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Abstract—The problem of determining the initial conditions
for induction machine variables in a non-linear dynamic power
system analysis is posed as an eigenvalue problem. The eigenvalue
formulation can then be solved using standard linear algebra
techniques. This method has the advantage of determining all
possible solutions for the internal variables rather than the single
solution obtained from traditional iterative methods. Addition-
ally, the method can easily determine when the problem has no
solutions through the absence of non-zero real eigenvalues.

I. I NTRODUCTION

Dynamic simulations of power systems generally begin by
running a load flow analysis to determine steady state values
of the real power (P ), the reactive power (Q), the voltage
magnitude (V ) and the voltage angle (�) at each bus. Sub-
sequently, the initial conditions for components connected to
the bus are set to their steady state value. Induction machines
comprise a significant portion of the load at many buses.
For each induction machine connected to a bus, the initial
conditions of the machine model’s internal state variablesmust
be obtained such that the terminal variables of the model
match the values ofP , Q, V , and � obtained from the load
flow analysis. Appropriate choice of the internal states of
the induction machine model can set both the machine’s real
power and voltage to match the bus values that are obtained
from the load flow analysis. An additional capacitor is often
added at the bus to ensure that the reactive power output of the
machine matches the reactive power obtained from the load
flow analysis [1].

A common approach for matching the real power and
voltage uses iteration on the induction machine’s slip to solve
the machine equations for the internal variables using the
known terminal values. This approach is used in such software
as Electro-Magnetic Transients Program (EMTP) [2, pp. 9-19],
Positive Sequence Load Flow Software (PSLF) [3, pp. 785]
and Power System Simulation for Engineering (PSS/E) [4, pp.
20-16]. A potential disadvantage of the iteration approachis
that only one solution is obtained when multiple solutions
are often possible. For general purposes the highest speed
stable solution is sought; however, for some research purposes,
studies can focus on other unstable solutions.

In this paper, we present an eigenvalue approach for solving
the induction machine initial conditions problem. Assuming
linear magnetic relationships, the electrical equations appear
nearly linear, with non-linearity involving a common multi-
plier, the rotor speed. This will serve as the eigenvalue in
our formulation. The eigenvector is composed of the machine
electrical variables. Once these are solved, the torque equation
is used to initialize the model’s mechanical torque.

This eigenvalue approach has the advantage of providing
all solutions, stable and unstable, and can reliably determine
when no solution exists through the absence of non-zero real
eigenvalues.

II. DYNAMIC INDUCTION MACHINE MODEL

This section presents a standard dynamic induction machine
model in the dq frame with linear magnetic relationships and
short circuited rotor windings. The model was adapted from
[5, pp. 284].
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Te (Ids, Iqs, Idr, Iqr) = Xm (IqsIdr − IdsIqr) (3)

!s refers to the electrical excitation frequency and!r refers
to the rotor speed.Xls is the stator leakage reactance,Xlr is



the rotor leakage reactance,Xm is the mutual reactance,Rs

is the stator resistance,Rr is the rotor resistance, andH is
the inertia constant of the machine and mechanical load. All
quantities are in per unit.

The familiar steady state equivalent circuit for the induction
machine model from (1), (2), and (3) is as follows. The ma-
chine slip iss = !s−!r

!s

, the stator current isIs = Ids + jIqs,
the rotor current isIr = Idr + jIqr , and the stator voltage is
Vs = Vds + jVqs.
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Fig. 1. Induction Machine Steady State Equivalent Circuit

III. E IGENVALUE FORMULATION OF THE INITIAL

CONDITIONS PROBLEM

The dynamic induction machine model given by (1), (2),
and (3) fits into a more general induction machine dynamic
model framework.

y = [A+ !rB]x+C
dx
dt

(4)

2H

!s

d!r

dt
= Te (x)− Tm (5)

This model has the applied voltage contained in the vector
y and stator and rotor currents contained in the vectorx. The
rotor windings are short circuited.A contains all terms that
do not depend on the rotational speed!r, B contains all terms
that do depend on!r, andC contains all terms that depend
on the derivative of the currents. The model thus has a single
multiplicative non-linearity, namely a dependence on!r.

In steady state,d!r

dt
= 0 and dx

dt
= 0.

y = [A+ !rB]x (6)

Te (x) = Tm (7)

A andB are completely defined by the machine parameters.
Since the phase angle of the applied voltage does not affect the
power consumption of the motor, we specify the stator d-axis
voltageVds equal to the voltage obtained from the load flow
analysis and the stator q-axis voltageVqs equal to zero. The
voltage is then directed entirely in the d-axis. This specification
can be corrected at the end of the method by rotating the
current angles by the bus angle obtained from the load flow
analysis. Therefore, the voltage vectory is completely known.
Since Vqs is specified to be zero, the real power used by
the machine isP = VdsIds. The real power is known from
the load flow analysis, so the d-axis current can be directly
determined.

