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Counterexample to a Continuation-Based Algorithm
for Finding All Power Flow Solutions
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Abstract—Existing literature claims that an algorithm based on
continuation is capable of finding all solutions to the powerflow
equations for all power systems. This claim is demonstratedto be
incorrect through the use of a five-bus system counterexample.
Existing literature also claims that a similar algorithm is capable
of finding all Type-1 solutions (i.e., solutions where the power flow
Jacobian has a single eigenvalue with positive real part) tothe
power flow equations for all systems. This claim is also shown
to be incorrect using the five-bus system counterexample.

Index Terms—Continuation power flow, voltage stability

I. I NTRODUCTION

T HE power flow equations model the relationship between
voltages and active and reactive power injections in a

power system. It is well known that large numbers of solutions
to these equations can exist. Power systems are typically
operated at the high-voltage, stable solution, for which numer-
ous solution techniques have been developed (e.g., Newton-
Raphson, Gauss-Seidel, etc.). However, other solutions are also
of interest.

A direct approach to finding multiple power flow solutions
simply initializes Newton-Raphson iterations over a range
of carefully selected candidate initial conditions. However,
this approach does not guarantee obtaining all power flow
solutions. In another approach, Salamet al. [1] apply the
homotophy method of Chowet al. [2] to the power flow
problem. This method can reliably find all solutions, but has
a computational complexity that grows exponentially with
system size. It is not computationally tractable for large
systems.

Ma and Thorp published a continuation-based algorithm that
they claimed would reliably find all solutions to the power
flow equations [3], [4]. Since the computational complexity
of this algorithm scales with the number of actual, rather than
possible, solutions, it is computationally tractable for large
systems. In other publications, a similar algorithm is usedto
find all Type-1 power flow solutions [5]. Type-1 solutions are
those where the Jacobian of the power flow equations has a
single eigenvalue with positive real part. Type-1 solutions are
closely related to voltage instability phenomena [6].

In this letter, we present a five-bus system counterexample
to the claim that the continuation-based algorithm will reliably
find all solutions to the power flow equations. In the related
thesis [7], a flaw in the proof associated with the complete-
ness of the continuation-based algorithm is presented. The
ten solutions to the five-bus system were calculated using a
homotopy method [1]. There are three groups of solutions that,

University of Wisconsin-Madison Department of Electricaland Com-
puter Engineering:† molzahn@wisc.edu, lesieutre@wisc.edu; Electric Power
Group, LLC.:‡ chen@electricpowergroup.com

while connected by continuation traces to all other solutions
within the group, are not connected to solutions outside of
the group. Thus, the continuation-based algorithm fails tofind
all solutions. Furthermore, since a Type-1 solution existsfor
this system, the five-bus system also provides an example
where the continuation-based algorithm fails to find all Type-1
solutions.

II. OVERVIEW OF THE CONTINUATION-BASED

ALGORITHM

The continuation-based algorithm [3], [4] modifies the
power flow equations by adding a scalar parameterα to the ac-
tive or reactive power equation for a bus. The algorithm starts
from a single power flow solution obtained using traditional
methods. At each step in the algorithm, the modified power
flow equations are solved after changingα by a small amount.
This creates a continuation trace. Solutions to the power flow
equations are obtained whenα = 0. The continuation trace
terminates when the trace returns to its starting point. Existing
literature [3], [4] claims that all solutions are connectedby
these continuation traces. Thus, if continuation traces are
started from each solution for each parameter (i.e., each
solution/parameter pair) all solutions will be obtained; at most
ns
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continuation traces are required to find all solutions, where

n is the number of buses ands is the number of solutions.

III. F IVE-BUS SYSTEM COUNTEREXAMPLE

The five-bus system given in Fig. 1 provides a coun-
terexample to the claim that the continuation-based algorithm
finds all solutions to the power flow equations for all power
systems. Line values are given in per unit impedance and
power injections are given in MW. We use a 100 MVA base.

We expect that the algorithm may fail to find all solutions
for systems that have non-radial, weakly connected regions
that have strong voltage support. In this example, bus threeis
weakly connected (i.e., connected via high impedance lines)
to the rest of the network. Since they consist of PV buses,
both bus three and the rest of the network (including the slack
bus at bus one) have strong voltage support.

The ten solutions to the power flow equations for the five-
bus system are given in Table I. Since the system contains
only slack and PV buses, the voltage magnitude is specified
at each bus (all voltage magnitudes are1.000 per unit).δi is
the voltage angle at busi in degrees.

The continuation traces for this system using active power
parameters and starting from solution one are shown in Fig.
2. These continuation traces only contain solutions one and
two. The continuation traces started from solution two are
identical to those in Fig. 2 and also only contain solutions one
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Fig. 1. Five-Bus System

Solution δ1 δ2 δ3 δ4 δ5

1 0 1.286 22.061 2.194 0.372
2 0 0.166 171.198 0.028 -0.710

3 0 -169.906 -148.192 -167.129 -168.909
4 0 -168.702 3.182 -167.131 -167.912

5 0 2.187 45.923 46.616 -143.973
6 0 -168.657 -172.863 44.012 -145.341
7 0 -171.391 -99.227 50.716 -141.807
8 0 -0.897 -168.405 44.388 -145.144
9 0 -169.370 -10.988 165.903 -25.378
10 0 -169.282 -160.897 166.147 -22.898

TABLE I
ALL SOLUTIONS TO THEFIVE-BUS SYSTEM

and two. These continuation traces do not find solutions three
though ten. Thus, solutions one and two are disconnected from
the eight other solutions. Similarly, continuation tracesstarted
from solutions three and four only find solutions three and
four, and continuation traces started from any of the remaining
solutions five through ten only find solutions five through ten
(plots of the other continuation traces are excluded for brevity).
The continuation-based algorithm therefore fails to find all
solutions.

The eigenvalues of the power flow Jacobian were evaluated
at each solution. With a single eigenvalue that has positive
real part, solution two is the only Type-1 solution. This
solution cannot be reached from continuation traces that start
from solutions three through ten. Thus, the five-bus system
also provides a counterexample to the claim in [5] that
the continuation-based algorithm can reliably find all Type-
1 solutions.

IV. CONCLUSION

This letter has presented a five-bus system counterexample
to the claim in existing literature that the continuation-based
algorithm is capable of finding all solutions to the power flow
equations for all systems. Since other methods for finding all
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Fig. 2. Continuation Traces for Solution 1

solutions to the power flow equations are not computationally
tractable for large systems, we conclude that there is presently
no method for reliably computing all solutions to the power
flow equations for practically sized systems.
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