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Abstract—The problem of determining the initial conditions In this paper, we present an eigenvalue approach for solving
for induction machine variables in a non-linear dynamic power the induction machine initial conditions problem. Assugin
system analysis is posed as an eigenvalue problem. The eigglie  |inaar magnetic relationships, the electrical equatiopsear

formulation can then be solved using standard linear algeba v i ith i itv involvi i
techniques. This method has the advantage of determining lal nearly linear, with non-iinéarity involving a common melt

possible solutions for the internal variables rather than he single Plier, the rotor speed. This will serve as the eigenvalue in
solution obtained from traditional iterative methods. Addition-  our formulation. The eigenvector is composed of the machine

ally, the method can easily determine when the problem has no electrical variables. Once these are solved, the torquatienqu
solutions through the absence of non-zero real eigenvalues is used to initialize the model’s mechanical torque.
This eigenvalue approach has the advantage of providing
all solutions, stable and unstable, and can reliably determ
Dynamic simulations of power systems generally begin hyhen no solution exists through the absence of non-zero real
running a load flow analysis to determine steady state valusigenvalues.
of the real power P), the reactive power(J), the voltage
magnitude ) and the voltage angled) at each bus. Sub-
sequently, the initial conditions for components connédte This section presents a standard dynamic induction machine
the bus are set to their steady state value. Induction meshimodel in the dg frame with linear magnetic relationships and
comprise a significant portion of the load at many buseshort circuited rotor windings. The model was adapted from
For each induction machine connected to a bus, the init{& pp. 284].
conditions of the machine model’s internal state variabiest
be obtained such that the terminal variables of the modet,, Re  —(Xie+Xm) O — X
match the values oP, @, V, and ¢ obtained from the load

I. INTRODUCTION

II. DYNAMIC INDUCTION MACHINE MODEL

. B . . Vs Xis +Xm Rs Xm 0
flow analysis. Appropriate choice of the internal states of | = (X )
the induction machine model can set both the machine’s repl” 0 —Xm Rr = (Xip + Xm)
power and voltage to match the bus values that are obtained Xm 0 (Xir + Xm) Ry

from the load flow analysis. An additional capacitor is often
added at the bus to ensure that the reactive power outpug¢ of th
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machine matches the reactive power obtained from the load-<-
flow analysis [1]. s l 0 Xm 0 (Xir 4+ Xom) Iar

A common approach for matching the real power and —Xm 0 = (Xip + Xom) 0 Iqr
voltage uses iteration on the induction machine’s slip tweso (Xis + Xom
the machine equations for the internal variables using the {

known terminal values. This approach is used in such soffwar +—

Ws

Yy 0 Xm 0 Iy
0 (X1s + Xm) 0 KXm d | Igs

Xom 0 (X + Xom) 0 dt |71,
0

Xm 0 (Xlr- + Xm) -[qr'

as Electro-Magnetic Transients Program (EMTP) [2, pp. P-19
Positive Sequence Load Flow Software (PSLF) [3, pp. 785]
and Power System Simulation for Engineering (PSS/E) [4, pp. 2H dw,
20-16]. A potential disadvantage of the iteration appro@ch
that only one solution is obtained when multiple solutions
are often possible. For general purposes the highest speed
stable solution is sought; however, for some research gemo w, refers to the electrical excitation frequency andrefers
studies can focus on other unstable solutions. to the rotor speedX;, is the stator leakage reactancg,. is

=Te (Idsv-[qsvld'r‘y-[qr') —Tm (2)
ws dt

Te (Id57 Iq57 Lay, Iqr') =Xm (Iqsldv- - Idslqr') (3)



the rotor leakage reactanc¥,,, is the mutual reactance?;

is the stator resistance?, is the rotor resistance, anl is I = £ (8)
the inertia constant of the machine and mechanical load. All Vs
quantities are in per unit. The machine model can be put into the form of an eigen-

The familiar steady state equivalent circuit for the indiet  value problem by combining the known voltage vector and the

machine model from (1), (2), and (3) is as follows. The m&nown matrixA. First rewrite the voltage vectar as
chine slip iss = “=—==, the stator current i$, = I4; + jls,

the rotor current isl,. = I, + jI,., and the stator voltage is Vs e Ra
Vs = Vds + .]Vqs 0 0 I 0 I 9
Yy = 0 - 0 ds — 0 ds ( )

RS Xls Xl’l‘

where, using (8),

V. X, B, 2
s m S Vds \7
Ry = = 10
_ AT T, P (10)
° Then define the matriD as
Fig. 1. Induction Machine Steady State Equivalent Circuit
R4 |O
-D=-— + A (12)
Il1. EIGENVALUE FORMULATION OF THE INITIAL 01]0
CONDITIONS PROBLEM and rewrite (6) as
The dynamic induction machine model given by (1), (2),
and (3) fits into a more general induction machine dynamic —Dz+w,Bzx=0 (12)

model framework. _ _ _
or, in a well-known generalized eigenvalue form

dz

y=[A+wBlz+Cqp 4) Dz = w,Bx (13)
2H dw, =T.(z) —Tn (5) This formulation can either be solved with generalized
ws dt eigenvalue solution techniques or, sirlods generally invert-

