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Abstract—Initializing internal variables in dynamic power model is used to determine steady state values of the active
system simulations is a two-stage process. First, a power Wo power (P), the reactive power(), the voltage magnitude
model is used to find the steady state bus variables. Second,(v) and the voltage angles at each bus. Second, the
values for the internal variables associated with bus conreed . .° o . . ’
components are determined such that the components’ termd initial conditions for the mFernaI variables of all conned
values match the bus variables calculated from the power flow Components are set to their steady state values such that the
model. Initializing most components’ variables is a straigtfor-  terminal values of the models match the valuesfQ, V,
ward, direct process. However, initializing induction madine and¢ obtained from the power flow model. Since initialization
vanable; traditionally uses an |nd|rect,.|terat|ve process. In t.hIS of other components is generally direct and straightfodwar
paper, eigenvalue formulations are detailed for both the inluction . . . . .
machine initialization and power flow models, which provide We focus on Inducthn ma(_:h'nes' ApprOp”ate choice of the
a direct method for determining all possible sets of inductn internal states of the induction machine model match bath th

machine initializations and offer a novel model for the powe machine’s active power and voltage to the bus values that are

flow equations. obtained from the power flow model (i.e. in this initializai
Index Terms—Power system simulation, Eigenvalues, Power @pproach, machine slip is calculated rather than speciffet)
flow, Induction machines additional capacitor is added at the bus to match the reactiv

power input to the machine with the reactive power obtained

from the power flow analysis [7], [8, p. 627].

. . _ . _ There are existing solution techniques for both stageseof th

D YNAMIC S|mglat|ons are essential to engineering anafyitia| conditions problem. For a textbook treatment on pow
ysis of electrical power systems. These simulations afi§,, models, including several standard solution techrique

ysed ir_1 'O”Q'te”“ plgnning a_nd design envirc.mme.nts a€auss-Seidel, Newton-Raphson, etc.), see [8]. Therelbas a
increasingly in operational environments to facilitateifite been significant research attention to the problem of finding

power mterchange; [1]. Dynamic S|mgla_1t|ons are requined fall solutions to the power flow model. [9] uses analytic tools
anticipatory anal_ys!s, _SUCh as determining V(_)Itage andepomfrom topology and geometry to determine bounds on the
flow operational limits in order to ensure transient stagiand ey of solutions and the stability of solutions in a less!
in post-mortem analysis of blackouts. Power ﬁysztem stabillyoryyork of PV buses. [10] generalizes this analysis to lossy
IS a ”_‘?JF’rl.tOP'CJ” power engineering re.sealrc- [ ]__[,5]' systems of PV buses. Continuation power flow algorithms
To |n|t|a|ze§1 ynamlglpowers.y_stem simu atlpn, Itls NeCesnat can find multiple solutions to the power flow equations
sary to determm_e the |_n|t|al conditions of all devices cected were published in [11] and [12]. Other solution techniques
_to the_ system, |_nclud|ng synf:h_ronous Qe_’?eratorsa'_oad*' 3Br the power flow equations have also been attempted, such
induction machines. Det_ermlmr_lg the initial conditionsr foas a biologically inspired ant colony algorithm in [13] and
synchronous generators is straightforward [1]. Load mode] genetic algorithm [14]. To our knowledge, none of the

for dynamlc simulations are continually under develo.pmergxisting literature formulates the power flow model in terms
See, for instance, the most recent WECC composite |°ijeigenvalue problems

model, \1vh|chdconta(|jns several induction mc_)tlc_)r mtcj)dels andA common approach for matching the active power and
static voltage dependent components [6]. Initializatibmost 506 at the induction machine terminals to the values

components in the composite load model is straightforwargbtained from the power flow model uses iteration on the

Initializing induction machines, however, is a more Complemachine’s slip. This approach is used in such software as

iterative process. Induction machines are particularfyanant Positive Sequence Load Flow Software (PSLF) [15, p. 963],
devices since they comprise a significant portion of the lo%wer System Simulation for Engineering (PSS/E) [16, p. 20-
at many buses [7]. For each induction machine connectedlt& and PowerWorld [17]. (Note that other software, such
a bus, the initial conditions of the machine model’s intdarn%ls Electro-Magnetic Transients Program (EMTP) [18, p. 9-

state variables rrr]lus_t be |Obta'g,e_d' or d _ 19], initializes induction machines by specifying machine
Determining the initial conditions for dynamic power Sys'slip and calculating active and reactive power demandss Thi

tem simulations is a two-stage process: first, a power ﬂoﬁﬁ’)es not require iteration and is straightforward; it is,not
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Engineering. molzahn@wisc.edu, lesieutre@wisc.edu iterative approach is that at most one solution is obtainieelinv

I. INTRODUCTION



multiple solutions are often possible. For general purppos®f multiple solutions. 2. Finding all solutions ensurest ttie

the highest speed stable solution is sought; however, foymalesired solution can be selected. The single solution ddai
research purposes, studies can focus on other solutions. ffom traditional iterative methods does not guarantee ttiat
instance, extending work in bifurcation theory [3], [5] toobtained solution is in fact the desired solution. 3. In casit
incorporate load models requires multiple solutions to the traditional iterative methods, the eigenvalue formaolat
induction machine initial conditions problem [19]. explicitly indicates when no solutions exist.

