possible combinations
of Vd2 and Vq2 in the power flow equations (31) and (32).
The two combinations of voltage components that satisfy the
power flow equations areVd2 + jVq2 = 0.9397− j0.3420 and
Vd2 + jVq2 = 0.1103− j0.3420.

The high voltage solutionVd2 + jVq2 = 0.9397− j0.3420
is equivalent to the1.0 6 −20◦ per unit voltage specified in
the double-cage induction machine example in section II-C.
The input power of 2.5 per unit at bus 2 is also identical
to the induction machine example. Thus, the dynamic power
system simulation initialization problem can be completedfor
all devices connected to bus 2 by specifying the reactive power
supplied by the capacitor. Assuming the induction machine is
operating at the high-speed, stable solution 4 in Table III,the
reactive power consumption of the machine is determined from
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(16) to be 2.161 per unit. From (17), the capacitor must supply
the difference between the value of reactive power injection
Q2 required by the the power flow model,−1.401 per unit,
and the reactive power consumed by the induction machine:
Qcap = 2.161− (−0.180) = 2.342 per unit reactive power.

D. Discussion

The multiparameter eigenvalue formulation of the power
flow model enables future advances in eigenvalue theory to
benefit power systems research. Further developments in direct
solution techniques for multiparameter eigenvalue problems
may enable the determination of all solutions to the power flow
model for power systems with more than two buses. However,
it is important to note that much of the existing multiparameter
eigenvalue research has focused on limited problems, such as
restrictions to Hermitian matrices or definiteness requirements.
The matrices resulting from the power flow equations do not
have these properties. Therefore, future developments in direct
solution techniques for multiparameter eigenvalue problems
must not be dependent on special matrix properties in order
to be applicable to the power flow model.

The multiparameter eigenvalue formulation of the power
flow equations may still prove useful even if relevant direct
solution techniques are not developed. For instance, discovery
of an upper bound to the number of real solutions of a
multiparameter eigenvalue problem would be useful for the
continuation power flow method [11]. Given an initial solution,
the continuation power flow finds multiple solutions to the
power flow equations by tracing from one solution to the
next. The tracing method varies a single parameter, such as
the active power injection at a bus, until a new solution is
found. The continuation power flow may continue tracing
after actually finding all solutions. An upper bound on the
number of real solutions provided by future advances in
multiparameter eigenvalue theory would offer the continuation
power flow a stop condition to prevent unnecessary tracing.

The future discovery of conditions for the existence of
real solutions to multiparameter eigenvalue problems is an
additional advancement in multiparameter eigenvalue theory
that has the potential for practical application to the power
flow model. The power flow model under some operating
conditions, particularly when the system is heavily loaded,
may not have any real-valued solutions (since the power flow
equations in rectangular coordinates are derived by separating
the real and imaginary parts of the complex power injections,
physically meaningful solutions for the voltage components
must be real). On the other hand, solutions to solvable systems
may not be found due to convergence problems inherent to
numeric solution codes. If a solution is not found, engineers
may be uncertain of whether there truly are no solutions or
if the numeric code is not converging to a solution that does
in fact exist. Conditions for the existence of real solutions
to multiparameter eigenvalue problems would eliminate this
uncertainty. Also, for some purposes, such as determining the
locations of bifurcations, the details of a solution may notbe
particularly important; it may be sufficient to simply determine
whether any real solutions exist for a given power flow model.

With future research into conditions for the existence of real
solutions, the multiparameter eigenvalue formulation of the
power flow model could play a role for these purposes as
well.

IV. CONCLUSION

The induction machine initial conditions model has been
reformulated as a generalized eigenvalue problem that can
be solved using standard linear algebra techniques. The rotor
speed can be obtained from the eigenvalue and the stator
and rotor currents can be obtained from the eigenvector. The
torque is a function of the currents and can therefore be
directly determined after solving the eigenvalue formulation.
In contrast to traditional iterative methods, the eigenvalue
method has the advantage of providing all solutions to the
initial conditions model and can reliability determine when
no solutions exist. We found this tremendously useful for
certain research problems in which knowledge of the multiple
solutions is important [19]. This paper has developed the
eigenvalue formulation for a double-cage induction machine
model and has given a numeric example.

The power flow model was formulated as a multiparam-
eter eigenvalue problem. After introducing this formulation,
expressions for the eigenvectors were derived. The two-
parameter eigenvalue formulation can be solved directly using
the Kronecker product method for two-bus systems with both
PV and PQ buses. This method converts the two-parameter
eigenvalue formulation into a set of generalized eigenvalue
problems that must be simultaneously satisfied.

The multiparameter eigenvalue formulation of the power
flow model enables advances in multiparameter eigenvalue
theory to contribute to power system engineering knowledge.
Specific advances that would be beneficial include the de-
velopment of general solution techniques for multiparameter
eigenvalue problems with more than two parameters, a method
for determining the number of real solutions, and conditions
for the existence of any real solutions to multiparameter
eigenvalue problems.

APPENDIX

The∆0, PV , ∆1, PV , and∆2, PV matrices for the two-bus
system with a PV and a slack bus are given in (56), (57), and
(58).

∆0, PV =






























0 G22 0 −G22 0 0 0 0 0

G22 0 0 0 G22 0 0 0 0

0 0 0 0 0 −G22 0 0 0

−1 0 0 0 −1 0 0 0 0

0 1 0 −1 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0































(56)
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∆1, PV =






























0 −a 0 0 −b −V 2

2 G22 0 P2 0

−a 0 0 −b 0 0 P2 0 0

0 0 0 −G22 0 0 0 0 0

0 0 −V 2

2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0































(57)

∆2, PV =






























a 0 V 2

2 G22 b 0 0 −P2 0 0

0 −a 0 0 −b 0 0 P2 0

G22 0 a 0 0 b 0 0 −P2

0 0 0 0 0 −V 2

2 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

−1 0 0 0 0 0 0 0 V 2

2

0 1 0 0 0 0 0 0 0

0 0 −1 0 0 0 1 0 0































(58)

For notational convenience,a = G21Vd1 −B21Vq1 andb =
B21Vd1 +G21Vq1.
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