Ids =
P

Vds

(8)

The machine model can be put into the form of an eigen-
value problem by combining the known voltage vector and the
known matrixA. First rewrite the voltage vectory as
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where, using (8),

RA =
Vds

Ids
=

V 2

in

P
(10)

Then define the matrixD as

−D = −

[

RA 0

0 0

]

+A (11)

and rewrite (6) as

−Dx+ !rBx = 0 (12)

or, in a well-known generalized eigenvalue form

Dx = !rBx (13)

This formulation can either be solved with generalized
eigenvalue solution techniques or, sinceD is generally invert-
ible under the condition that stator and rotor resistances are
specified, converted to standard eigenvalue form and solved
with standard eigenvalue techniques [6].

1

!r

x = D
−1

Bx (14)

Since the eigenvector can be arbitrarily scaled, rescalingthe
eigenvector using the known value ofIds from (8) is required.
Additionally, correction for the voltage angle� from the load
flow analysis is needed: rotate the current vectorx by � after
solving the eigenvalue problem. Finally, the mechanical torque
is obtained using (3) and (7).

IV. N UMERIC EXAMPLE

AssumeVin is obtained from a load flow analysis. Specify
Vds = Vin andVqs = 0. The method can then be applied to the
induction machine model given by (6) and (7) as previously
described in section III.
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Now !r and the currents inx can then be found by solving
(14). Note that the eigenvectorx must be scaled correctly.
Since the first entry ofx should beIds, scaling can be done
by multiplying the each entry in the eigenvectorx by Ids
divided by the first entry ofx.

Consider an induction machine with the following parameter
values in per unit representation.

Xls Xlr Xm Rs Rr !s (rad/sec)
0.10 0.10 3.5 0.013 0.015 377

TABLE I
INDUCTION MACHINE EQUIVALENT CIRCUIT PARAMETERS

Assume that the following values are obtained from a load
flow analysis.

P Vin �

1.0 1.0 30∘

TABLE II
LOAD FLOW PARAMETERS

From this data, (8) shows thatIds = 1.0 and (10) shows
thatRA = 1.0. D can then be obtained from (15).
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Solving (14) gives two non-zero solutions for!r. The zero
eigenvalues can be neglected since they are not physically
meaningful. The eigenvectorx was scaled such that the
Ids entry is equal to its known value of 1.0. After scaling
the eigenvector, the currents were rotated by�. This was
accomplished by calculating the vectorsIk = (Idk + jIqk) e

j�

for k = {s, r}. The rotated stator and rotor d-axis currents
correspond to the real parts ofIk, and the rotated stator and
rotor q-axis currents correspond to the imaginary parts ofIk.
Finally, torque was calculated using (3).

The solutions for!r in radians per second and the currents
and torque in per unit are presented below. Note that both the
stable and unstable solutions are acquired rather than the single
solution that would be obtained from an iterative method.
These solutions were verified in the steady state equivalent
circuit shown in Fig. 1 through the traditional method of
iteration on the machine’s slip until the proper terminal power
was obtained.

Solution !r

(

rad

sec

)

Ids Iqs Idr Iqr Tm

1 183.6 3.295 -3.708 -3.233 3.579 0.6801
2 370.7 1.110 0.0773 -0.999 -0.323 0.9839

TABLE III
SOLUTION TO INDUCTION MACHINE EXAMPLE

The torque versus speed curve for this machine is given in
Fig. 2, and both solutions are shown.

V. CONCLUSION

A new method for determining the initial conditions of
induction machine models in dynamic power system studies
has been developed. This method converts the initial condi-
tions problem into a generalized eigenvalue formulation that
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can be solved using standard linear algebra techniques. In
contrast to existing iterative methods, the eigenvalue method
has the advantage of providing all solutions to the initial
conditions problem and can reliability determine when no
solutions exist. While eigenvalue solution techniques forar-
bitrarily sized matrices require iteration, these techniques are
robust. Additionally,D−1

B in (14) has rank 2. Therefore, the
largest factor in the eigenvalue characteristic equation for the
induction machine model is a second order polynomial. Hence,
the eigenvalue formulation can be non-iteratively solved using
the quadratic formula.

Additional work on eigenvalue formulations for induction
machine problems is promising. For instance, the method
presented in this paper is directly applicable to other induction
machine models, such as a double-cage induction machine
model. The method could also be extended to induction
machines with non-linear magnetic relationships in order to
incorporate saturation effects. This could be accomplished by
solving the eigenvalue formulation inside an iteration process.
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