Our first contribution is a generalized eigenvalue formula- Our second contribution is a multiparameter eigenvalue
tion for the induction machine initial conditions model.-Asformulation of the power flow model. The power flow model,
suming linear magnetic relationships between machine sluxecluding active power, reactive power, and voltage magtst
and currents, the steady state electrical equations fointhe equations, is reformulated as a multiparameter eigenvalue
duction machine model are linear in the electric variable$ aproblem. The orthogonal andq components of the voltages
contain a machine speed multiplicative nonlinearity (de® tat each bus serve as the eigenvalues in this formulation. The
single multiplicative nonlinearity inv,. in equation (1)). The eigenvectors are also composed of these voltage components
rotor speedv,. serves as the eigenvalue in our formulation. Th€he two-parameter formulation of the power flow equations
eigenvector is composed of the machine electrical varsabl®r two-bus systems can be solved directly by decomposing
(currents in this formulation). Once these are determitieel, the problem into two generalized eigenvalue problems that
torque equation is used to initialize the model's mechdnicaust be simultaneously satisfied. Sineéus systems require
torqgue model. This paper uses a double-cage induction n2gn — 1) parameter eigenvalue problems, which do not yet
chine model; a single-cage model is reported in our previobave a general solution method for> 2, the power flow
work [20] (double-cage models have been found to be welhodel for systems with more than two buses is not yet directly
suited for aggregate motor load models [21]). This eigarealsolvable from the multiparameter eigenvalue formulation.

approach has the advantage of providing all solutionslestab Gijyven the limited ability to solve multiparameter eigeml
and unstable, and can reliably determine when no solutioggplems, this second contribution is mainly of theordtica
exist that satisfy the terminal constraints, identified b t jnterest at this point. It does not offer an advance in the
absence of finite real eigenvalues. ability to solve the power flow equations. Future developtsen
The eigenvalue formulation has immediate practical value multiparameter eigenvalue theory may provide additiona
to researchers who study power systems under a wide ramgg@ghts into solutions of the power flow equations. For in-
of conditions. The advantages of the eigenvalue formulatigtance, general solution techniques for multiparametgerei
over traditional iterative methods include 1. Certain a#sk value problems with more than two parameters may enable
applications, such as determining stability margins aral tllirect solution of the power flow equations. A method for
distance to bifurcation points [3], [5], require the detaration determining the number of real-valued solutions to muttipa
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rameter eigenvalue problems would be useful as a stoppig shown in (4). The stator currentds = I4s + jlgs, the
condition for continuation power flows [11]. Conditions ke rotor currents ard,; = Ig1 + jlg1 and o = Igro + jlgro,
existence of any real solutions to multiparameter eigemvaland the stator voltage B, = Vy, + j V.

problems would be useful for finding the point of voltage

collapse and for analyzing power systems in heavily load€ds Rs+j(Xis + Xm)  jXm JXm

conditions. Such advances await future developments in mthO] = <[ JXm  Bri4i (X1 +Xm)  jXm ]

tiparameter eigenvalue theory. Here we present the fotionla L0 JXm JXm Rra + 5 (Xir2 + Xim)

and analyze a small system for which existing multiparamete . 0 0 0 I

techniques suffice. + w— [—ij =3 (X1 +Xm)  —jXm ] ) [17-1] 4
We first focus on the induction machine initial conditions Ll-iXm —JXm  —j (X2 + Xm) Ira

model. A dynamic model for a double-cage induction ma- The equivalent circuit representation for (4) is preserited
chine adapted from [22] is presented. Next, our eigenvalggy 1 wheres =1 — <=,

formulation for the induction machine initial conditiondel :
is derived and applied to the double-cage machine model. R X,
S

A numeric example and discussion is presented. We then O_/\/\S/\/I;_/WY\
focus on a multiparameter eigenvalue formulation of the grow

flow model. After presenting this formulation, we derive ¥

| |
expressions for the eigenvectors, provide a direct saiubib : : Xi2
the formulation for two-bus systems, and discuss the piaient | |
benefits of this formulation. s | | I
| |
1. AN EIGENVALUE FORMULATION OF THE INDUCTION I I R
| |

MACHINES INITIAL CONDITIONS MODEL -
A. Dynamic Double-Cage Induction Machine Model o

A dynamic double-cage induction machine model in dhge
frame with linear magnetic relationships and short-chexi
rotor windings is adapted from [22]. The double-cage maghif
model is commonly used to represent the deep-bar effect and
is similar to the single-cage induction machine model with a In steady state, shifting the angle of the stator voltegby
additional rotor circuit branch. The model is given in (13),( ¢ shifts all the currents by the same angl€This can be seen
and (3), wherev, refers to the electrical excitation frequencypy multiplying both sides of (4) by?°. Therefore, the input
and w, refers to the rotor speedX;, is the stator leakage complex powerP + j@Q = V I} is invariant to shifts in the
reactanceX;,1 and X, are the rotor leakage reactanc&s, stator voltage angle. We exploit this property in the method
is the mutual reactance®, is the stator resistance®,; and to follow.

R, are the rotor resistances, aflis the inertia constant of

the machine and mechanical 10dd, (w,) represents the load B, Ejgenvalue Formulation of the Initial Conditions Model

torque model, which has parameters whose values must bel'he dynamic double-cage induction machine model given

determ|_ned. AII_quantmes are given in per unit represtoia by (1), (2), and (3) fits into a more general induction machine
Consistent with common power system simulation packagg%

[15]-[17], machine core losses are neglected. A common amie model framework.

ig. 1. Double-Cage Induction Machine Steady State EcqemtaCircuit

representation of core losses involving a linear resi&8} ¢an dx

easily be incorporated into the induction machine modeh wit y=[A+wBlz+ Ca ()
no added complexity. However, over a wide range of possible 2H dw,

solutions, a linear resistance model of core losses may not w. dt Te (2) = T (wr) 6)

.be accurate. Negllecti_ng magnetic_ saturati.on aqd goreéqsseThiS model has the applied voltage contained in the vector
is common practice in system-wide studies with induction and stator and rotor currents contained in the vegtdrhe

machine _Ioad '_“Ode's [1_5]’ [16_]’ [24]. For such Iarge-scaf%tor windings are short circuitedA contains all terms that
system simulations, the induction motors serve as a coa

& not depend on the rotational s B contains all terms
representation of aggregate motor load. As this is interided P bead

i litative foat f th ; Haisd that do depend ow,., and C contains all terms that depend
capture qualitative features ot Ine system response, € on the derivative of the currents. The electrical portiorthef