This model has the applied voltage contained in the vectle under the condition that stator and rotor resistances a
y and stator and rotor currents contained in the vectdfhe specified, converted to standard eigenvalue form and solved
rotor windings are short circuited\ contains all terms that with standard eigenvalue techniques [6].
do not depend on the rotational spegd B contains all terms
that do depend ow,, and C contains all terms that depend ix =D !Bz (14)
on the derivative of the currents. The model thus has a single Wy

multiplicative non-linearity, namely a dependencewgn Since the eigenvector can be arbitrarily scaled, rescétiag
In steady statéy= = 0 and $% = 0. eigenvector using the known value bf, from (8) is required.
Additionally, correction for the voltage angbefrom the load
(6) flow analysis is needed: rotate the current veatday ¢ after
solving the eigenvalue problem. Finally, the mechanicajue
is obtained using (3) and (7).

A andB are completely defined by the machine parameters.
Since the phase angle of the applied voltage does not afffect t
power consumption of the motor, we specify the stator d-axisAssumeV;,, is obtained from a load flow analysis. Specify
voltage Vs equal to the voltage obtained from the load flowss = Vi, andV,, = 0. The method can then be applied to the
analysis and the stator g-axis voltayg, equal to zero. The induction machine model given by (6) and (7) as previously
voltage is then directed entirely in the d-axis. This speatfon described in section III.
can be corrected at the end of the method by rotating theThe matrixD is
current angles by the bus angle obtained from the load flow

y=[A+wB|z
Te (I) = Tm (7)

IV. NUMERIC EXAMPLE

ar_‘lalysis. T_hereforg_, the voltage vectois completely known. (Ro — Ra) — (Xis + Xom) 0 X,

Since V,; is specified to be zero, the real power used by X4 x R X 0

the machine isP = Vy,14s. The real power is known from p = _ (X1s + Xom) s m (15)
the load flow analysis, so the d-axis current can be directly 0 —Xm R = (X + Xom)

determined. Xom 0 (X1 +Xm) R



Now w,- and the currents in: can then be found by solving Induction Machine Torque vs. Speed Curve

. 2.5 -
(14). Note that the eigenvectar must be scaled correctly. . Torque vs. Speed Curve
Since the first entry of should bel,,, scaling can be done { L@ Solutions for Numeric Example
by multiplying the each entry in the eigenvectorby I, 2
divided by the first entry of:. 1
Consider an induction machine with the following parameter =
. . . 1.5
values in per unit representation. s
g ]
Xis | Xir | Xm Rs R, ws (rad/sec) ) ]
0.10 | 0.10 [ 35 | 0.013 | 0.015 377 g 14
S ]
TABLE | 1
INDUCTION MACHINE EQUIVALENT CIRCUIT PARAMETERS E
0.5
Assume that the following values are obtained from a load 1
flow analysis. 1
P Vi ) [ I B BN B BLEL A UL B
10 1.0 | 30° 0 50 100 150 200 250 300 350
Speed (rad/sec)
TABLE 1|
LoAD FLOW PARAMETERS Fig. 2. Torque Speed Curve and Solutions for Numeric Example

From this data, (8) shows thdl, = 1.0 and (10) shows ¢an pe solved using standard linear algebra techniques. In

that R4 = 1.0. D can then be obtained from (15). contrast to existing iterative methods, the eigenvaluehout
0.987 3.6 0 35 has the advantage of providing all solutions to the initial
~36 -0013 —35 0 conditions problem and can reliability determine when no

D = 0 35 0015 36 solutions exist. While eigenvalue solution techniques dor

bitrarily sized matrices require iteration, these techegare

) _ ) robust. Additionally,D~'B in (14) has rank 2. Therefore, the
~Solving (14) gives two non-zero solutions for. The zero |5rgest factor in the eigenvalue characteristic equatioritie

eigenvalues can be neglected since they are not physicglyyction machine model is a second order polynomial. Hence

meaningful. The eigenvector was scaled such that they,e eigenvalue formulation can be non-iteratively solveig

I4s entry is equal to its known value of 1.0. After scalingpe quadratic formula.

the eigenvector, the currents were rotated dyThis was  aqdditional work on eigenvalue formulations for induction

accomplished by calculating the vectdys= (1ax +J'_qu)ejé machine problems is promising. For instance, the method

for & = {s,7}. The rotated stator and rotor d-axis current§resented in this paper is directly applicable to other atidn

correspond to the real parts &f, and the rotated stator andy,achine models, such as a double-cage induction machine

rotor g-axis currents correspond to the imaginary part$.0f model. The method could also be extended to induction

Finally, torque was calculated using (3). machines with non-linear magnetic relationships in oraer t
The solutions fow, in radians per second and the Cu”e”tﬁcorporate saturation effects. This could be accomptishe

and torque in per unit are presented below. Note that both §ing the eigenvalue formulation inside an iterationqess.
stable and unstable solutions are acquired rather thainle s

solution that would be obtained from an iterative method. ACKNOWLEDGMENT
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