.Of magnetic saturation and core losses are neglected. M%gdel (5) thus has a single multiplicative non-linearigmely
important, from a load modeling perspective, are assumsptio,

of motor mechanical load characteristics. Consequendly sal dependence as, .
: . " . ’ In steady staté<- = 0 and 42 = 0, and equations (5) and
uration and core losses are not typically included in syste{g) becomg a dt g ©®)
studies as they would be for detailed simulations of indieid
machinery. We discuss this further at the end of this section
The steady state electrical equations for the double-cage

induction machine model can be represented in phasor form Te (z) = Tin (wr) (8)

y=[A+wB|z @)



Matrices A and B are completely defined by the machinestandard eigenvalue form and solved with standard eigeaval
parameters. Since the phase angle of the applied voltage deehniques [25].
not affect the power consumption of the motor, we specify
the stator d-axis voltag&,;; equal to the magnitude of the ix =D !Bz (15)
bus voltagel” obtained from the power flow analysis and the Wy

stator g-axis voltagd’;; equal to zero. The voltage is then gjnce the eigenvectar can be arbitrarily scaled, rescaling
directed entirely in the d-axis. This specification is cotegl the eigenvector using the known value ff, from (9) is

at the end of the method by rotating the current angles by th&uired. Additionally, correction for the voltage anglérom
bus voltage anglé obtained from the power flow analysis.the power flow analysis is needed: rotate the current vector
Therefore, the voltage vectar in (7) is completely known. by ¢ after solving the eigenvalue problem.

SinceV;; is specified to be zero, the active power used by theThe solution to the electrical portion of the induction
machine isP = Vs 14,. The active power is also known frommachine model derived in this section will match the active
the power flow analysis, so the d-axis current can be direcﬂbwer input to the induction machine with the value Bf

determined: obtained from the power flow model. However, the reactive
Iy = il (9) Ppower input to the induction machine will not generally niatc
Vas the value of reactive powep delivered to the bus obtained

With predetermined values d?, Q, andV, from a power from the power flow model. As discussed previously, a shunt
flow model and specified machine parameters, it is not passilsapacitor at the machine terminals gives an additionaletegr
to satisfy all terminal conditions using only induction rhae  of freedom that is used to enforce reactive power balance at
variables. In other words, with fixed values Bf and given the bus [7], [8, p. 627], [15, p. 963], [16, p. 20-16], [17].&h
machine parameters, there are not sufficient degrees of fresactive power consumed by the induction machine is
dom to specify both the active powét and reactive power
@ at the machine terminals. It is common practice to enforce Qumachine = Vyslas — VasIys (16)
reactive power balance at the bus using a shunt capaci®r (se
[7] and [8, p. 627] for further discussion and [15, p. 963p,[1  The necessary reactive power injected by the capacitor can
p. 20-16], and [17] for commercial software implementasiorthen be determined.
using an additional capacitor). Thus, (9) does not depend on
the reactive powe€). Qecap = @machine — Q a7

The machine model can be put into the form of an eigen- ) ) ) ) ] ]
value problem by combining the known voltage vector and the After solving the electrical portion of the induction maci

known matrix A.. First rewrite the voltage vectay as model to obtain the currents and the rotor spegd the
mechanical portion of the model (2), (3) is solved to inizial

Vs | [Vas] [RAT the load torque model. This requires specification of thel loa

Igs .
0 8 0 torqgue modelT;, (w,). A load torque model used in many
0 0 0 common power system simulation packages [15], [16] is given
— — Iy, = Iis 10) by
Y 0 0 d 0 d (10)
0 0 0 T (W) = Tp - (wy)” (18)
0 0 0

. T T - ~ WwhereTj is the parameter that requires initialization and
where, using (9)/24 is specified in terms of known terminalis a specified constant that is selected based on the type of

quantitiesV” and P. mechanical load being driven by the induction motor. Other
Vas V2 load torque models may be required for specific systems [16,
Ra= Tsa P (11)  p. 20-19]. The induction machine initial conditions mode! i

completed by using (8) and (18) to determine values for the
load torque model parameters.
We conclude this section by showing that all solutions to

Then define the matriD as

-D=- fla ] O +A (12) the induction machine initialization problem can be obtain
010 by solving the generalized eigenvalue problem (14). The
and rewrite (7) as derivation in this section has made no mathematical approx-
imations, and thus solutions to (14) are indeed solutions to

—Dz+w,Bz=0 (13) the induction machine initialization problem. A finite nuatb

of eigenvalues exist foregular (as opposed tcsingular)
generalized eigenvalue problems. Furthermore, robuséscod
exist for solving regular generalized eigenvalue probl§b$,
[26]. The generalized eigenvalue problem (14) is singdlar i

The formulation (14) can be solved with generalized eigen-
value solution techniques or, I is invertible, converted to det (D —w,B) =0 (29)

or, in a well-known generalized eigenvalue form

Dz = w,Bz (14)



for all values ofw, (i.e. all values ofw, are eigenvalues of for all values ofc. The permutation matriXJ gathers the even
(14)). Otherwise it is regular [26]. We now show that thend odd rows and columns of the mat(i® — w,.B) in order
generalized eigenvalue problem (14) is regular. to emphasize the structure of this matrix, which we exploit i
Physically meaningful choices of the machine parametdte remainder of this section.
require strictly positive reactances,, X,,, X1, X2 and Define G; (c¢) as the minor formed by eliminating the first
resistances,, R,1, R,2. Although R4 has the same units asrow and first column ofG, (¢). Then (21) can be rewritten as
a resistance, it does not represent a physical resistailoesan
be either positive, when the machine is operating as a motor, c*det (G (¢)) + c*Radet (G1 (c)) =0 (22)
or negative, when the machine is operating as a generator.
The matrixB is singular, and, depending on the value of
R4, the matrixD may be either smgular or invertible. The det (G (c))
matrix D is singular whenR 4 = d:tt(A where the matrix Ra= _m (23)
A is defined in (5) and the matriA, |s ti1e minor formed by
eliminating the first row and first column oX.
If the matrix D is non-singular, inverfD to obtain the
standard eigenvalue form (15). The generalized eigenvalug, (¢) =
problem (14) is regular for the case of non-singdaf26]. -

Assuming non-zera, (22) holds when

Gy (¢) can be rewritten as

: . . 0 0 X, X,, Xn
For the case of singulaD, the generalized eigenvalue
problem (14) is regular iflet (D — w,.B) # 0 for some value 00 0 0 0
of w,. To show this condition holds, consider a permuted| —Rs 0 0 0 O 0 0
version of the double-cage machine model given in (1) wher G (¢ + ~X. 10 0 o0 0 0
the even and odd rows and columns of the matrix are gathere X, 10 0 o0 0 0
to emphasize the structure of this matrix. Application tbest
induction machine models follows from these same arguments L =X |00 0 0 0 J
Define the matrixG, as a function ot (24)
SinceGj (c¢) is negative definite, it is invertible. The matrix
- _R, 0 0 X, X, X, 7 determinant lemma [27] can therefore be used to rewrite
Ry det (Go (c)) as
“fm 0 X, X1 X
Go (c) = 0 e Xm X Xz det (Go (¢)) = —Rqdet (G (c)) det ({ Lo }
T X, -X, -Xm —R, 0 0 ) 0 1
X X1 X ~Ea 0 -
¢ R 0 0
L —Xm —Xm —Xz 0 0 -7 1000 0 0 L 0 0 0
20)  *1 000 x X Xm}{ 06|G1(C)1} X, 0
wherec =1 — w,, X; = Xjs + X, X1 = X;p1 + X, and Xm0
Xy = Xpa + X, Xm0
From a permuted form of (19), the generalized eigenvalue  _ _p 4.t (G, (c)) det ([ . . ., D (25)
problem (14) is singular if ' Gi(c) 1
wherez = [0 0 X, X, XW}T
det (UT (D - w,B) U) Simplifying and substituting (25) into (23) gives
Ra 00000 Ra=Ry—a2"G1 () e (26)
0 000 0O _ . _ _ . o
0 000 0 0 Slqcex G (¢) z is a function ofc, ' G (¢)” "z is als_o a
= det function of ¢. Thus, (26) shows that the value 8f4 required
0 00000 for the generalized eigenvalue problem (14) to be singslar i
0 00 0 0O function of c. SinceR 4 is only dependent on the input power
0 00 0 0 0 P and terminal voltage magnitudé as shown in (11),R4
i 1 0000 0 - is a fixed value for a given induction machine initialization
problem. Therefore, the singularity condition (19) does no
0 c 0000 hold for all values ofw, and the generalized eigenvalue
0 0Oc O0O problem (14) is regular.
T 00010 0 Go(c) | =0 (21) Regularity implies that (14) has a finite nhumber of eigen-
0000 ¢ 0 values. Robust codes exist for solving regular generalized
eigenvalue problems [25], [26]. For physically meaningful
L0 0 0 0 0 ¢ machine parameters, the matrB has a two-dimensional




Xls Xlrl Xlr2 Xm
0.0572 | 0.1479 | 0.0572 1.9860

nullspace. The generalized eigenvalue problem (14) wélteh
fore have at least two infinite valued eigenvalues. Theseifafi

. - . Rs R R ; (rad/
valued eigenvalues are not physically meaningful and can be 5 0850 5 01123 5 11229 Ys g% gec)
neglected. The finite eigenvalues and associated eigemgect ABLE |

correspond to the physically meaningful solutions of the DOUBLE-CAGE INDUCTION MAGHINE EQUIVALENT CIRCUIT

induction machine initialization model. Since the derivat PARAMETERS

in this section has made no mathematical approximations,

solving the generalized eigenvalue problem (14) will pdevi

all solutions to the induction machine initial conditionsdel. P | Vin g
Additionally, assumingD is non-singularD—!B in (15) 25| 10 | —20°

has at most rank four for the double-cage machine model. TABLE Il

Therefore, the largest possible factor in the eigenvalia-ch POWERFLOW PARAMETERS

acteristic equation for the double-cage induction machine

model is a fourth-order polynomial. Hence, the eigenvalue

formulation can be non-iteratively solved using the edurati From this data, (9) shows thag, — 2.500 and (11) shows
for roots of quartic polynomials as given in [28]. This may benat R, = 0.400. D can then be oObtained from 528;.
convenient for codes in large-scale simulation programs.

0.395  2.043 0 1.986 0 1.986
—2.043 —0.005 —1.986 0 —1.986 0
C. Double-Cage Induction Machine Numeric Example D= 0 1.986  —0.012  2.134 0 1.986
—1.986 0 —2.134 —0.012 —1.986 0
AssumeV;,, is obtained from a power flow analysis. Specify 0 1.986 0 1.986 —0.113  2.043
Vas = Vi, andVy, = 0. The matricedB andD are —1.986 0 —1.986 0 —2.043 —0.113
Solving (14) gives four finite solutions faw, (the two
B= infinite eigenvalues are artifacts of the generalized eiglee
0 o0 0 0 0 0 specification). The eigenvectar was scaled such that the
0 0 0 0 0 0 entry corresponding td,, is equal to its known value of
1 0 Xm 0 (Xip1 +Xm) O Xm 2.500. After scaling the eigenvector, the currents were ro-
ws | =Xm 0 —(Xpp1 + Xm) 0 —Xm 0 tated byd. This was accomplished by calculating the vectors
0 Xm 0 Xom 0 Xzt Xm)| I = (Lar + jli) e’ for k = {s,r1,72}. The rotated d-axis
—Xm 0 —Xm 0 —(Xp2+Xm) O o currents correspond to the real parts/pf and the rotated g-

axis currents correspond to the imaginary partg;ofFinally,
torque was calculated using (3).
The solutions for,. in radians per second and the currents

D= and torque in per unit are presented in Table Ill. Note that
(Ba - Rs) X 0 Xm 0 Xm four solutions are acquired rather than the single soluttia
X —hs —Xm 0 —Xm 0 would be obtained from an iterative method. Directly obitain
0 Xm “Rrr - (X + Xm) 0 Xm all solutions is an advantage of this method over tradiiona
Xm0 =X+ Xm) R —Xm 0 iterative methods. Solutions two and four are stable, while
0 Xm 0 Xm ~frz (Xir2 + Xl golutions one and three are unstable. The high-speedgestabl
—Xm 0 —Xm 0 —(Xr2+ Xm) —Rr2

solution four is presented in bold. Stability was deterrdibg
calculating the eigenvalues of the Jacobian of the linatidn

of the induction machine equations (1), (2), (3) [29]. Aljen-
values for stable solutions had negative real parts, weeata
Gfeast one of the eigenvalues for each unstable solution had a
positive real part.

(28)

Now w, and the currents in can be found by solving (14).
Note that the eigenvectarmust be scaled correctly. Since th
first entry of z should bel;;, scaling is done by multiplying
each entry in the eigenvectar by I, divided by the first

entry of x. :
C id doubl inducti hi ith th Solution 1 2 3 4
onsider a double-cage induction machine with the param- wr (1) | 4862 | 187.7 | 3315 | 3603
eter values in per unit repre;entauon given in Table I. €hes T 5062 | 2205 | 2375 | 2.445
parameter values were obtained from the 37 kW double-cage Tas 0.736 | 0333 | 0869 | 1.610
machine in Table 2 of [22]. Assume that the per unit values in Iys -9.332 | -6.395 | -4.922 | -2.886
Table Il are obtained from a power flow analysis. An example Lary 1610 | 1.542 | -0.381 | -1.524
power flow model that provides these values will be solved in Iqr 2828 | 4.125 | 4.158 | 2.328
Section 111-C Tiro -1.001 | -2.040 | -0.673 | -0.298
; _ Tqr2 6.298 | 1.982 | 0.434 | 0.172
Also consider a constant torque load model representing TABLE I

aggregated compressor loadin (18) is0 for this load torque
model, and thug;,, = T.

SOLUTION TO DOUBLE-CAGE INDUCTION MACHINE EXAMPLE



Double-Cage Induction Machine Torque vs. Speed Curve Double-Cage Induction Machine Input Power vs. Speed Curve
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Fig. 2a. Torque vs. Speed Curve and Solutions Fig. 2b. Input Power vs. Speed Curve and Solutions
The torque versus Speed curve for this machine is giv‘ Simulation of Fault at Induction Machine Terminals

T T T T T T T

in Fig. 2a. Torque-speed curves with shapes similar to t
curves in this figure, with increasing torque near zero spet
are common (see, for instance, the NEMA Class C torqu
speed curves in references [23, p. 346] and [30, p. 337], a
the discussion in [31, pp. 287-289]). Solution 2 in Table I

is in this portion of the torque-speed curve. This solutio §250

is not a mathematical artifact; it is a stable operating poi 3 200k b

for the induction machine. To show the existence of suc =

solutions, consider a dynamic simulation of the inductio §15()» ]
n

machine initialized from the high-speed, stable solution
performed using PowerWorld [17] as shown in Fig. 3. On 100 : : 1
second into the simulation, a balanced three-phase fault

applied for 0.25 seconds at the machine terminals. Note tl 50F ]
the machine does not return to the high-voltage, stablgisolu

4 after the fault clears. Rather, the machine operates abéest % o5 1 15 2z 35 3 35
lower-speed solution. (This solution is not the same agisolu Time (sec)

2 in Table Il since the reactive power demand at the machine
terminals for solution 2 does not match the value of reactivé. 3. Simulation of Fault at Induction Machine Terminals
power supplied from the initialization using solution 4.)
Changing the power flow parameters may reduce the num-
ber of real solutions. For instance, increasinig from 1.0 to
1.10 per unit will result in two real and two complex solutson
Since the machine speed must be real-valued, the complex
solutions are not physically meaningful.

While power engineers are accustomed to induction maeglecting core losses and magnetic saturation. A linear re
chine torque vs. speed curves, this example also benefits freistor representing core losses could be incorporatedtfiigo
investigating the input power vs. speed curve given in Figormulation, but this representation may not be accurate fo
2b. It is clear from Fig. 2a that the input power for thex wide range of solutions. More detailed representations of
solutions is equal to the specified value of 2.50 per uniore losses and magnetic saturation could be handled using a
Resisitive losses comprise an increasing proportion offjhet  jterative approach: solve the model assuming linearity ssel
power as the speed decreases. In fact, with positive tonggie ghe solution to update the machine parameters, accourging f
negative speed, resistive losses in solution one requite beore losses and magnetic saturation. lteration is tyyicadt
mechanical and electrical input power. This unstable, e@a necessary for system-wide studies where errors introdbged
speed solution may not be physical; data are not collectedrigglecting saturation and core losses are negligible coedpa
[22] for the negative portion of the torque-speed curve.  to uncertainties in other parameters, such as those in #tk lo

Note that the solutions in Table Il were obtained byorque models.



I1l. A M ULTIPARAMETER EIGENVALUE FORMULATION OF
THE POWER FLOW MODEL

A. Introduction to the Power Flow Model

The power flow model relates the active and reactive pow;
injected at each bus to the voltage magnitude and angle lat e
bus. There are four variables associated with eachibtrse
net active power injectioni(;), the net reactive power injection

(Q.), the voltage magnitudéf) and the voltage angle,).

While many derivations of the power flow model us 33). The resulting values df;;
the voltage magnitud®; and voltage anglé, directly, we ' .
decompose the voltages at each bus into orthogdnahd

While (31), (32), and (33) must all be satisfied at all buses,
only two equations are directly enforced at each bus when
solving the power flow model. There are three bus types in
the power flow model: PQ, PV, and slack. PQ buses, which
ically correspond to loads, enforce the active and react
wer equations (31) and (32). The resulting valueggfand
Vg are used to determine the voltage magnitigléom (33).

PV buses, which typically correspond to generators, eeforc
the active power and voltage magnitude equations (31) and
andV,; are used to determine
the reactive powef); using (32). Finally, a single slack bus

is specified to provide active and reactive power balance. Th

g components. Decomposing bus voltages into orthogo%ck bus has specified valueslgf andVy;. The active power

components is often done when convenient [32]-[34].

Vai = Vi cos (6;) (29)
The power flow model can be defined as
P =V Z (GitVar — Bir Var) + Vi Z (Bit Vak + Gie V)
k= e
1 1 (31)
Qi = Vy Z (=BitVar — Gie Var) + Vg Z (GikVar — Bix Vi)
k= e
1 1 32)
Vi = Vi + Vg (33

P;, reactive poweK);, and voltage magnitud®; at the slack
bus are determined from (31), (32), and (33).

B. The Power Flow Equations Formulated as a Multiparam-
eter Eigenvalue Problem

The k-parameter eigenvalue problem combinesigen-
values andk equations into a single problem. The right
parameter eigenvalue problem can be represented as in (34),
where); is a scalar eigenvalud/l;; is a matrix, andr; is an
eigenvector.

k
Mo+ > AMy; | 2 =0, i=1,....k

j=1

(34)

The power flow equations are next described in a multipa-
rameter eigenvalue form. Each bus contributes an additiona

whereY = G + jB is the admittance matrix relating thetwo voltage parameters. Equations (35), (36) and (37) ae th

voltages and currents.

power flow equations presented in multiparameter eigeevalu

0 0 —-P Gii 0 0 0 Gy O
0 0 0 |+Vu| 0 -1 0[4+Vu|l 0 0
-1 0 0 0 0 1 0O 0 O
Git Bir 0 —Bix Gir 0 1 0
+ ) {de 0 0 O|+Vy| O 0 0 z9;| = |0 (35)
k=1,...n ki 0 0 0 0 0 0 Z3; 0
0 0 —Q —-B; 0 0 0 —-By 0
0 0 0 + Vi 0 -1 0| +Vy |1 0 0
-1 0 0 0 0 1 0 0 0
—Bix G 0 —Gir —Bix 0 Yii 0
4 Z Vs 0 0 0O +Vg 0 0 0 Yoi| = |0 (36)
k=1,...,n ki 0 0 0 0 0 0 Y3i 0
0 0 —V? 1 0 0 1 0 w14 0
0 0 0 |+Vul0 =1 0] +Vy |1 0 of | |wul|=1]0 (37)
-1 0 0 0 0 0 0 0 wWs; 0



form for bus: and correspond to (31), (32), and (33), respec- The power flow model for two-bus systems can be easily
tively. solved using many existing solution techniques [8]. In [fact
The eigenvalues of the multiparameter eigenvalue formselutions to two-bus systems can be expressed explicitly.
lation can be easily recognized as thg and V, voltages. Solving the power flow model for two-bus systems with
Expressions for the eigenvectors can be obtained by expandhe multiparameter eigenvalue formulation has no numkrica
the second and third rows of the corresponding multiparameadvantages over existing technigues. This section is dietgn
eigenvalue equation and examining the relationships twdo demonstrate the validity of applying multiparameteregig
the elements of the eigenvector. For instance, the secathd &alue solution techniques to the power flow model. Future
third rows of the multiparameter eigenvalue formulatiorire advances in multiparameter eigenvalue theory may enable
active power equation (35) are application to larger systems or give other insights inte th
power flow model. This is discussed further in Section IlI-D.

Vi Since the matrices used in the power flow equations (35),
—Vaitai + Vogizri =0 = 22 = ﬁxu (38) (36), and (37) are smalBf 3), the Kronecker product method
11 described in Chapter 2 of [37] can be used to solve the
—21 + Vaixsi =0 = x3i = v, i (39) power flow model for two-bus systems. This method converts
) . & a two-parameter eigenvalue problem into a set of genedhlize
Thus, the eigenvectar; can be rewritten as eigenvalue problems. Consider the two-parameter eigeaval
problem described in (43) and (44), whekg and )\, are
T1i 1 Vai eigenvalues and; andz, are eigenvectors.
T = “;qi.xli =21 | Vi (40)
di Vii
%ﬂxli 1 Aoz + MA1x1 + XMAsx; =0 (43)
Since eigenvectors have a single degree of freedom in
their magnitude (ifv is an eigenvector, thenv is also an Bozz + MiBizs + A2Bozz = 0 (44)

eigenvector for scalad # 0), assumingVy; # 0 andzq; # 0,

(40) can be rewritten as (43) and (44) can be rewritten using the Kronecker product

method as two generalized eigenvalue problems.

Vai
T, = ‘/qz (41) Az = MAyz (45)
1
. . i i AQZ = )\QAOZ (46)
Since the second and third rows of all right multiparameter
equations are identical, (35), (36), and (37) have idehtiGghere
eigenvectors
Vi A=A ®By - A ®B; (47)
h A =ABy)—Ay® B> (48)
_ _ A=A B; —A; ®Byg (49)
C. Direct Solution for Two Bus Systems
The theory of multiparameter eigenvalue problems is not as z =11 ® T (50)
mature as the theory of other eigenvalue problems. Much of
multiparameter eigenvalue theory assumes thaMhgematri- The Kronecker product is denoted By See [28] for further

ces are Hermitian or that the matr >Mio+Zf:1 A My discussion on the Kronecker product. The solution to the

is left or right definite. For instance, the books [35] an ][3éwo-parameter eigenvalue problem can be obtained from a

work almost entirely with Hermitian multiparameter eigen§imultaneous solution of (45) and (46). Applying this to @iw

value problems. The multiparameter eigenvalue formutedio bus power system, where bus 1 is the slack bus with known

the power flow equations is neither Hermitian nor left or tighvalue.s‘ 0];/‘“ agd V;ﬂ,_bus 2is a I.DQ .bus W|thdaﬁt|ve power
definite and thus cannot be analyzed with theory develop ction /% and reactive power injectio@s, and the system

for specialized forms of multiparameter eigenvalue protse has ?tZX2 admittance matriyy’ = G+;B, gives the following
However, multiparameter eigenvalue theory does enable firsyt
general solution of two-parameter eigenvalue problemseSi

each bus besides the slack bus has two degrees of freedom, the Az = VaalAoz (51)
number of parameters necessary to represent-bas power
system is2 (n — 1). Hence, two-bus systems with specified Aoz = VypApz (52)

slack bus voltage can be represented as a two-parameter
eigenvalue problem. where
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techniques for this category of problems were found in any
existing literature. Therefore, new developments in maki

A_O’ SQ iGmBm 0 GasBas 0 0 0 0 0 rameter eigenvalue theory will be needeq before directisoiu
of the multiparmeter eigenvalue formulation of the powewflo
Gz 0 0 0 Gz 0 0 00 model will be possible for practical size power systems.
0 0 0 0 0 =G»0 0 0 We next present a numeric example of the two-bus system
By 0 0 0 B» 0 0 0 0 shown in Fig. 4. This example completes the induction ma-
0 1 0 -1 0 0 0 0 0/} (53) chine initialization example given in Section II-C. Bus 1 is
0 0 -1 0 0 60 0 0 O a slack bus with known values dfy; and V,;, and bus 2
0 0 0 0 0 0 0 —-Bxno0 is a PQ bus with known values of power injectiofs and
0 0 0 0 0 0 1 0 O @2, as given in Table IV. The capacitor at bus 2 is used to
0 0 0 0 0 0 0 0 0 balance the difference in reactive power between the inaluct
machine and power flow models [7].
A ro = Var+ Y, Vir+ ¥,
[ 0 aBaz 0 —bGaa (anz +b322) —Q2G22 0 —P>Byy0] dir v J¥ql d2 T JVg2
—a 0 0 —=b 0 0 P 0 O
0 0 0 —Ga 0 0 0 0 0 a3 =
b a —Q2 0 0 0 0 0 0 —_
0O 0 O 0 0 0 0 0 O T
-1 0 O 0 0 0 0 0 O
0 —Bys 0 0 0 0 0 0 0 Fig. 4. Two Bus System
10 0 O 0 0 0 0 O
L 00 0 O 0 0 0 0 0 Vir | Vi 2 0
(54) 105 0 | -2500] 0.180
TABLE IV
Az pg = TwoO BUS SYSTEM SPECIFIEDPOWER FLOW VALUES
[ (—aBa2 + bG22) —aGaz Q2Ga2 —bB22 0 0 P2Bax 0 0
0 @ 0 0 =60 0 PO The transmission line is assumed to have impedance
G 0 a 0 0b 0 0-h 0.0050430.1433 per unit, or equivalently, admittan6e2432—
0 0 0 b a-Q 0 0 0 | 4609699 per unit. Thus, the system has an admittance matrix
0 0 0 0 0 0 0 0 0 given by
0 0 0 -1 0 0 0 00
Ba 0 0 0 00 b —als , 0.2432 — j6.9699  —0.2432 + j6.9699
0 1 0 0 0 O 0O 0 O Y=G+,B= . .
0 0 1 O 00 1 00 —0.2432 + j6.9699  0.2432 — j6.9699
(55

Using these values to solve (51) indicates that for any
and, for notational convenience,= G21Vy1 — B21V,1 and  solution to the power flow equation§y;; must take one of
b= Ba1 Vg1 + Ga1 V. the following values:{0,0.1103,0.9397}. Similarly, solving

Solving (51) and (52) provides the possible values fdb2) indicates thav,; must take one of the following values:
both V; and V,, respectively. To determine which pairs of{ —14.4413, —0.3420, 30.4857}.
eigenvalues are actually solutions to the power flow equatio The two solutions to the two-bus power flow model can
test each of the possible voltage combinatiolig,(V,2) in be obtained by testing each of the 9 possible combinations
the power flow equations (31) and (32). Voltage combination$ V;2 and V,, in the power flow equations (31) and (32).
that yield the specified values of active and reactive pow&he two combinations of voltage components that satisfy the
injectionsP; and@); are solutions to the power flow equationspower flow equations ar&; + jV,2 = 0.9397 — j0.3420 and

A similar process can be done for a two-bus system whevg, + jV,2 = 0.1103 — 50.3420.
bus 2 is a PV bus with active power injectioR, and The high voltage solutioVy, + jV,2 = 0.9397 — 50.3420
voltage magnitudd%. (51) and (52) must be solved, wherds equivalent to thel.0 / —20° per unit voltage specified in
Ap pv, Ay, py, andAq py are given in the appendix. Eachthe double-cage induction machine example in section II-C.
combination of eigenvalues must be checked in the powEne input power of 2.5 per unit at bus 2 is also identical
flow equations for active power (31) and voltage magnitude the induction machine example. Thus, the dynamic power
(33). Voltage combinations that satisfy these equatioasta system simulation initialization problem can be compleftad
solutions to the power flow model. all devices connected to bus 2 by specifying the reactivespow

Direct solutions for systems with more than two busesupplied by the capacitor. Assuming the induction machsne i
requires general solution methods for multiparameterreigeoperating at the high-speed, stable solution 4 in TablehH,
value problems with more than two parameters. No soluti@aactive power consumption of the machine is determined fro
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(16) to be 2.161 per unit. From (17), the capacitor must supplvith future research into conditions for the existence @fl re
the difference between the value of reactive power injacticolutions, the multiparameter eigenvalue formulation tod t
Q2 required by the the power flow modek1.401 per unit, power flow model could play a role for these purposes as
and the reactive power consumed by the induction machineell.

Qcap = 2.161 — (—0.180) = 2.342 per unit reactive power.

IV. CONCLUSION

D. Discussion . . D .
The induction machine initial conditions model has been

The multiparameter eigenvalue formulation of the powggformulated as a generalized eigenvalue problem that can
flow model enables future advances in eigenvalue theory 8@ solved using standard linear algebra techniques. Tioe rot
benefit power systems research. Further developmentseiotdirspeed can be obtained from the eigenvalue and the stator
solution techniques for multiparameter eigenvalue prolle ang rotor currents can be obtained from the eigenvector. The
may enable the determination of all solutions to the powev ﬂotorque is a function of the currents and can therefore be
model for power systems with more than two buses. Howevgfyectly determined after solving the eigenvalue formiotat
it is important to note that much of the existing multiparaene |, contrast to traditional iterative methods, the eigeueal
eigenvalue research has focused on limited problems, sicthfsthod has the advantage of providing all solutions to the
restrictions to Hermitian matrices or definiteness requéets. nitial conditions model and can reliability determine whe
The matrices resulting from the power flow equations do ngh sojutions exist. We found this tremendously useful for
have these properties. Therefore, future developmentsaotd certain research problems in which knowledge of the maltipl
solution techniques for multiparameter eigenvalue prosle g tions is important [19]. This paper has developed the
must not be dependent on special matrix properties in ordggenvalue formulation for a double-cage induction maehin
to be applicable to the power flow model. model and has given a numeric example.

The multiparameter eigenvalue formulation of the power The power flow model was formulated as a multiparam-
flow equations may still prove useful even if relevant direglig, eigenvalue problem. After introducing this formuwati
solution techniques are not developed. For instance, ¥8g0 eypressions for the eigenvectors were derived. The two-
of an upper bound to the number of real solutions of garameter eigenvalue formulation can be solved direcitygus
multiparameter eigenvalue problem would be useful for thge Kronecker product method for two-bus systems with both
continuation power flow method [11]. Given an initial sotuti  py/ ang PQ buses. This method converts the two-parameter
the continuation power flow finds multiple solutions to th%igenvalue formulation into a set of generalized eigeresalu
power flow equations by tra(_:ing fro_m one solution to thgroplems that must be simultaneously satisfied.
next. The tracing method varies a single parameter, such aghe myltiparameter eigenvalue formulation of the power
the active power injection at a bus, until a new solution ig, model enables advances in multiparameter eigenvalue
found. The continuation power flow may continue tracing,eqry to contribute to power system engineering knowledge
after actually finding all solutions. An upper bound on thgpecific advances that would be beneficial include the de-
number of real solutions provided by future advances {popment of general solution techniques for multiparamet
multiparameter eigenvalue theory would offer the contifi®  gjgenvalue problems with more than two parameters, a method
power flow a stop condition to prevent unnecessary racingor getermining the number of real solutions, and condition

The future discovery of conditions for the existence qf the existence of any real solutions to multiparameter
real solutions to multiparameter eigenvalue problems is &envalue problems.

additional advancement in multiparameter eigenvaluertheo
that has the potential for practical application to the powe
flow model. The power flow model under some operating APPENDIX
conditions, particularly when the system is heavily logded

may not have any real-valued solutions (since the power flow 1€ Ao, Pv, A1, pv, andAs, py matrices for the two-bus
. : ; : . System with a PV and a slack bus are given in (56), (57), and
equations in rectangular coordinates are derived by sépara

(58).

the real and imaginary parts of the complex power injection
physically meaningful solutions for the voltage composent
must be real). On the other hand, solutions to solvablesyste Ay, pv =

may not be found due to convergence problems inherent tof 0 Gs 0 —Ga2 0 0 0 0 0]
numeric solution codes. If a solution is not found, engiseer | g,, 0o 0 0 Gao 0 00 0
may be uncertain of whether there truly are no solutions or | 0 0 0 0 —Gs 0 0 O
if the numeric code is not converging to a solution that does | _; 0 0 _ 0 00 0
in fact exist. Cond|t_|ons for the existence of regl .soluimn. 0 10 -1 0 O 0 0 0 (56)
to multiparameter eigenvalue problems would eliminats thi

. " 0 0 -1 0 0 0 0 0 0
uncertainty. Also, for some purposes, such as determitiag t )
locations of bifurcations, the details of a solution may het 0 0 0 0 0 0 0 0
particularly important; it may be sufficient to simply deténe 0 0 0 0 0 0 100
whether any real solutions exist for a given power fow model. L 0 0 0 0 0 0 0 0 0]




(7]

Ay py =
0 —a 0 0 b —V2Gx 0 Py 0] (8]
—a 0 0 —b 0 0 P, 0 O [9]
0 0 0 -G 0 0 0 0 0
0 0 V& 0 0 0 0 0 0 [10]
0 0 0 0 0 0 0 0 0
-1 0 0 0 0 0 0 0 0 [11]
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 12
0 0 0 0 0 0 0 0 0|
(57)
As py = [13]
[ a 0 V&G b O 0 —-P 0 0 7
0 —a 0 0 —-b 0 0 P 0 [14]
Gzz 0 a 0 0 b 0 0 —P2
0 0 0 0o 0 -V 0 0 0 [15]
0 o0 0 0 0 0 0O 0 o0
0 0 0 -1 0 0 0O 0 o0 [16]
-1 0 0 0 0 0 0 0 V2 (7]
0 1 0 0 0 0 0 0 0 18]
L 0 0 -1 0 0 0 1 0 0 |
(58)

[19]

For notational convenience,= G21 V41 — B21V,1 andb =
Bo1 Vi1 + G211 V.
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